

dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 Data Sheet

High-Performance, Ultra Low Cost 16-bit Digital Signal Controllers

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2009

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, KEELOQ, KEELOQ logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-315-9

Microchip received ISO/TS-16949:2002 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEEL0Q® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and mnufacture of development systems is ISO 9001:2000 certified.

High-Performance, Ultra Low Cost 16-bit Digital Signal Controllers

Operating Range:

- Up to 16 MIPS operation (3.0V-3.6V):
 - Industrial temperature range (-40°C to +85°C)
 - Extended temperature range (-40°C to +125°C)

On-Chip Flash and SRAM:

- Flash program memory (16 Kbytes)
- Data SRAM (1 Kbyte)
- Security for program Flash

System Management:

- Flexible clock options:
 - External, crystal, resonator, internal FRC
 - Phase-Locked Loop (PLL)
- High-accuracy internal FRC
- ±0.25% typical
- Power-on Reset (POR)
- Power-up Timer (PWRT)
- Oscillator Start-up Timer (OST)
- Brown-out Reset (BOR)
- Watchdog Timer with its own RC oscillator
- Fail-Safe Clock Monitor (FSCM)

Motor Control PWM:

- 6-channel 16-bit Motor Control PWM:
 - Three duty cycle generators
 - Independent or Complementary mode
 - Programmable dead time and output polarity
 - Edge-aligned or center-aligned
 - Manual output override control
 - Up to two Fault inputs
 - Trigger for ADC conversions
 - PWM frequency for 16-bit resolution
 (@ 16 MIPS) = 488 Hz for Edge-Aligned mode, 244 Hz for Center-Aligned mode
 - PWM frequency for 11-bit resolution
 (@ 16 MIPS) = 15.63 kHz for Edge-Aligned mode, 7.81 kHz for Center-Aligned mode

Power Management:

- Single supply on-chip voltage regulator
- Switch between clock sources in real time
- · Idle, Sleep, and Doze modes with fast wake-up

Analog Peripherals:

- 10-bit, 1.1 Msps Analog-to-Digital Converter (ADC):
 - Two and four simultaneous samples
 - Up to six input channels with auto-scanning
 - Conversion start can be manual or synchronized with one of four trigger sources
 - Sleep mode conversion for low-power applications
 - ±2 LSb max integral nonlinearity
 - ±1 LSb max differential nonlinearity
- Three Analog Comparators with programmable input/output configuration:
 - Up to four inputs per Comparator
 - Blanking function
 - Output digital filter
- Charge Time Measurement Unit (CTMU):
 Supports capacitive touch sensing for touch screens and capacitive switches (mTouch[™])
 - Provides high-resolution time measurement for advanced sensor applications
 - 200 ps resolution for time measurement and accurate temperature sensing
 - On-chip high-resolution temperature measurement capability

Timers/Capture/Compare/PWM:

- Timer/Counters, up to three 16-bit timers:
 - Can pair up to make one 32-bit timer
 - One timer runs as Real-Time Clock with external 32.768 kHz oscillator
 - Programmable prescaler
- Input Capture (up to three channels):
 - Capture on up, down, or both edges
 - 16-bit capture input functions
 - 4-deep FIFO on each capture
- Output Compare (up to two channels):
 - Single or Dual 16-bit Compare mode
 - 16-bit Glitchless PWM mode
- Hardware Real-Time Clock and Calendar (RTCC):
 - Provides clock, calendar and alarm function

Digital I/O:

- Peripheral Pin Select functionality
- Up to 21 programmable digital I/O pins
- Wake-up/Interrupt-on-Change for up to 21 pins
- Output pins can drive from 3.0V to 3.6V
- Up to 5.5V output with open drain configuration on 5V tolerant pins
- All digital input pins are 5V tolerant
- Up to 8 mA sink on designated pins

Communication Modules:

- 4-wire SPI:
 - Framing supports I/O interface to simple codecs
 - Supports 8-bit and 16-bit data
 - Supports all serial clock formats and sampling modes
- I²C[™]:
 - Full Multi-Master Slave mode support
 - 7-bit and 10-bit addressing
 - Bus collision detection and arbitration
 - Integrated signal conditioning
 - Slave address masking
- UART:
 - Interrupt on address bit detect
 - Interrupt on UART error
 - Wake-up on Start bit from Sleep mode
 - 4-character TX and RX FIFO buffers
 - LIN 2.0 bus support
 - IrDA® encoding and decoding in hardware
 - High-Speed mode
 - Hardware Flow Control with CTS and RTS

Interrupt Controller:

- 5-cycle latency
- Up to 23 available interrupt sources
- Up to three external interrupts
- Seven programmable priority levels
- · Four processor exceptions

High-Performance MCU CPU Features:

- Modified Harvard architecture
- C compiler optimized instruction set
- 16-bit-wide data path
- 24-bit-wide instructions
- Linear program memory addressing up to 4M instruction words
- · Linear data memory addressing up to 64 Kbytes
- 73 base instructions: mostly one word/one cycle
- · Flexible and powerful indirect addressing mode
- Software stack
- 16 x 16 integer multiply operations
- 32/16 and 16/16 integer divide operations
- Up to ±16-bit shifts

Additional High-Performance DSC CPU Features:

- 11 additional instructions
- Two 40-bit accumulators with rounding and saturation options
- Additional flexible and powerful addressing modes:
 - Modulo
 - Bit-reversed
- Single-cycle multiply and accumulate:
 - Accumulator write back for DSP operations
 - Dual data fetch
- Shifts for up to 40-bit data
- 16 x 16 fractional multiply/divide operations

Packaging:

- 18-pin PDIP/SOIC
- 20-pin PDIP/SOIC/SSOP
- 28-pin SPDIP/SOIC/SSOP/QFN
- 28-pin QFN: 6x6 mm
- 36-pin TLA: 5x5 mm

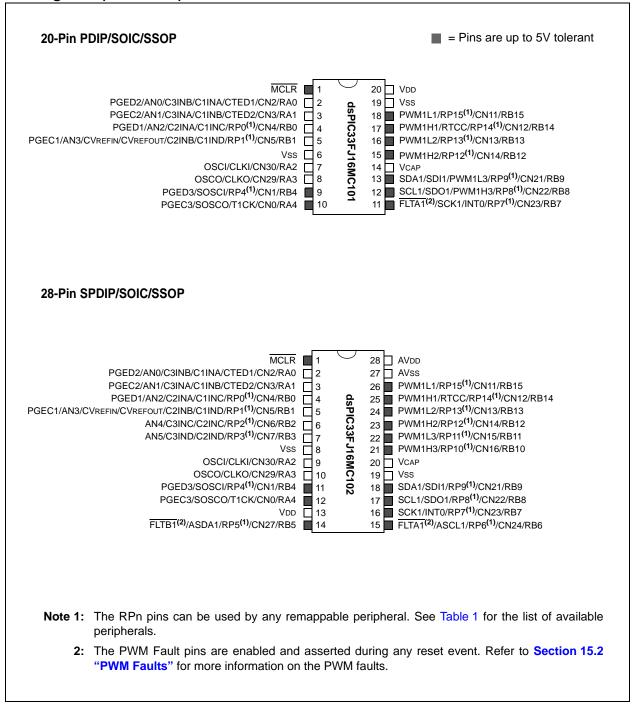
Note: See Table 1 for the list of peripheral features per device.

dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/102 PRODUCT FAMILIES

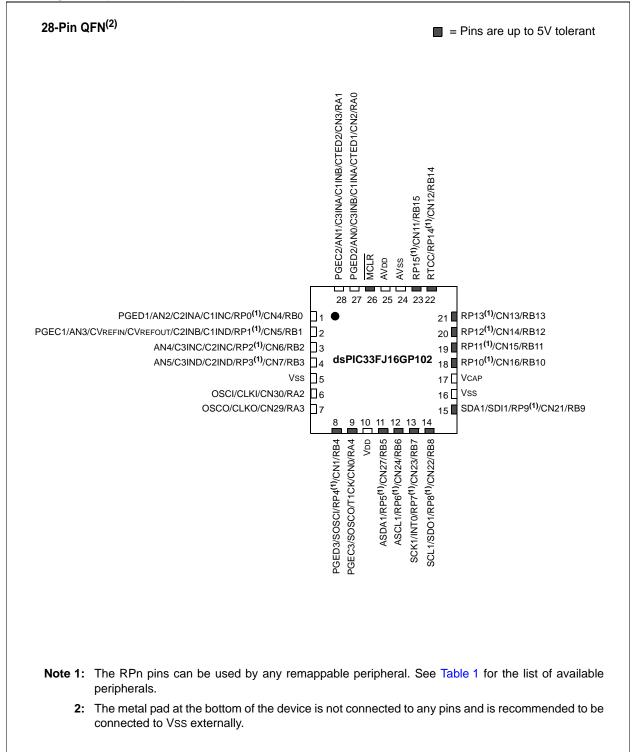

The device names, pin counts, memory sizes, and peripheral availability of each device are listed in Table 1. The following pages show their pinout diagrams.

