

AT27C512R

512-Kbit (64K x 8) One-Time Programmable, Read-Only Memory

Features

- Fast Read Access Time: 45 ns
- Low-Power CMOS Operation:
 - 100 μA maximum standby
 - 20 mA maximum active at 5 MHz
- 5V ± 10% Supply
- High Reliability CMOS Technology:
 - 2,000V ESD protection
 - 200 mA latch-up immunity
- Rapid Programming Algorithm 100 µs/byte (typical)
- CMOS and TTL Compatible Inputs and Outputs
- Integrated Product Identification Code
- Industrial Temperature Range: -40°C to +85°C
- Green Package Options (Lead-free/Halide-free/RoHS compliant)

Packages

• 32-Lead PLCC and 28-Lead PDIP

Table of Contents

Fea	tures	1
Pac	kages	1
1.	Package Types (not to scale)	3
2.	Pin Description	4
3.	Description	5
4.	Electrical Characteristics	6
5.	Rapid Programming Algorithm	12
6.	Packaging Information	13
7.	Revision History	19
Mic	rochip Information	20

1. Package Types (not to scale)

Note:

1. PLCC package pins 1, 12, 17 and 26 are not connected.

2. Pin Description

The description of the pins are listed in Table 2.1. Table 2-1. Pin Description

Name	32-Lead PLCC	28-Lead PDIP	Function
A0 - A15	2-11; 24; 27-31	1-10; 21; 23-27	Address Inputs
00 - 07	13-15; 18-22	11-13; 15-19	Outputs
CE	23	20	Chip Enable
OE/V _{PP}	25	22	Output Enable/Program Supply
NC	1; 12; 17; 26	—	Not Connected
V _{CC}	32	28	Device Power Supply
GND	16	14	Ground

3. Description

The Microchip AT27C512R is a low-power, high-performance, 524,288-bit, One-Time Programmable, Read-Only memory (OTP EPROM) organized as 65,536 words of 8 bits each. It requires only one 5V power supply in normal Read mode operation. Any byte can be accessed in less than 45 ns, eliminating the need for speed-reducing WAIT states on high-performance microprocessor systems.

The Microchip-scaled CMOS technology provides low active power consumption and fast programming. Power consumption is typically only 8 mA in Active mode and less than 10 μ A in Standby mode.

The AT27C512R is available in a choice of industry-standard, JEDEC-approved, PDIP and PLCC packages. All devices feature two-line control (\overline{CE} , \overline{OE}) to give designers the flexibility to prevent bus contention.

With 64 Kbyte storage capability, the AT27C512R allows firmware to be stored reliably and to be accessed by the system without the delays of mass storage media.

The AT27C512R has additional features to ensure high-quality and efficient production use. The rapid programming algorithm reduces the time required to program the part and guarantees reliable programming. Programming time is typically only 100 µs/byte. The integrated product identification code electronically identifies the device and manufacturer. This feature is used by industry-standard programming equipment to select the proper programming algorithms and voltages.

3.1 System Considerations

Switching between active and standby conditions via the chip enable pin may produce transient voltage excursions. Unless accommodated by the system design, these transients may exceed data sheet limits, resulting in device non-conformance. At a minimum, a 0.1 μ F, high-frequency, low inherent inductance, ceramic capacitor should be utilized for each device. This capacitor should be connected between the V_{CC} and ground terminals of the device as close to the device as possible. Additionally, to stabilize the supply voltage level on printed circuit boards with large EPROM arrays, a 4.7 μ F bulk electrolytic capacitor should be utilized and again connected between the V_{CC} and ground terminals. This capacitor should be positioned as close as possible to the point where the power supply is connected to the array.

3.2 Block Diagram

Figure 3-1. Block Diagram

4. Electrical Characteristics

4.1 Absolute Maximum Ratings

Temperature under bias	-55°C to +125°C
Storage temperature	-65°C to +150°C
Voltage on any pin with respect to ground	-2.0V to +7.0V ⁽¹⁾
Voltage on A9 with respect to ground	-2.0V to +14.0V ⁽¹⁾
V _{PP} supply voltage with respect to ground	-2.0V to +14.0V ⁽¹⁾

Note: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Note:

1. Minimum voltage is -0.6V DC, which may undershoot to -2.0V for pulses of less than 20 ns. Maximum output pin voltage is V_{CC} +0.75V DC, which may overshoot to +7.0V for pulses of less than 20 ns.