		te)		F	Rema	ippa	ble	Perip	ohera	ls	5		Ŋ						
Device	Pins	Program Flash (Kbyte)	RAM (Kbytes)	Remappable Pins	16-bit Timer ⁽¹⁾	Input Capture	Output Compare	UART	External Interrupts ⁽²⁾	SPI	Motor Control PWM	PWM Faults	10-Bit, 1.1 Msps ADC	RTCC	I ² C TM	Comparators	CTMU	I/O Pins	Packages
dsPIC33FJ16GP101	18	16	1	8	3	3	2	1	3	1	—	_	1 ADC, 4-ch	Y	1	3	Y	13	PDIP, SOIC
	20	16	1	8	3	3	2	1	3	1	—	_	1 ADC, 4-ch	Y	1	3	Y	13	SSOP
dsPIC33FJ16GP102	28	16	1	16	3	3	2	1	3	1	—	-	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1	—	_	1 ADC, 6-ch	Y	1	3	Y	21	TLA
dsPIC33FJ16MC101	20	16	1	10	3	3	2	1	3	1	6-ch	1	1 ADC, 4-ch	Y	1	3	Y	15	PDIP, SOIC, SSOP
dsPIC33FJ16MC102	28	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	SPDIP, SOIC, SSOP, QFN
	36	16	1	16	3	3	2	1	3	1	6-ch	2	1 ADC, 6-ch	Y	1	3	Y	21	TLA

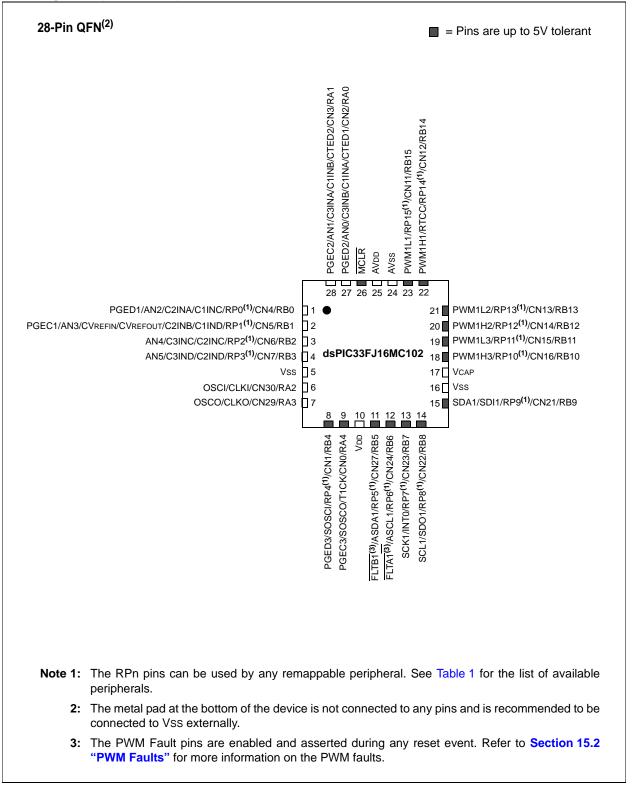
Note 1: Two out of three timers are remappable.


2: Two out of three interrupts are remappable.

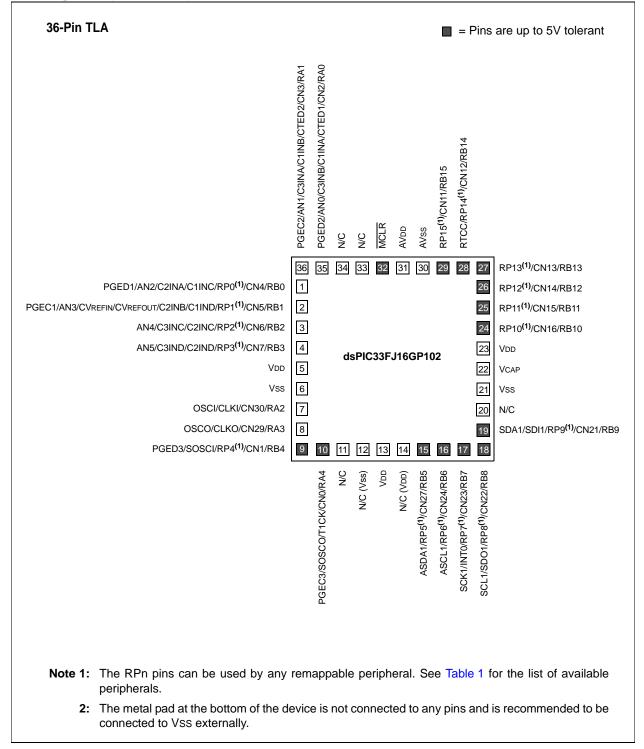
Pin Diagrams

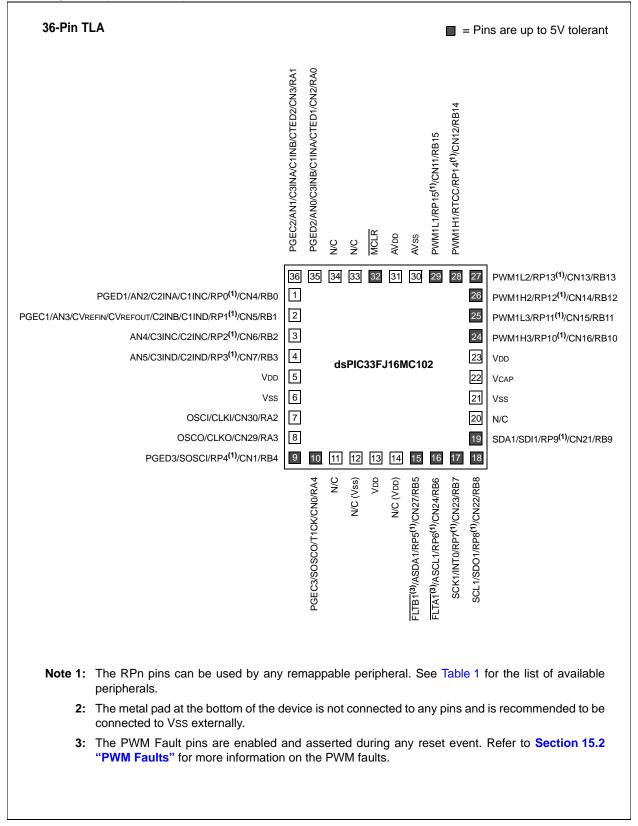

Preliminary

Pin Diagrams (Continued)



© 2011 Microchip Technology Inc.


Pin Diagrams (Continued)


Pin Diagrams (Continued)

Pin Diagrams (Continued)

Pin Diagrams (Continued)

© 2011 Microchip Technology Inc.

Table of Contents

dsPIC	C33FJ16GP101/102 and dsPIC33FJ16MC101/102 Product Families	5
1.0	Device Overview	
2.0	Guidelines for Getting Started with 16-bit Digital Signal Controllers	21
3.0	CPU	
4.0	Memory Organization	37
5.0	Flash Program Memory	65
6.0	Resets	69
7.0	Interrupt Controller	77
8.0	Oscillator Configuration	
9.0	Power-Saving Features	. 115
10.0	I/O Ports	. 121
11.0	Timer1	. 139
12.0	Timer2/3 Feature	
13.0	Input Capture	. 147
14.0	Output Compare	. 149
15.0	Motor Control PWM Module	
16.0	Serial Peripheral Interface (SPI)	
17.0	Inter-Integrated Circuit [™] (I ² C [™])	
18.0	Universal Asynchronous Receiver Transmitter (UART)	
19.0	10-bit Analog-to-Digital Converter (ADC)	. 189
	Comparator Module	
	Real-Time Clock and Calendar (RTCC)	
22.0	Charge Time Measurement Unit (CTMU)	. 223
23.0	Special Features	
24.0	Instruction Set Summary	
25.0	Development Support	
26.0	Electrical Characteristics	
27.0	Packaging Information	
	ndix A: Revision History	
Index		315
	/icrochip Web Site	
Custo	omer Change Notification Service	. 319
Custo	mer Support	. 319
	er Response	
Produ	Ict Identification System	. 321

TO OUR VALUED CUSTOMERS

It is our intention to provide our valued customers with the best documentation possible to ensure successful use of your Microchip products. To this end, we will continue to improve our publications to better suit your needs. Our publications will be refined and enhanced as new volumes and updates are introduced.

If you have any questions or comments regarding this publication, please contact the Marketing Communications Department via E-mail at **docerrors@microchip.com** or fax the **Reader Response Form** in the back of this data sheet to (480) 792-4150. We welcome your feedback.

Most Current Data Sheet

To obtain the most up-to-date version of this data sheet, please register at our Worldwide Web site at:

http://www.microchip.com

You can determine the version of a data sheet by examining its literature number found on the bottom outside corner of any page. The last character of the literature number is the version number, (e.g., DS30000A is version A of document DS30000).

Errata

An errata sheet, describing minor operational differences from the data sheet and recommended workarounds, may exist for current devices. As device/documentation issues become known to us, we will publish an errata sheet. The errata will specify the revision of silicon and revision of document to which it applies.

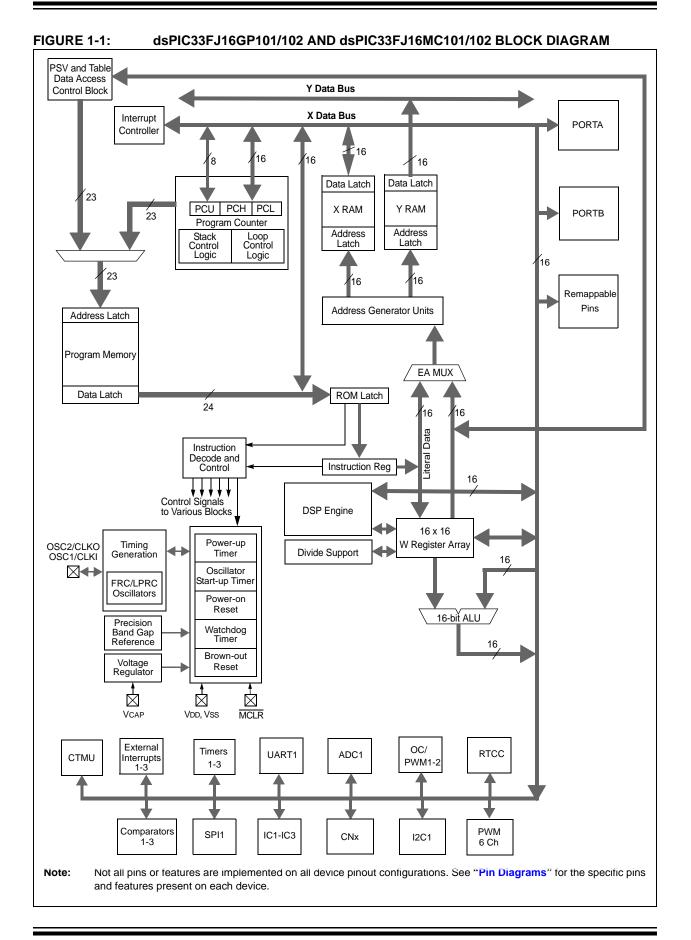
To determine if an errata sheet exists for a particular device, please check with one of the following:

- Microchip's Worldwide Web site; http://www.microchip.com
- Your local Microchip sales office (see last page)

When contacting a sales office, please specify which device, revision of silicon and data sheet (include literature number) you are using.

Customer Notification System

Register on our web site at www.microchip.com to receive the most current information on all of our products.


NOTES:

1.0 DEVICE OVERVIEW

Note:	This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices. How-
	ever, it is not intended to be a comprehen-
	sive reference source. To complement the
	information in this data sheet, refer to the
	latest family reference sections of the
	"dsPIC33F/PIC24H Family Reference
	Manual", which are available from the
	Microchip web site (www.microchip.com).

This document contains device specific information for the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 Digital Signal Controller (DSC) Devices. The dsPIC33F devices contain extensive Digital Signal Processor (DSP) functionality with a high-performance, 16-bit microcontroller (MCU) architecture.

Figure 1-1 shows a general block diagram of the core and peripheral modules in the dsPIC33FJ16GP101/ 102 and dsPIC33FJ16MC101/102 family of devices. Table 1-1 lists the functions of the various pins shown in the pinout diagrams.

Pin Name	Туре Туре								
AN0-AN5	Ι	Analog	No	Analog input channels.					
CLKI CLKO	- 0	ST/ CMOS —	No No	External clock source input. Always associated with OSC1 pin function. Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes. Always associated with OSC2 pin function.					
OSC1	I	ST/ CMOS	No	Oscillator crystal input. ST buffer when configured in RC mode; CMOS otherwise.					
OSC2	I/O	—	No	Oscillator crystal output. Connects to crystal or resonator in Crystal Oscillator mode. Optionally functions as CLKO in RC and EC modes.					
SOSCI SOSCO	 0	ST/ CMOS	No No	32.768 kHz low-power oscillator crystal input; CMOS otherwise. 32.768 kHz low-power oscillator crystal output.					
CN0-CN7 CN11-CN16 CN21-CN24 CN27 CN29-CN30	Ι	ST ST ST ST ST	No No No No No	Change notification inputs. Can be software programmed for internal weak pull-ups on all inputs.					
IC1-IC3	Ι	ST	Yes	Capture inputs 1/2/3.					
OCFA OC1-OC2	I O	ST —	Yes Yes	Compare Fault A input (for Compare Channels 1 and 2). Compare outputs 1 through 2.					
INT0	Ι	ST	No	External interrupt 0.					
INT1	I.	ST	Yes	External interrupt 1.					
INT2	Ι	ST	Yes	External interrupt 2.					
RA0-RA4	I/O	ST	No	PORTA is a bidirectional I/O port.					
RB0-RB15	I/O	ST	No	PORTB is a bidirectional I/O port.					
T1CK	Ι	ST	No	Timer1 external clock input.					
T2CK	I.	ST	Yes	Timer2 external clock input.					
ТЗСК	Ι	ST	Yes	Timer3 external clock input.					
U1CTS	Ι	ST	Yes	UART1 clear to send.					
U1RTS	0	—	Yes	UART1 ready to send.					
U1RX		ST	Yes	UART1 receive.					
U1TX	0	_	Yes	UART1 transmit.					
SCK1	I/O	ST	Yes	Synchronous serial clock input/output for SPI1.					
SDI1		ST	Yes						
SDO1	0		Yes	SPI1 data out.					
SS1	I/O	ST	Yes	SPI1 slave synchronization or frame pulse I/O.					
SCL1	I/O	ST	No	Synchronous serial clock input/output for I2C1.					
SDA1	I/O	ST	No	Synchronous serial data input/output for I2C1.					
ASCL1	1/O 1/O	ST ST	No No	Alternate synchronous serial clock input/output for I2C1. Alternate synchronous serial data input/output for I2C1.					
ASDA1									

TABLE 1-1: PINOUT I/O DESCRIPTIONS

Note 1: An external pull-down resistor is required for the FLTA1 pin on dsPIC33FJ16MC101 (20-pin) devices.

2: The FLTB1 pin is not available on dsPIC33FJ16MC101 (20-pin) devices.

3: The PWM Fault pins are enabled during any reset event. Refer to Section 15.2 "PWM Faults" for more information on the PWM faults.

PPS = Peripheral Pin Select

Pin Name	Pin Type	Buffer Type	PPS	Description						
FLTA1(1,3)	Ι	ST	No	PWM1 Fault A input.						
FLTB1(2,3)	I	ST	No	PWM1 Fault B input.						
PWM1L1	0		No	PWM1 Low output 1						
PWM1H1	Ō		No	PWM1 High output 1						
PWM1L2	Õ	_	No	PWM1 Low output 2						
PWM1H2	Ō	_	No	PWM1 High output 2						
PWM1L3	ŏ		No	PWM1 Low output 3						
PWM1H3	õ	_	No	PWM1 High output 3						
RTCC	0	Digital	No	RTCC Alarm output.						
CTPLS	0	Digital	Yes	CTMU Pulse Output.						
CTED1	I	Digital	No	CTMU External Edge Input 1.						
CTED2	I	Digital	No	CTMU External Edge Input 2.						
CVREF	I	Analog	No	Comparator Voltage Positive Reference Input.						
C1INA	1	Analog	No	Comparator 1 Positive Input A.						
C1INB	I	Analog	No	Comparator 1 Negative Input B.						
C1INC	I	Analog	No	Comparator 1 Negative Input C.						
C1IND	I	Analog	No	Comparator 1 Negative Input D.						
C1OUT	0	Digital	Yes	Comparator 1 Output.						
C2INA	I	Analog	No	Comparator 2 Positive Input A.						
C2INB	I	Analog	No	Comparator 2 Negative Input B.						
C2INC	I	Analog	No	Comparator 2 Negative Input C.						
C2IND	I	Analog	No	Comparator 2 Negative Input D.						
C2OUT	0	Digital	Yes	Comparator 2 Output.						
C3INA	I	Analog	No	Comparator 3 Positive Input A.						
C3INB	I	Analog	No	Comparator 3 Negative Input B.						
C3INC	1	Analog	No	Comparator 3 Negative Input C.						
C3IND	1	Analog	No	Comparator 3 Negative Input D.						
C3OUT	0	Digital	Yes	Comparator 3 Output.						
PGED1	I/O	ST	No	Data I/O pin for programming/debugging communication channel 1.						
PGEC1	I	ST	No	Clock input pin for programming/debugging communication channel 1.						
PGED2	I/O	ST	No	Data I/O pin for programming/debugging communication channel 2.						
PGEC2	I	ST	No	Clock input pin for programming/debugging communication channel 2.						
PGED3	I/O	ST	No	Data I/O pin for programming/debugging communication channel 3.						
PGEC3	I	ST	No	Clock input pin for programming/debugging communication channel 3.						
MCLR	I/P	ST	No	Master Clear (Reset) input. This pin is an active-low Reset to the device.						
AVdd	Р	Р	No	Positive supply for analog modules. This pin must be connected at all times. For devices without this pin, this signal is connected to VDD internally.						
AVss	Р	Р	No	Ground reference for analog modules. For devices without this pin, this signal is connected to Vss internally.						
Vdd	Р	_	No	Positive supply for peripheral logic and I/O pins.						
VCAP	Р		No	CPU logic filter capacitor connection.						
Vss	Р	—	No	Ground reference for logic and I/O pins.						
S	T = Sch		' input	P input or output Analog = Analog input P = Power with CMOS levels O = Output I = Input st St St						

TABLE 1-1: PINOUT I/O DESCRIPTIONS (CONTINUED)

Note 1: An external pull-down resistor is required for the FLTA1 pin on dsPIC33FJ16MC101 (20-pin) devices.