4.2 DC and AC Operating Range

Table 4-1. DC and AC Operating Range

Mode/Pin	CE	OE/V _{PP}	Ai	Outputs
Read	V _{IL}	V _{IL}	Ai	D _{OUT}
Output disable	V _{IL}	V _{IH}	X ⁽¹⁾	High-Z
Standby	V _{IH}	X ⁽¹⁾	X ⁽¹⁾	High-Z
Rapid program ⁽²⁾	V _{IL}	V _{PP}	Ai	D _{IN}
PGM inhibit	V _{IH}	V _{PP}	X ⁽¹⁾	High-Z
Product identification ⁽⁴⁾	V _{IL}	V _{IL}	$\begin{array}{l} \text{A9}=\text{V}_{\text{H}}^{(3)},\text{A0}=\text{V}_{\text{IH}}\text{or}\text{V}_{\text{IL}}\\ \text{A1-A15}=\text{V}_{\text{IL}} \end{array}$	Identification code

Notes:

- 1. X can be V_{IL} or V_{IH} .
- 2. Refer to programming characteristics.
- 3. $V_{\rm H} = 12.0 \pm 0.5 V.$
- 4. Two identifier bytes may be selected. All Ai inputs are held low (V_{IL}), except A9, which is set to V_H, and A0, which is toggled low (V_{IL}) to select the manufacturer's identification byte and high (V_{IH}) to select the device code byte.

Table 4-2. DC and AC Operating Conditions for Read Operation

AT270	-45	-70	
Operating Temperature (Case)	Industrial Temperature Range	-40°C - 85°C	-40°C - 85°C
V _{CC} Supply		5V ± 10%	5V ± 10%

4.3 DC and Operating Characteristics for Read Operation

Table 4-3. DC and Operating Characteristics for Read Operation

Parameter	Symbol	Minimum	Maximum	Units		Condition
Input Load Current	I _{LI}	—	±1	μA	Industrial	V_{IN} = 0V to V_{CC}
Output Leakage Current	I _{LO}	—	±5	μA	Industrial	V_{OUT} = 0V to V_{CC}
V (1)Standby Current	1		100	μA	I _{SB1} (CMOS)	, $\overline{\text{CE}} = V_{\text{CC}} \pm 0.3 \text{V}$
V _{CC} Standby Current I _{SB} — 1 m	mA	I_{SB2} (TTL), \overline{CE} = 2.0 to V_{CC} +0.5V				
V _{CC} Active Current	I _{CC}	—	20	mA	f = 5 MHz, I _O	_{UT} = 0 mA, CE = V _{IL}
Input Low Voltage	V _{IL}	-0.6	0.8	V		
Input High Voltage	V _{IH}	2.0	V _{CC} + 0.5	V		
Output Low Voltage	V _{OL}	—	0.4	V	I _{OL} = 2.1 mA	
Output High Voltage	V _{OH}	2.4			I _{OH} = -400 μ/	Ą

Note:

1. V_{CC} must be applied simultaneously with or before \overline{OE}/V_{PP} , and removed simultaneously with or after \overline{OE}/V_{PP} .

4.4 AC Characteristics for Read Operation

 Table 4-4. AC Characteristics for Read Operation

Paramotor	Symbol	-45		-	70	Unite	Condition	
Falailletei	Symbol	Minimum	Maximum	Minimum	Maximum	Units	Condition	
Address to Output Delay	t _{ACC} ⁽¹⁾		45		70	ns	$\overline{\text{CE}} = \overline{\text{OE}}/\text{V}_{\text{PP}} = \text{V}_{\text{IL}}$	
$\overline{\text{CE}}$ to Output Delay	t _{CE} ⁽¹⁾		45		70	ns	$\overline{OE}/V_{PP} = V_{IL}$	
OE/V _{PP} to Output Delay	t _{OE} (1)		20		30	ns	$\overline{CE} = V_{IL}$	
OE/V _{PP} or CE High to Output Float, Whichever Occurred First	t _{DF} ⁽¹⁾		20		25	ns	OE/V _{PP} or CE High to Output Float, Whichever Occurred First	
Output hold from address, \overline{CE} or \overline{OE}/V_{PP} , whichever occurred first	t _{OH}	7		7		ns	Output hold from address, CE or OE/V _{PP} , whichever occurred first	

Note:

1. See Figure 4-1.

Figure 4-1. AC Waveform for Read Operation

Notes:

- 1. Timing measurement reference level is 1.5V for -45 devices. Input AC drive levels are V_{IL} = 0.0V and V_{IH} = 3.0V. Timing measurement reference levels for all other speed grades are V_{OL} = 0.8V and V_{OH} = 2.0V. Input AC drive levels are V_{IL} = 0.45V and V_{IH} = 2.4V.
- 2. \overline{OE}/V_{PP} may be delayed up to t_{CE} t_{OE} after the falling edge of \overline{CE} without impact on t_{CE} .
- 3. \overline{OE}/V_{PP} may be delayed up to t_{ACC} t_{OE} after the address is valid without impact on t_{ACC} .
- 4. This parameter is only sampled, and is not 100% tested.
- 5. Output float is defined as the point when data is no longer driven.

Figure 4-2. Input Test Waveforms and Measurement Levels

Figure 4-3. Output Test Load

Note:

1. CL = 100 pF including jig capacitance, except for the -45 devices, where CL = 30 pF.

4.5 **Programming waveforms**

Figure 4-4. Programming Waveforms

Notes:

- 1. The input timing reference is 0.8V for V_{IL} and 2.0V for $V_{IH}.$
- 2. t_{OE} and t_{DFP} are characteristics of the device, but must be accommodated by the programmer.
- 3. When programming the AT27C512R, a 0.1 μ F capacitor is required across V_{PP} and ground to suppress spurious voltage transients.

4.6 DC Programming Characteristics

Table 4-5. DC Programming Characteristics ⁽¹⁾

Paramatar	Symbol	Lim	nits	Unito	Test Conditions	
Farameter	Minimum	Minimum	Maximum	Units	Test conditions	
Input Load Current	ILI		±10	μA	$V_{IN} = V_{IL}, V_{IH}$	
Input Low Level	V _{IL}	-0.6	0.8	V	—	
Input High Level	V _{IH}	2.0	V _{CC} + 1	V		
Output Low Voltage	V _{OL}		0.4	V	I _{OL} = 2.1 mA	
Output High Voltage	V _{OH}	2.4	—	V	I _{OH} = -400 μA	
V _{CC} Supply Current (Program and Verify)	I _{CC2}		25	mA	_	
OE/V _{PP} Current	I _{PP2}	—	25	mA	$\overline{CE} = V_{IL}$	
A9 Product Identification Voltage	V _{ID}	11.5	12.5	V		

Note:

1. $T_A = +25 \pm 5^{\circ}$ C, $V_{CC} = 6.5 \pm 0.25$ V, $\overline{OE}/V_{PP} = 13.0 \pm 0.25$ V.

4.7 AC Programming Characteristics

Table 4-6. AC Programming Characteristics⁽¹⁾

Paramotor	Symbol	Limits		s Illnits Test conditions	
Falalletei	Symbol	Minimum	Maximum	Units	
Address Setup Time	t _{AS}	2	—	μs	
$\overline{\text{OE}}/\text{V}_{\text{PP}}$ Setup Time	t _{OES}	2	—	μs	
$\overline{\text{OE}}/\text{V}_{\text{PP}}$ Hold Time	t _{OEH}	2	—	μs	
Data Setup Time	t _{DS}	2	_	μs	
Address Hold Time	t _{AH}	0	_	μs	Input rise and fall times (10% to 90%) 20 ns
Data Hold Time	t _{DH}	2	_	μs	Input pulse levels 0.45V to 2.4V
\overline{CE} High to Output Float Delay ⁽³⁾	t _{DFP}	0	130	ns	Input timing reference level 0.8V to 2.0V
V _{CC} Setup Time	t _{VCS}	2	—	μs	Output timing reference level
CE Program Pulse Width ⁽⁴⁾	t _{PW}	95	105	μs	0.8V to 2.0V
Data Valid From $\overline{CE}^{(3)}$	t _{DV}		1	μs	
OE/V _{PP} Recovery Time	t _{VR}	2	_	μs	
OE/V _{PP} Pulse Rise Time During Programming	t _{PRT}	50	_	ns	

Notes:

- 1. $T_A = +25 \pm 5^{\circ}C$, $V_{CC} = 6.5 \pm 0.25V$, $\overline{OE}/V_{PP} = 13.0 \pm 0.25V$.
- 2. V_{CC} must be applied simultaneously with or before \overline{OE}/V_{PP} and removed simultaneously with or after \overline{OE}/V_{PP} .
- 3. This parameter is only sampled, and is not 100% tested. Output float is defined as the point where data is no longer driven. See timing diagram.
- 4. Program pulse width tolerance is 100 μ s ± 5%.