2: The FLTB1 pin is not available on dsPIC33FJ16MC101 (20-pin) devices.

3: The PWM Fault pins are enabled during any reset event. Refer to Section 15.2 "PWM Faults" for more information on the PWM faults.

1.1 Referenced Sources

This device data sheet is based on the following individual chapters of the *"dsPIC33F/PIC24H Family Reference Manual"*. These documents should be considered as the primary reference for the operation of a particular module or device feature.

Note:	To access the documents listed below, browse to the specific device product page of the Microchip web site (www.microchip.com).
	In addition to parameters, features, and other documentation, the resulting page provides links to the related family reference manual sections.

- Section 2. "CPU" (DS70204)
- Section 3. "Data Memory" (DS70202)
- Section 4. "Program Memory" (DS70203)
- Section 5. "Flash Programming" (DS70191)
- Section 8. "Reset" (DS70192)
- Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196)
- Section 11. "Timers" (DS70205)
- Section 12. "Input Capture" (DS70198)
- Section 13. "Output Compare" (DS70209)
- Section 14. "Motor Control PWM" (DS70187)
- Section 16. "Analog-to-Digital Converter (ADC)" (DS70183)
- Section 17. "UART" (DS70188)
- Section 18. "Serial Peripheral Interface (SPI)" (DS70206)
- Section 19. "Inter-Integrated Circuit™ (I²C™)" (DS70195)
- Section 23. "CodeGuard Security" (DS70199)
- Section 24. "Programming and Diagnostics" (DS70207)
- Section 25. "Device Configuration" (DS70194)
- Section 26. "Development Tool Support" (DS70200)
- Section 30. "I/O Ports with Peripheral Pin Select (PPS)" (DS70190)
- Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70301)
- Section 51. "Introduction (Part VI)" (DS70655)
- Section 52. "Oscillator (Part VI)" (DS70644)
- Section 53. "Interrupts (Part VI)" (DS70633)
- Section 54. "Comparator with Blanking" (DS70647)
- Section 55. "Charge Time Measurement Unit (CTMU)" (DS70635)

NOTES:

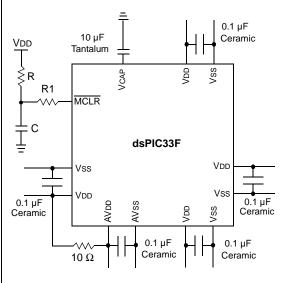
2.0 GUIDELINES FOR GETTING STARTED WITH 16-BIT DIGITAL SIGNAL CONTROLLERS

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site (www.microchip.com) for the latest dsPIC33F/PIC24H Family Reference Manual sections.
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

2.1 Basic Connection Requirements

Getting started with the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of 16-bit Digital Signal Controllers (DSCs) requires attention to a minimal set of device pin connections before proceeding with development. The following is a list of pin names, which must always be connected:

- All VDD and VSS pins (see Section 2.2 "Decoupling Capacitors")
- All AVDD and AVss pins, if present on the device (regardless if ADC module is not used) (see Section 2.2 "Decoupling Capacitors")
- VCAP (see Section 2.3 "CPU Logic Filter Capacitor Connection (VCAP)")
- MCLR pin (see Section 2.4 "Master Clear (MCLR) Pin")
- PGECx/PGEDx pins used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes (see Section 2.5 "ICSP Pins")
- OSC1 and OSC2 pins when external oscillator source is used (see Section 2.6 "External Oscillator Pins")


2.2 Decoupling Capacitors

The use of decoupling capacitors on every pair of power supply pins, such as VDD, VSS, AVDD, and AVSS is required.

Consider the following criteria when using decoupling capacitors:

- Value and type of capacitor: Recommendation of 0.1 μ F (100 nF), 10V – 20V. This capacitor should be a low-ESR and have resonance frequency in the range of 20 MHz and higher. It is recommended that ceramic capacitors be used.
- Placement on the printed circuit board: The decoupling capacitors should be placed as close to the pins as possible. It is recommended to place the capacitors on the same side of the board as the device. If space is constricted, the capacitor can be placed on another layer on the PCB using a via; however, ensure that the trace length from the pin to the capacitor is within one-quarter inch (6 mm) in length.
- Handling high frequency noise: If the board is experiencing high frequency noise, upward of tens of MHz, add a second ceramic-type capacitor in parallel to the above described decoupling capacitor. The value of the second capacitor can be in the range of 0.01 μ F to 0.001 μ F. Place this second capacitor next to the primary decoupling capacitor. In high-speed circuit designs, consider implementing a decade pair of capacitances as close to the power and ground pins as possible. For example, 0.1 μ F in parallel with 0.001 μ F.
- **Maximizing performance:** On the board layout from the power supply circuit, run the power and return traces to the decoupling capacitors first, and then to the device pins. This ensures that the decoupling capacitors are first in the power chain. Equally important is to keep the trace length between the capacitor and the power pins to a minimum thereby reducing PCB track inductance.

FIGURE 2-1: RECOMMENDED MINIMUM CONNECTION

2.2.1 TANK CAPACITORS

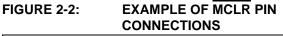
On boards with power traces running longer than six inches in length, it is suggested to use a tank capacitor for integrated circuits including DSCs to supply a local power source. The value of the tank capacitor should be determined based on the trace resistance that connects the power supply source to the device, and the maximum current drawn by the device in the application. In other words, select the tank capacitor so that it meets the acceptable voltage sag at the device. Typical values range from 4.7 μ F to 47 μ F.

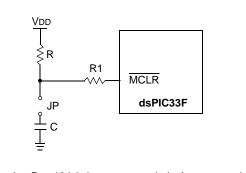
2.3 CPU Logic Filter Capacitor Connection (VCAP)

A low-ESR (< 5 Ohms) capacitor is required on the VCAP pin, which is used to stabilize the voltage regulator output voltage. The VCAP pin must not be connected to VDD, and must have a capacitor between 4.7 μ F and 10 μ F, 16V connected to ground. The type can be ceramic or tantalum. Refer to Section 26.0 "Electrical Characteristics" for additional information.

The placement of this capacitor should be close to the VCAP. It is recommended that the trace length not exceed one-quarter inch (6 mm). Refer to Section 23.2 "On-Chip Voltage Regulator" for details.

2.4 Master Clear (MCLR) Pin


The MCLR pin provides two specific device functions:


- Device Reset
- Device programming and debugging

During device programming and debugging, the resistance and capacitance that can be added to the pin must be considered. Device programmers and debuggers drive the $\overline{\text{MCLR}}$ pin. Consequently, specific voltage levels (VIH and VIL) and fast signal transitions must not be adversely affected. Therefore, specific values of R and C will need to be adjusted based on the application and PCB requirements.

For example, as shown in Figure 2-2, it is recommended that the capacitor C, be isolated from the MCLR pin during programming and debugging operations.

Place the components shown in Figure 2-2 within one-quarter inch (6 mm) from the MCLR pin.

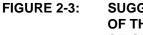
- Note 1: $R \le 10 \text{ k}\Omega$ is recommended. A suggested starting value is $10 \text{ k}\Omega$ Ensure that the MCLR pin VIH and VIL specifications are met.
 - 2: $\underline{R1} \leq 470\Omega$ will limit any current flowing into MCLR from the external capacitor C, in the event of MCLR pin breakdown, due to Electrostatic Discharge (ESD) or <u>Electrical</u> Overstress (EOS). Ensure that the MCLR pin VIH and VIL specifications are met.

2.5 ICSP Pins

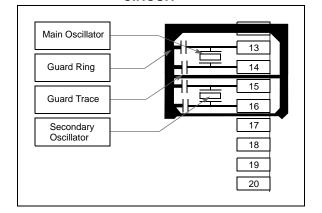
The PGECx and PGEDx pins are used for In-Circuit Serial Programming[™] (ICSP[™]) and debugging purposes. It is recommended to keep the trace length between the ICSP connector and the ICSP pins on the device as short as possible. If the ICSP connector is expected to experience an ESD event, a series resistor is recommended, with the value in the range of a few tens of Ohms, not to exceed 100 Ohms.

Pull-up resistors, series diodes, and capacitors on the PGECx and PGEDx pins are not recommended as they will interfere with the programmer/debugger communications to the device. If such discrete components are an application requirement, they should be removed from the circuit during programming and debugging. Alternately, refer to the AC/DC characteristics and timing requirements information in the *"Flash Programming Specification for dsPIC33F Families with Volatile Configuration Bits"* for information on capacitive loading limits and pin input voltage high (VIH) and input low (VIL) requirements.

Ensure that the "Communication Channel Select" (i.e., PGECx/PGEDx pins) programmed into the device matches the physical connections for the ICSP to MPLAB[®] ICD 2, MPLAB ICD 3, or MPLAB REAL ICE[™].


For more information on ICD 2, ICD 3, and REAL ICE connection requirements, refer to the following documents that are available on the Microchip web site.