4.8 Electrical Specifications

4.8.1 Pin Capacitance

Table 4-7. Pin Capacitance^(1,2)

Symbol	Typical	Maximum	Units	Conditions
C _{IN}	4	6	pF	V _{IN} = 0V
C _{OUT}	8	12	pF	V _{OUT} = 0V

Notes:

- 1. Typical values for nominal supply voltage. This parameter is only sampled, and is not 100% tested.
- 2. f = 1 MHz, T_A = 25°C

4.9 Integrated Product Identification Code

 Table 4-8. Integrated Product Identification Code

Codeo	Pins								Hex	
Coues	A0	07	O6	O5	04	O3	O2	01	00	data
Manufacturer	0	0	0	0	1	1	1	1	0	1E
Device type	1	0	0	0	0	1	1	0	1	0D

5. Rapid Programming Algorithm

A 100 μ s \overline{CE} pulse width is used to program. The address is set to the first location. V_{CC} is raised to 6.5V and \overline{OE}/V_{PP} is raised to 13.0V. Each address is first programmed with one 100 μ s \overline{CE} pulse without verification. Then a verification/reprogramming loop is executed for each address. In the event a byte fails to pass verification, up to 10 successive 100 μ s pulses are applied with a verification after each pulse. If the byte fails to verify after 10 pulses have been applied, the part is considered failed. After the byte verifies properly, the next address is selected until all have been checked. \overline{OE}/V_{PP} is then lowered to V_{IL} and V_{CC} to 5.0V. All bytes are read again and compared with the original data to determine if the device passes or fails.

Figure 5-1. Rapid Programming Algorithm

6. Packaging Information

6.1 Package Marking Information

	ad PDIP	32-Lea	Id PLCC
Topside	Backside	Topside	Backside
ATMEL AT27C512R %%U-34A04B YYWWNNN		ATMEL AT27C512R %%U-34A04B YYWWNNN	
lote: no backside markir	ıgs		
	%% = Acc	cess Time	
	45: 45 i 70: 70 i	ns	
I	Lot Trace	e Code	
	YWWNNN: Lot Y: Year, WW:	Trace Code Work Week	

32-Lead Plastic Leaded Chip Carrier (L) - Rectangle [PLCC]

Microchip Technology Drawing C04-023 Rev C Sheet 1 of 2

32-Lead Plastic Leaded Chip Carrier (L) - Rectangle [PLCC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		INCHES			
Dimension Limits		MIN	NOM	MAX	
Number of Pins	Ν	32			
Pitch	е		.050 BSC		
Pins along Length	ND	7			
Pins along Width	NE		9		
Overall Height	Α	.125	.132	.140	
Contact Height	A1	.060	.0775	.095	
Standoff §	A3	.015	-	-	
Corner Chamfer	CH1	.042	.045	.048	
Chamfers	CH2	-	-	.020	
Side Chamfer Height	CH3	.023	.026	.029	
Overall Length	D	.485	.490	.495	
Overall Width	Е	.585	.590	.595	
Molded Package Length	D1	.447	.450	.453	
Molded Package Width	E1	.547	.550	.553	
Footprint Length	D2	.376	.411	.446	
Footprint Width	E2	.476	.511	.546	
Lead Thickness	С	.008	.010	.013	
Upper Lead Width	b1	.026	.029	.032	
Lower Lead Width	b	.013	.017	.021	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-023 Rev C Sheet 2 of 2

32-Lead Plastic Leaded Chip Carrier (L) - Rectangle [PLCC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	INCHES			
Dimension Limits		MIN	NOM	MAX
Contact Pitch	Е	.050 BSC		
Contact Pad Spacing	C1		.425	
Contact Pad Spacing	C2		.524	
Contact Pad Width (X32)	X1			.026
Contact Pad Length (X32)	Y1			.100
Contact Pad to Center Pad (X28)	G	.008		

Notes:

- 1. Dimensioning and tolerancing per ASME Y14.5M
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.
- 2. For best soldering results, thermal vias, if used, should be filled or tented to avoid solder loss during reflow process

Microchip Technology Drawing C04-2023 Rev C

For the most current package drawings, please see the Microchip Packaging Specification located at

28-Lead Plastic Dual In-Line (P) - 600 mil Body [PDIP]

http://www.microchip.com/packaging

INCHES Units NOM **Dimension Limits** MIN MAX Number of Pins Ν 28 Pitch .100 BSC е Top to Seating Plane Α .250 _ _ Molded Package Thickness A2 .125 .195 _ Base to Seating Plane A1 .015 Shoulder to Shoulder Width Е .590 .625 _ Molded Package Width E1 .485 .580 _ **Overall Length** 1.380 1.565 D _ Tip to Seating Plane L .115 .200 _ Lead Thickness .008 .015 с _ Upper Lead Width b1 .030 .070 _ Lower Lead Width b .014 _ .022 Overall Row Spacing § eВ .700 _

Notes:

Note:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-079B

28-Lead Plastic Dual In-Line (PI) - 600 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
Dimensi	on Limits	MIN	NOM	MAX	
Number of Pins	Ν	28			
Pitch	е	.100 BSC			
Top to Seating Plane	А	-	-	.250	
Molded Package Thickness	A2	.125	-	.195	
Base to Seating Plane	A1	.015	-	-	
Shoulder to Shoulder Width	E	.590	-	.625	
Molded Package Width	E1	.485	-	.580	
Overall Length	D	1.380	-	1.565	
Tip to Seating Plane	L	.115	-	.200	
Lead Thickness	с	.008	-	.015	
Upper Lead Width	b1	.030	-	.070	
Lower Lead Width	b	.014	-	.022	
Overall Row Spacing §	eB	_	_	.700	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-079B

7. Revision History

Revision A (December 2022)

Updated to the Microchip template. Microchip DS20006752A replaces Atmel document 0015. Updated Part Marking Information. Updated section content throughout for clarification.

Atmel Document 0015 Revision Q (October 2011)

Correct pinout note.

Atmel Document 0015 Revision P (April 2011)

Remove TSOP and SOIC packages; Add lead finish to ordering information.

Atmel Document 0015 Revision O (December 2007)

Microchip Information

The Microchip Website

Microchip provides online support via our website at www.microchip.com/. This website is used to make files and information easily available to customers. Some of the content available includes:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip design partner program member listing
- **Business of Microchip** Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

Product Change Notification Service

Microchip's product change notification service helps keep customers current on Microchip products. Subscribers will receive email notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, go to www.microchip.com/pcn and follow the registration instructions.

Customer Support

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Embedded Solutions Engineer (ESE)
- Technical Support

Customers should contact their distributor, representative or ESE for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in this document.

Technical support is available through the website at: www.microchip.com/support

Product Identification System

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Examples

Device	Package	Package Drawing Code	Package Option	Shipping Carrier Option	Device Grade
AT27C512R-45JU	PLCC	L	JU	Bulk (Tubes)	
AT27C512R-70JU	PLCC	L	JU	Bulk (Tubes)	Industrial
AT27C512R-45PU	PDIP	Р	PU	Bulk (Tubes)	Temperature
AT27C512R-70PU	PDIP	Р	PU	Bulk (Tubes)	$(-40^{\circ}C \text{ to } +85^{\circ}C)$
AT27C512R-45JU-T	PLCC	L	JU	Tape and Reel	(,
AT27C512R-70JU-T	PLCC	L	JU	Tape and Reel	

Microchip Devices Code Protection Feature

Note the following details of the code protection feature on Microchip products:

- · Microchip products meet the specifications contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is secure when used in the intended manner, within operating specifications, and under normal conditions.
- Microchip values and aggressively protects its intellectual property rights. Attempts to breach the code protection features of Microchip product is strictly prohibited and may violate the Digital Millennium Copyright Act.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of its code. Code protection does not mean that we are guaranteeing the product is "unbreakable". Code protection is constantly evolving. Microchip is committed to continuously improving the code protection features of our products.

Legal Notice

This publication and the information herein may be used only with Microchip products, including to design, test, and integrate Microchip products with your application. Use of this information in any other manner violates these terms. Information regarding device applications is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. Contact your

local Microchip sales office for additional support or, obtain additional support at www.microchip.com/en-us/support/design-help/client-support-services.