- "MPLAB[®] ICD 2 In-Circuit Debugger User's Guide" (DS51331)
- "Using MPLAB[®] ICD 2" (poster) (DS51265)
- *"MPLAB[®] ICD 2 Design Advisory"* (DS51566)
- "Using MPLAB[®] ICD 3" (poster) (DS51765)
- *"MPLAB[®] ICD 3 Design Advisory"* (DS51764)
- "MPLAB[®] REAL ICE[™] In-Circuit Debugger User's Guide" (DS51616)
- *"Using MPLAB[®] REAL ICE™"* (poster) (DS51749)


2.6 External Oscillator Pins

Many DSCs have options for at least two oscillators: a high-frequency primary oscillator and a low-frequency secondary oscillator (refer to **Section 8.0 "Oscillator Configuration"** for details).

The oscillator circuit should be placed on the same side of the board as the device. Also, place the oscillator circuit close to the respective oscillator pins, not exceeding one-half inch (12 mm) distance between them. The load capacitors should be placed next to the oscillator itself, on the same side of the board. Use a grounded copper pour around the oscillator circuit to isolate them from surrounding circuits. The grounded copper pour should be routed directly to the MCU ground. Do not run any signal traces or power traces inside the ground pour. Also, if using a two-sided board, avoid any traces on the other side of the board where the crystal is placed. A suggested layout is shown in Figure 2-3.

SUGGESTED PLACEMENT OF THE OSCILLATOR CIRCUIT

2.7 Oscillator Value Conditions on Device Start-up

If the PLL of the target device is enabled and configured for the device start-up oscillator, the maximum oscillator source frequency must be limited to 4 MHz < FIN < 8 MHz (for MSPLL mode) or 3 MHz < FIN < 8 MHz (for ECPLL mode) to comply with device PLL start-up conditions. HSPLL mode is not supported. This means that if the external oscillator frequency is outside this range, the application must start-up in the FRC mode first. The fixed PLL settings of 4x after a POR with an oscillator frequency outside this range will violate the device operating speed.

Once the device powers up, the application firmware can enable the PLL, and then perform a clock switch to the Oscillator + PLL clock source. Note that clock switching must be enabled in the device Configuration word.

2.8 Configuration of Analog and Digital Pins During ICSP Operations

If MPLAB ICD 2, MPLAB ICD 3, or MPLAB REAL ICE in-circuit emulator is selected as a debugger, it automatically initializes all of the analog-to-digital input pins (ANx) as "digital" pins, by setting all bits in the AD1PCFGL register.

The bits in the register that correspond to the analog-to-digital pins that are initialized by MPLAB ICD 2, MPLAB ICD 3, or MPLAB REAL ICE in-circuit emulator, must not be cleared by the user application firmware; otherwise, communication errors will result between the debugger and the device.

If your application needs to use certain analog-to-digital pins as analog input pins during the debug session, the user application must clear the corresponding bits in the AD1PCFGL register during initialization of the ADC module.

When MPLAB ICD 2, MPLAB ICD 3, or MPLAB REAL ICE in-circuit emulator is used as a programmer, the user application firmware must correctly configure the AD1PCFGL register. Automatic initialization of this register is only done during debugger operation. Failure to correctly configure the register(s) will result in all analog-to-digital pins being recognized as analog input pins, resulting in the port value being read as a logic '0', which may affect user application functionality.

2.9 Unused I/Os

Unused I/O pins should be configured as outputs and driven to a logic-low state.

Alternately, connect a 1k to 10k resistor between Vss and unused pins.

3.0 CPU

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 2.** "CPU" (DS70204) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 CPU module has a 16-bit (data) modified Harvard architecture with an enhanced instruction set, including significant support for DSP. The CPU has a 24-bit instruction word with a variable length opcode field. The Program Counter (PC) is 23 bits wide and addresses up to 4M x 24 bits of user program memory space. The actual amount of program memory implemented varies by device. A single-cycle instruction prefetch mechanism is used to help maintain throughput and provides predictable execution. All instructions execute in a single cycle, with the exception of instructions that change the program flow, the double-word move (MOV.D) instruction and the table instructions. Overhead-free program loop constructs are supported using the DO and REPEAT instructions, both of which are interruptible at any point.

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices have sixteen, 16-bit working registers in the programmer's model. Each of the working registers can serve as a data, address, or address offset register. The 16th working register (W15) operates as a software Stack Pointer (SP) for interrupts and calls.

There are two classes of instruction in the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/ 102 devices: MCU and DSP. These two instruction classes are seamlessly integrated into a single CPU. The instruction set includes many addressing modes and is designed for optimum C compiler efficiency. For most instructions, dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices are capable of executing a data (or program data) memory read, a working register (data) read, a data memory write, and a program (instruction) memory read per instruction cycle. As a result, three parameter instructions can be supported, allowing A + B = C operations to be executed in a single cycle. A block diagram of the CPU is shown in Figure 3-1, and the programmer's model for the dsPIC33FJ16GP101/ 102 and dsPIC33FJ16MC101/102 is shown in Figure 3-2.

3.1 Data Addressing Overview

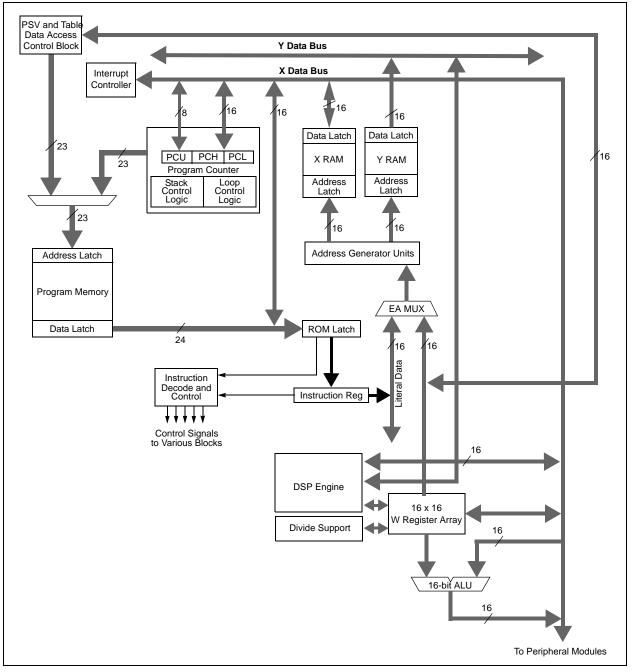
The data space can be addressed as 32K words or 64 Kbytes and is split into two blocks, referred to as X and Y data memory. Each memory block has its own independent Address Generation Unit (AGU). The MCU class of instructions operates solely through the X memory AGU, which accesses the entire memory map as one linear data space. Certain DSP instructions operate through the X and Y AGUs to support dual operand reads, which splits the data address space into two parts. The X and Y data space boundary is device-specific.

Overhead-free circular buffers (Modulo Addressing mode) are supported in both X and Y address spaces. The Modulo Addressing removes the software boundary checking overhead for DSP algorithms. Furthermore, the X AGU circular addressing can be used with any of the MCU class of instructions. The X AGU also supports Bit-Reversed Addressing to greatly simplify input or output data reordering for radix-2 FFT algorithms.

The upper 32 Kbytes of the data space memory map can optionally be mapped into program space at any 16K program word boundary defined by the 8-bit Program Space Visibility Page (PSVPAG) register. The program-to-data-space mapping feature lets any instruction access program space as if it were data space.

3.2 DSP Engine Overview

The DSP engine features a high-speed 17-bit by 17-bit multiplier, a 40-bit ALU, two 40-bit saturating accumulators, and a 40-bit bidirectional barrel shifter. The barrel shifter is capable of shifting a 40-bit value up to 16 bits right or left, in a single cycle. The DSP instructions operate seamlessly with all other instructions and have been designed for optimal real-time performance. The MAC instruction and other associated instructions can concurrently fetch two data operands from memory, while multiplying two W registers and accumulating and optionally saturating the result in the same cycle. This instruction functionality requires that the RAM data space be split for these instructions and linear for all others. Data space partitioning is achieved in a transparent and flexible manner through dedicating certain working registers to each address space.


3.3 Special MCU Features

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 features a 17-bit by 17-bit single-cycle multiplier that is shared by both the MCU ALU and DSP engine. The multiplier can perform signed, unsigned and mixed-sign multiplication. Using a 17-bit by 17-bit multiplier for 16-bit by 16-bit multiplication not only allows you to perform mixed-sign multiplication, it also achieves accurate results for special operations, such as (-1.0) x (-1.0).

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 supports 16/16 and 32/16 divide operations, both fractional and integer. All divide instructions are iterative operations. They must be executed within a REPEAT loop, resulting in a total execution time of 19 instruction cycles. The divide operation can be interrupted during any of those 19 cycles without loss of data.

A 40-bit barrel shifter is used to perform up to a 16-bit left or right shift in a single cycle. The barrel shifter can be used by both MCU and DSP instructions.