THIS INFORMATION IS PROVIDED BY MICROCHIP "AS IS". MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION INCLUDING BUT NOT LIMITED TO ANY IMPLIED WARRANTIES OF NON-INFRINGEMENT, MERCHANTABILITY, AND FITNESS FOR A PARTICULAR PURPOSE, OR WARRANTIES RELATED TO ITS CONDITION, QUALITY, OR PERFORMANCE.

IN NO EVENT WILL MICROCHIP BE LIABLE FOR ANY INDIRECT, SPECIAL, PUNITIVE, INCIDENTAL, OR CONSEQUENTIAL LOSS, DAMAGE, COST, OR EXPENSE OF ANY KIND WHATSOEVER RELATED TO THE INFORMATION OR ITS USE, HOWEVER CAUSED, EVEN IF MICROCHIP HAS BEEN ADVISED OF THE POSSIBILITY OR THE DAMAGES ARE FORESEEABLE. TO THE FULLEST EXTENT ALLOWED BY LAW, MICROCHIP'S TOTAL LIABILITY ON ALL CLAIMS IN ANY WAY RELATED TO THE INFORMATION OR ITS USE WILL NOT EXCEED THE AMOUNT OF FEES, IF ANY, THAT YOU HAVE PAID DIRECTLY TO MICROCHIP FOR THE INFORMATION.

Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, Adaptec, AVR, AVR logo, AVR Freaks, BesTime, BitCloud, CryptoMemory, CryptoRF, dsPIC, flexPWR, HELDO, IGLOO, JukeBlox, KeeLoq, Kleer, LANCheck, LinkMD, maXStylus, maXTouch, MediaLB, megaAVR, Microsemi, Microsemi logo, MOST, MOST logo, MPLAB, OptoLyzer, PIC, picoPower, PICSTART, PIC32 logo, PolarFire, Prochip Designer, QTouch, SAM-BA, SenGenuity, SpyNIC, SST, SST Logo, SuperFlash, Symmetricom, SyncServer, Tachyon, TimeSource, tinyAVR, UNI/O, Vectron, and XMEGA are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AgileSwitch, APT, ClockWorks, The Embedded Control Solutions Company, EtherSynch, Flashtec, Hyper Speed Control, HyperLight Load, Libero, motorBench, mTouch, Powermite 3, Precision Edge, ProASIC, ProASIC Plus, ProASIC Plus logo, Quiet- Wire, SmartFusion, SyncWorld, Temux, TimeCesium, TimeHub, TimePictra, TimeProvider, TrueTime, and ZL are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Adjacent Key Suppression, AKS, Analog-for-the-Digital Age, Any Capacitor, AnyIn, AnyOut, Augmented Switching, BlueSky, BodyCom, Clockstudio, CodeGuard, CryptoAuthentication, CryptoAutomotive, CryptoCompanion, CryptoController, dsPICDEM, dsPICDEM.net, Dynamic Average Matching, DAM, ECAN, Espresso T1S, EtherGREEN, GridTime, IdealBridge, In-Circuit Serial Programming, ICSP, INICnet, Intelligent Paralleling, IntelliMOS, Inter-Chip Connectivity, JitterBlocker, Knob-on-Display, KoD, maxCrypto, maxView, memBrain, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, PowerSmart, PureSilicon, QMatrix, REAL ICE, Ripple Blocker, RTAX, RTG4, SAM-ICE, Serial Quad I/O, simpleMAP, SimpliPHY, SmartBuffer, SmartHLS, SMART-I.S., storClad, SQI, SuperSwitcher, SuperSwitcher II, Switchtec, SynchroPHY, Total Endurance, Trusted Time, TSHARC, USBCheck, VariSense, VectorBlox, VeriPHY, ViewSpan, WiperLock, XpressConnect, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

The Adaptec logo, Frequency on Demand, Silicon Storage Technology, and Symmcom are registered trademarks of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

[©] 2022, Microchip Technology Incorporated and its subsidiaries. All Rights Reserved.

ISBN: 978-1-6683-1778-5

Quality Management System

For information regarding Microchip's Quality Management Systems, please visit www.microchip.com/quality.

Worldwide Sales and Service

AMERICAS	ASIA/PACIFIC	ASIA/PACIFIC	EUROPE
Corporate Office	Australia - Sydnev	India - Bangalore	Austria - Wels
2355 West Chandler Blvd.	Tel: 61-2-9868-6733	Tel: 91-80-3090-4444	Tel: 43-7242-2244-39
Chandler, AZ 85224-6199	China - Beiiing	India - New Delhi	Fax: 43-7242-2244-393
Tel: 480-792-7200	Tel: 86-10-8569-7000	Tel: 91-11-4160-8631	Denmark - Copenhagen
Fax: 480-792-7277	China - Chengdu	India - Pune	Tel: 45-4485-5910
Technical Support:	Tel: 86-28-8665-5511	Tel: 91-20-4121-0141	Fax: 45-4485-2829
www.microchip.com/support	China - Chongging	Japan - Osaka	Finland - Espoo
Web Address:	Tel: 86-23-8980-9588	Tel: 81-6-6152-7160	Tel: 358-9-4520-820
www.microchip.com	China - Dongguan	Japan - Tokvo	France - Paris
Atlanta	Tel: 86-769-8702-9880	Tel: 81-3-6880- 3770	Tel: 33-1-69-53-63-20
Duluth. GA	China - Guangzhou	Korea - Daegu	Fax: 33-1-69-30-90-79
Tel: 678-957-9614	Tel: 86-20-8755-8029	Tel: 82-53-744-4301	Germany - Garching
Fax: 678-957-1455	China - Hangzhou	Korea - Seoul	Tel: 49-8931-9700
Austin. TX	Tel: 86-571-8792-8115	Tel: 82-2-554-7200	Germany - Haan
Tel: 512-257-3370	China - Hong Kong SAR	Malaysia - Kuala Lumpur	Tel: 49-2129-3766400
Boston	Tel: 852-2943-5100	Tel: 60-3-7651-7906	Germany - Heilbronn
Westborough, MA	China - Naniing	Malavsia - Penang	Tel: 49-7131-72400
Tel: 774-760-0087	Tel: 86-25-8473-2460	Tel: 60-4-227-8870	Germany - Karlsruhe
Eax: 774-760-0088	China - Qingdao	Philippines - Manila	Tel: 49-721-625370
Chicago	Tel: 86-532-8502-7355	Tel: 63-2-634-9065	Germany - Munich
Itasca II	China - Shanghai	Singanore	Tel: 49-89-627-144-0
Tel: 630-285-0071	Tel: 86-21-3326-8000	Tel: 65-6334-8870	Fax: 49-89-627-144-44
Eax: 630-285-0075	China - Shenyang	Taiwan - Hsin Chu	Germany - Rosenheim
Dallas	Tel: 86-24-2334-2829	Tel: 886-3-577-8366	Tel: 49-8031-354-560
Addison TX	China - Shenzhen		Israel - Ba'anana
Tel: 072-818-7/23	Tel: 86-755-8864-2200	Tel: 886-7-213-7830	Tel: 072-0-744-7705
Fax: 072-818-2024	China - Suzhou	Taiwan - Tainei	Italy - Milan
Detroit	Tel: 86-186-6233-1526	Tel: 886-2-2508-8600	Tel: 39-0331-742611
Novi MI	China - Wuhan	Thailand - Bangkok	Fax: 39-0331-466781
Tel: 248-848-4000	Tel: 86-27-5980-5300	Tel: 66-2-604-1351	Italy - Padova
Houston TX	China - Xian	Vietnam - Ho Chi Minh	Tel: 30-040-7625286
Tel: 281-894-5983	Tel: 86-29-8833-7252	Tel: 84-28-5448-2100	Netherlands - Drupen
Indiananolis	China - Xiamen	101. 04-20-0440-2100	Tel: 31-416-690399
Noblesville IN	Tel: 86-592-2388138		Eax: 31-416-690340
Tel: 317-773-8323	China - Zhuhai		Norway - Trondheim
Eav: 317-773-5453	Tel: 86-756-3210040		Tel: 47-72884388
Tel: 317-536-2380			Poland - Warsaw
l os Angeles			Tel: 48-22-3325737
			Romania - Bucharest
Tal: 040 462 0523			
Eax: 040 462 0608			Spain Madrid
Tak. 949-402-9000			Tol: 34 01 708 08 00
Balaigh NC			Eax: 34 01 708 08 01
Tal: 010 844 7510			Sweden Cothenhora
			Tel: 46-31-704-60 40
Tel: 631-435-6000			Sweden - Stockholm
San lose CA			Tel: 46-8-5000-4654
Jan JUSE, CA			181. 40-0-3090-4034
			Tal: 44 118 021 5900
161. 400-430-4270			101. 44-110-921-3000
			rax: 44-118-921-5820
Fax. 900-090-2010			