FIGURE 3-1: dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/102 CPU CORE BLOCK DIAGRAM

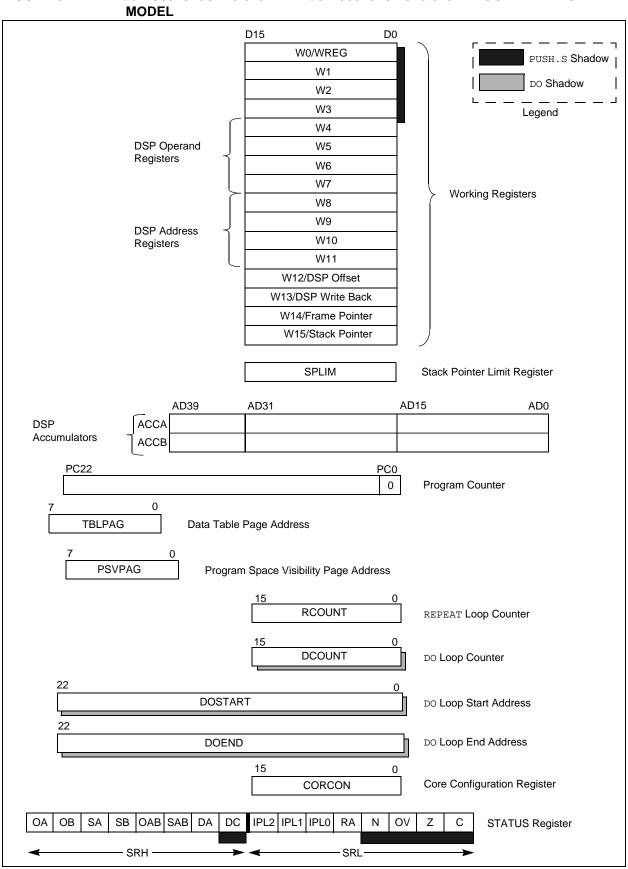


FIGURE 3-2: dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/102 PROGRAMMER'S

3.4 CPU Control Registers

REGISTER 3-1: SR: CPU STATUS REGISTER

R-0	R-0	R/C-0	R/C-0	R-0	R/C-0	R -0	R/W-0
OA	OB	SA ⁽¹⁾	SB ⁽¹⁾	OAB	SAB	DA	DC
bit 15							bit 8
R/W-0 ⁽³⁾	R/W-0 ⁽³⁾	R/W-0 ⁽³⁾		D/M/ 0	DANO	DANO	DANO
R/W-0(*)	IPL<2:0> ⁽²⁾	R/W-0(**	R-0	R/W-0	R/W-0	R/W-0	R/W-0
b 4 7	IPL<2:0>(=)		RA	N	OV	Z	C
bit 7							bit (
Legend:							
C = Clear only	' bit	R = Readable	e bit	U = Unimplei	mented bit, read	l as '0'	
S = Set only b	it	W = Writable	bit	-n = Value at	POR		
'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unk	nown		
bit 15		ator A Overflov	v Status hit				
bit 15		ator A overflowe					
		ator A has not c					
bit 14	OB: Accumul	ator B Overflov	v Status bit				
	1 = Accumula	ator B overflowe	ed				
		ator B has not c					
bit 13	SA: Accumula	ator A Saturation	on 'Sticky' Sta	tus bit ⁽¹⁾			
		tor A is saturat		en saturated at	some time		
		ator A is not sat		(1)			
bit 12		ator B Saturatio	-				
		ator B is saturat ator B is not sat		en saturated at	some time		
bit 11	0AB: OA O	B Combined A	ccumulator C	verflow Status	bit		
		ators A or B hav					
bit 10		B Combined Ad					
				-	urated at some	time in the past	t
		ccumulator A c					
	This bit may b	be read or clear	red (not set).	Clearing this b	it will clear SA a	nd SB.	
bit 9	DA: DO Loop	Active bit					
	1 = DO loop in 0 = DO loop n	n progress ot in progress					
bit 8	DC: MCU AL	U Half Carry/Bo	orrow bit				
	1 = A carry-o	ut from the 4th	low-order bit (for byte-sized	data) or 8th low-o	order bit (for wo	ord-sized data
		sult occurred					
	-	-out from the 4 he result occur		bit (for byte-siz	ed data) or 8th	low-order bit (1	for word-size
Note 1: Thi	s bit can be rea	d or cleared (n	ot set)				
		•		PL<3> bit (COF	RCON<3>) to for	rm the CPU Inte	errupt Priority
Lev					1. User interrup		

IPL<3> = 1.

3: The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

REGISTER 3-1: SR: CPU STATUS REGISTER (CONTINUED)

bit 7-5	IPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾
	<pre>111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 110 = CPU Interrupt Priority Level is 6 (14) 101 = CPU Interrupt Priority Level is 5 (13) 100 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11) 010 = CPU Interrupt Priority Level is 2 (10) 001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)</pre>
bit 4	RA: REPEAT Loop Active bit
	1 = REPEAT loop in progress 0 = REPEAT loop not in progress
bit 3	N: MCU ALU Negative bit
	1 = Result was negative0 = Result was non-negative (zero or positive)
bit 2	OV: MCU ALU Overflow bit
	This bit is used for signed arithmetic (2's complement). It indicates an overflow of a magnitude that causes the sign bit to change state. 1 = Overflow occurred for signed arithmetic (in this arithmetic operation) 0 = No overflow occurred
bit 1	Z: MCU ALU Zero bit
	 1 = An operation that affects the Z bit has set it at some time in the past 0 = The most recent operation that affects the Z bit has cleared it (i.e., a non-zero result)
	C: MCU ALU Carry/Borrow bit
	 1 = A carry-out from the Most Significant bit of the result occurred 0 = No carry-out from the Most Significant bit of the result occurred

- **Note 1:** This bit can be read or cleared (not set).
 - 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
 - **3:** The IPL<2:0> Status bits are read-only when NSTDIS = 1 (INTCON1<15>).

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0
_	—	_	US	EDT ⁽¹⁾		DL<2:0>	
bit 15				•			bit
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF
bit 7							bit
Legend:		C = Clear on	ly hit				
R = Readabl	le hit	W = Writable	-	-n = Value at		'1' = Bit is set	
0' = Bit is cle		x = Bit is unk			nented bit, rea		
						445 0	
bit 15-13	-	ted: Read as					
bit 12		tiply Unsigned	-	ol bit			
		ne multiplies a ne multiplies a					
bit 11		D Loop Termina		_{.it} (1)			
	-	-		current loop it	eration		
	0 = No effect	g					
bit 10-8	DL<2:0>: DO	Loop Nesting	Level Status b	its			
	111 = 7 DO lo	ops active					
	•						
	• 001 = 1 DO lo	on active					
	000 = 0 DO lo						
bit 7	SATA: ACCA	Saturation En	able bit				
		tor A saturation					
1 % 0		tor A saturatio					
bit 6		Saturation Er					
		tor B saturation tor B saturation					
bit 5				ine Saturation	Enable bit		
		ce write satura					
		ce write satura					
bit 4		cumulator Satu		Select bit			
		ration (super s					
bit 3		ration (normal terrupt Priority		nit 3(2)			
bit 5		rupt priority le					
		rupt priority le	•				
bit 2	PSV: Progran	n Space Visibi	lity in Data Spa	ace Enable bit			
		space visible i					
1 10 4	-	space not visit	•	ce			
bit 1		ng Mode Sele		ad			
		onventional) ro (convergent)					
bit 0		Fractional Mu	-				
	-	ode enabled f	=				
	0 = Fractional						

REGISTER 3-2: CORCON: CORE CONTROL REGISTER

Note 1: This bit will always read as '0'.

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU interrupt priority level.

3.5 Arithmetic Logic Unit (ALU)

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 ALU is 16 bits wide and is capable of addition, subtraction, bit shifts, and logic operations. Unless otherwise mentioned, arithmetic operations are 2's complement in nature. Depending on the operation, the ALU can affect the values of the Carry (C), Zero (Z), Negative (N), Overflow (OV), and Digit Carry (DC) Status bits in the SR register. The C and DC Status bits operate as Borrow and Digit Borrow bits, respectively, for subtraction operations.

The ALU can perform 8-bit or 16-bit operations, depending on the mode of the instruction that is used. Data for the ALU operation can come from the W register array or data memory, depending on the addressing mode of the instruction. Likewise, output data from the ALU can be written to the W register array or a data memory location.

Refer to the *"16-bit MCU and DSC Programmer's Reference Manual"* (DS70157) for information on the SR bits affected by each instruction.

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 CPU incorporates hardware support for both multiplication and division. This includes a dedicated hardware multiplier and support hardware for 16-bit-divisor division.

3.5.1 MULTIPLIER

Using the high-speed 17-bit x 17-bit multiplier of the DSP engine, the ALU supports unsigned, signed or mixed-sign operation in several MCU multiplication modes:

- 16-bit x 16-bit signed
- 16-bit x 16-bit unsigned
- 16-bit signed x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit unsigned
- 16-bit unsigned x 5-bit (literal) unsigned
- 16-bit unsigned x 16-bit signed
- 8-bit unsigned x 8-bit unsigned

3.5.2 DIVIDER

The divide block supports 32-bit/16-bit and 16-bit/16-bit signed and unsigned integer divide operations with the following data sizes:

- 32-bit signed/16-bit signed divide
- 32-bit unsigned/16-bit unsigned divide
- 16-bit signed/16-bit signed divide
- 16-bit unsigned/16-bit unsigned divide

The quotient for all divide instructions ends up in W0 and the remainder in W1. The 16-bit signed and unsigned DIV instructions can specify any W register for both the 16-bit divisor (Wn) and any W register (aligned) pair (W(m + 1):Wm) for the 32-bit dividend. The divide algorithm takes one cycle per bit of divisor, so both 32-bit/16-bit and 16-bit/16-bit instructions take the same number of cycles to execute.

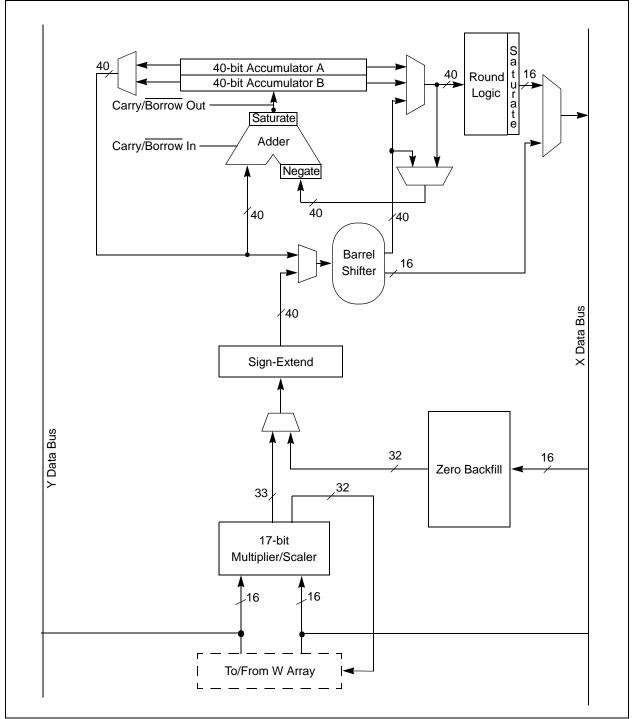
3.6 DSP Engine

The DSP engine consists of a high-speed 17-bit x 17-bit multiplier, a barrel shifter and a 40-bit adder/ subtracter (with two target accumulators, round and saturation logic).

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 is a single-cycle instruction flow architecture; therefore, concurrent operation of the DSP engine with MCU instruction flow is not possible. However, some MCU ALU and DSP engine resources can be used concurrently by the same instruction (e.g., ED, EDAC).

The DSP engine can also perform inherent accumulator-to-accumulator operations that require no additional data. These instructions are ADD, SUB, and NEG.

The DSP engine has options selected through bits in the CPU Core Control register (CORCON), as listed below:


- Fractional or integer DSP multiply (IF)
- Signed or unsigned DSP multiply (US)
- Conventional or convergent rounding (RND)
- Automatic saturation on/off for ACCA (SATA)
- Automatic saturation on/off for ACCB (SATB)
- Automatic saturation on/off for writes to data memory (SATDW)
- Accumulator Saturation mode selection (ACCSAT)

A block diagram of the DSP engine is shown in Figure 3-3.

TABLE 3-1:	DSP INSTRUCTIONS
	SUMMARY

Instruction	Algebraic Operation	ACC Write Back
CLR	A = 0	Yes
ED	$A = (x - y)^2$	No
EDAC	$A = A + (x - y)^2$	No
MAC	A = A + (x * y)	Yes
MAC	$A = A + x^2$	No
MOVSAC	No change in A	Yes
MPY	A = x * y	No
MPY	$A = x^2$	No
MPY.N	A = -x * y	No
MSC	A = A - x * y	Yes

3.6.1 MULTIPLIER

The 17-bit x 17-bit multiplier is capable of signed or unsigned operation and can multiplex its output using a scaler to support either 1.31 fractional (Q31) or 32-bit integer results. Unsigned operands are zero-extended into the 17th bit of the multiplier input value. Signed operands are sign-extended into the 17th bit of the multiplier input value. The output of the 17-bit x 17-bit multiplier/scaler is a 33-bit value that is sign-extended to 40 bits. Integer data is inherently represented as a signed 2's complement value, where the Most Significant bit (MSb) is defined as a sign bit. The range of an N-bit 2's complement integer is -2^{N-1} to $2^{N-1} - 1$.

- For a 16-bit integer, the data range is -32768 (0x8000) to 32767 (0x7FFF) including 0.
- For a 32-bit integer, the data range is
 -2,147,483,648 (0x8000 0000) to 2,147,483,647 (0x7FFF FFFF).

When the multiplier is configured for fractional multiplication, the data is represented as a 2's complement fraction, where the MSb is defined as a sign bit and the radix point is implied to lie just after the sign bit (QX format). The range of an N-bit 2's complement fraction with this implied radix point is -1.0 to $(1 - 2^{1-N})$. For a 16-bit fraction, the Q15 data range is -1.0 (0x8000) to 0.999969482 (0x7FFF) including 0 and has a precision of 3.01518x10⁻⁵. In Fractional mode, the 16 x 16 multiply operation generates a 1.31 product that has a precision of 4.65661 x 10⁻¹⁰.

The same multiplier is used to support the MCU multiply instructions, which include integer 16-bit signed, unsigned and mixed sign multiply operations.

The MUL instruction can be directed to use byte- or word-sized operands. Byte operands will direct a 16-bit result, and word operands will direct a 32-bit result to the specified register(s) in the W array.

3.6.2 DATA ACCUMULATORS AND ADDER/SUBTRACTER

The data accumulator consists of a 40-bit adder/ subtracter with automatic sign extension logic. It can select one of two accumulators (A or B) as its preaccumulation source and post-accumulation destination. For the ADD and LAC instructions, the data to be accumulated or loaded can be optionally scaled using the barrel shifter prior to accumulation.

3.6.2.1 Adder/Subtracter, Overflow and Saturation

The adder/subtracter is a 40-bit adder with an optional zero input into one side, and either true or complement data into the other input.

- In the case of addition, the Carry/Borrow input is active-high and the other input is true data (not complemented).
- In the case of subtraction, the Carry/Borrow input is active-low and the other input is complemented.

The adder/subtracter generates Overflow Status bits, SA/SB and OA/OB, which are latched and reflected in the STATUS register:

- Overflow from bit 39: this is a catastrophic overflow in which the sign of the accumulator is destroyed.
- Overflow into guard bits 32 through 39: this is a recoverable overflow. This bit is set whenever all the guard bits are not identical to each other.

The adder has an additional saturation block that controls accumulator data saturation, if selected. It uses the result of the adder, the Overflow Status bits described previously and the SAT<A:B> (CORCON<7:6>) and ACCSAT (CORCON<4>) mode control bits to determine when and to what value, to saturate.

Six STATUS register bits support saturation and overflow:

- OA: ACCA overflowed into guard bits
- OB: ACCB overflowed into guard bits
- SA: ACCA saturated (bit 31 overflow and saturation)

ACCA overflowed into guard bits and saturated (bit 39 overflow and saturation)

- SB: ACCB saturated (bit 31 overflow and saturation)
 - or

ACCB overflowed into guard bits and saturated (bit 39 overflow and saturation)

- OAB: Logical OR of OA and OB
- SAB: Logical OR of SA and SB

The OA and OB bits are modified each time data passes through the adder/subtracter. When set, they indicate that the most recent operation has overflowed into the accumulator guard bits (bits 32 through 39). The OA and OB bits can also optionally generate an arithmetic warning trap when OA and OB are set and the corresponding Overflow Trap Flag Enable bits (OVATE, OVBTE) in the INTCON1 register are set (refer to Section 7.0 "Interrupt Controller"). This allows the user application to take immediate action; for example, to correct system gain. The SA and SB bits are modified each time data passes through the adder/subtracter, but can only be cleared by the user application. When set, they indicate that the accumulator has overflowed its maximum range (bit 31 for 32-bit saturation or bit 39 for 40-bit saturation) and will be saturated (if saturation is enabled). When saturation is not enabled, SA and SB default to bit 39 overflow, and therefore, indicate that a catastrophic overflow has occurred. If the COVTE bit in the INTCON1 register is set, the SA and SB bits will generate an arithmetic warning trap when saturation is disabled.

The Overflow and Saturation Status bits can optionally be viewed in the STATUS Register (SR) as the logical OR of OA and OB (in bit OAB) and the logical OR of SA and SB (in bit SAB). Programmers can check one bit in the STATUS register to determine whether either accumulator has overflowed, or one bit to determine whether either accumulator has saturated. This is useful for complex number arithmetic, which typically uses both accumulators.

The device supports three Saturation and Overflow modes:

• Bit 39 Overflow and Saturation:

When bit 39 overflow and saturation occurs, the saturation logic loads the maximally positive 9.31 value (0x7FFFFFFFF) or maximally negative 9.31 value (0x800000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. This condition is referred to as 'super saturation' and provides protection against erroneous data or unexpected algorithm problems (such as gain calculations).

- Bit 31 Overflow and Saturation: When bit 31 overflow and saturation occurs, the saturation logic then loads the maximally positive 1.31 value (0x007FFFFFF) or maximally negative 1.31 value (0x008000000) into the target accumulator. The SA or SB bit is set and remains set until cleared by the user application. When this Saturation mode is in effect, the guard bits are not used, so the OA, OB or OAB bits are never set.
- Bit 39 Catastrophic Overflow: The bit 39 Overflow Status bit from the adder is used to set the SA or SB bit, which remains set until cleared by the user application. No saturation operation is performed, and the accumulator is allowed to overflow, destroying its sign. If the COVTE bit in the INTCON1 register is set, a catastrophic overflow can initiate a trap exception.

3.6.3 ACCUMULATOR 'WRITE BACK'

The MAC class of instructions (with the exception of MPY, MPY.N, ED, and EDAC) can optionally write a rounded version of the high word (bits 31 through 16) of the accumulator which is not targeted by the instruction into data space memory. The write is performed across the X bus into combined X and Y address space. The following addressing modes are supported:

- W13, Register Direct: The rounded contents of the non-target accumulator are written into W13 as a 1.15 fraction.
- [W13] + = 2, Register Indirect with Post-Increment: The rounded contents of the non-target accumulator are written into the address pointed to by W13 as a 1.15 fraction. W13 is then incremented by 2 (for a word write).

3.6.3.1 Round Logic

The round logic is a combinational block that performs a conventional (biased) or convergent (unbiased) round function during an accumulator write (store). The Round mode is determined by the state of the RND bit in the CORCON register. It generates a 16-bit, 1.15 data value that is passed to the data space write saturation logic. If rounding is not indicated by the instruction, a truncated 1.15 data value is stored and the least significant word (lsw) is simply discarded.

Conventional rounding will zero-extend bit 15 of the accumulator and will add it to the ACCxH word (bits 16 through 31 of the accumulator).

- If the ACCxL word (bits 0 through 15 of the accumulator) is between 0x8000 and 0xFFFF (0x8000 included), ACCxH is incremented.
- If ACCxL is between 0x0000 and 0x7FFF, ACCxH is left unchanged.

A consequence of this algorithm is that over a succession of random rounding operations, the value tends to be biased slightly positive.

Convergent (or unbiased) rounding operates in the same manner as conventional rounding, except when ACCxL equals 0x8000. In this case, the Least Significant bit (LSb), bit 16 of the accumulator, of ACCxH is examined:

- If it is '1', ACCxH is incremented.
- If it is '0', ACCxH is not modified.

Assuming that bit 16 is effectively random in nature, this scheme removes any rounding bias that may accumulate.

The SAC and SAC.R instructions store either a truncated (SAC), or rounded (SAC.R) version of the contents of the target accumulator to data memory via the X bus, subject to data saturation (see **Section 3.6.3.2 "Data Space Write Saturation**"). For the MAC class of instructions, the accumulator writeback operation functions in the same manner, addressing combined MCU (X and Y) data space though the X bus. For this class of instructions, the data is always subject to rounding.

3.6.3.2 Data Space Write Saturation

In addition to adder/subtracter saturation, writes to data space can also be saturated, but without affecting the contents of the source accumulator. The data space write saturation logic block accepts a 16-bit, 1.15 fractional value from the round logic block as its input, together with overflow status from the original source (accumulator) and the 16-bit round adder. These inputs are combined and used to select the appropriate 1.15 fractional value as output to write to data space memory.

If the SATDW bit in the CORCON register is set, data (after rounding or truncation) is tested for overflow and adjusted accordingly:

- For input data greater than 0x007FFF, data written to memory is forced to the maximum positive 1.15 value, 0x7FFF.
- For input data less than 0xFF8000, data written to memory is forced to the maximum negative 1.15 value, 0x8000.

The MSb of the source (bit 39) is used to determine the sign of the operand being tested.

If the SATDW bit in the CORCON register is not set, the input data is always passed through unmodified under all conditions.

3.6.4 BARREL SHIFTER

The barrel shifter can perform up to 16-bit arithmetic or logic right shifts, or up to 16-bit left shifts, in a single cycle. The source can be either of the two DSP accumulators or the X bus (to support multi-bit shifts of register or memory data).

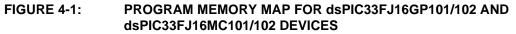
The shifter requires a signed binary value to determine both the magnitude (number of bits) and direction of the shift operation. A positive value shifts the operand right. A negative value shifts the operand left. A value of '0' does not modify the operand.

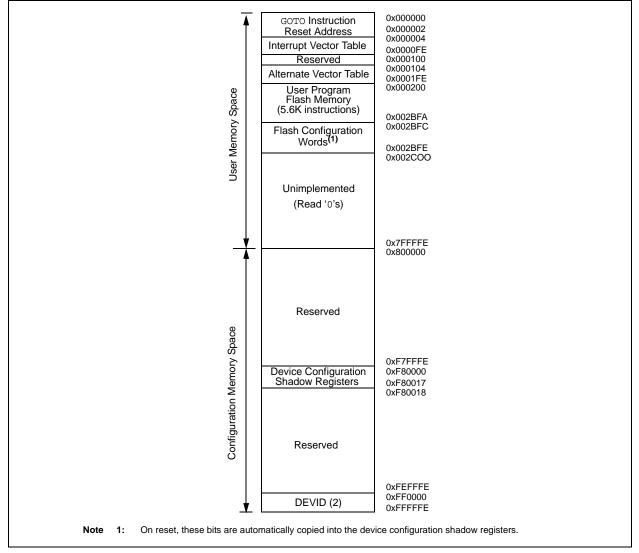
The barrel shifter is 40 bits wide, thereby obtaining a 40-bit result for DSP shift operations and a 16-bit result for MCU shift operations. Data from the X bus is presented to the barrel shifter between bit positions 16 and 31 for right shifts, and between bit positions 0 and 16 for left shifts.

NOTES:

4.0 MEMORY ORGANIZATION

Note: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 3. "Data Memory" (DS70202) and Section 4. "Program Memory" (DS70203) in the "dsPIC33F/ PIC24H Family Reference Manual", which are available from the Microchip web site (www.microchip.com).


The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 architecture features separate program and data memory spaces and buses. This architecture also allows the direct access of program memory from the data space during code execution.

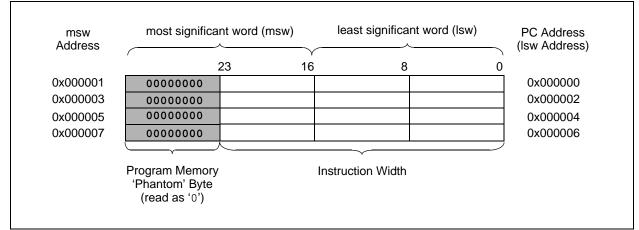

4.1 Program Address Space

The program address memory space of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/ 102 devices is 4M instructions. The space is addressable by a 24-bit value derived either from the 23-bit Program Counter (PC) during program execution, or from table operation or data space remapping as described in Section 4.6 "Interfacing Program and Data Memory Spaces".

User application access to the program memory space is restricted to the lower half of the address range (0x000000 to 0x7FFFFF). The exception is the use of TBLRD/TBLWT operations, which use TBLPAG<7> to permit access to the Configuration bits and Device ID sections of the configuration memory space.

The memory map for the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices is shown in Figure 4-1.

4.1.1 PROGRAM MEMORY ORGANIZATION


The program memory space is organized in wordaddressable blocks. Although it is treated as 24 bits wide, it is more appropriate to think of each address of the program memory as a lower and upper word, with the upper byte of the upper word being unimplemented. The lower word always has an even address, while the upper word has an odd address (Figure 4-2).

Program memory addresses are always word-aligned on the lower word, and addresses are incremented or decremented by two during code execution. This arrangement provides compatibility with data memory space addressing and makes data in the program memory space accessible.

4.1.2 INTERRUPT AND TRAP VECTORS

All dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices reserve the addresses between 0x00000 and 0x000200 for hard-coded program execution vectors. A hardware Reset vector is provided to redirect code execution from the default value of the PC on device Reset to the actual start of code. A GOTO instruction is programmed by the user application at 0x000000, with the actual address for the start of code at 0x000002.

dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/ 102 devices also have two interrupt vector tables, located from 0x000004 to 0x0000FF and 0x000100 to 0x0001FF. These vector tables allow each of the device interrupt sources to be handled by separate Interrupt Service Routines (ISRs). A more detailed discussion of the interrupt vector tables is provided in Section 7.1 "Interrupt Vector Table".

FIGURE 4-2: PROGRAM MEMORY ORGANIZATION

4.2 Data Address Space

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 CPU has a separate 16-bitwide data memory space. The data space is accessed using separate Address Generation Units (AGUs) for read and write operations. The data memory maps is shown in Figure 4-3.

All Effective Addresses (EAs) in the data memory space are 16 bits wide and point to bytes within the data space. This arrangement gives a data space address range of 64 Kbytes or 32K words. The lower half of the data memory space (that is, when EA<15>=0) is used for implemented memory addresses, while the upper half (EA<15> = 1) is reserved for the Program Space Visibility area (see Section 4.6.3 "Reading Data from Program Memory Using Program Space Visibility").

Microchip dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices implement up to 1 Kbyte of data memory. Should an EA point to a location outside of this area, an all-zero word or byte will be returned.

4.2.1 DATA SPACE WIDTH

The data memory space is organized in byte addressable, 16-bit wide blocks. Data is aligned in data memory and registers as 16-bit words, but all data space EAs resolve to bytes. The Least Significant Bytes (LSBs) of each word have even addresses, while the Most Significant Bytes (MSBs) have odd addresses.

4.2.2 DATA MEMORY ORGANIZATION AND ALIGNMENT

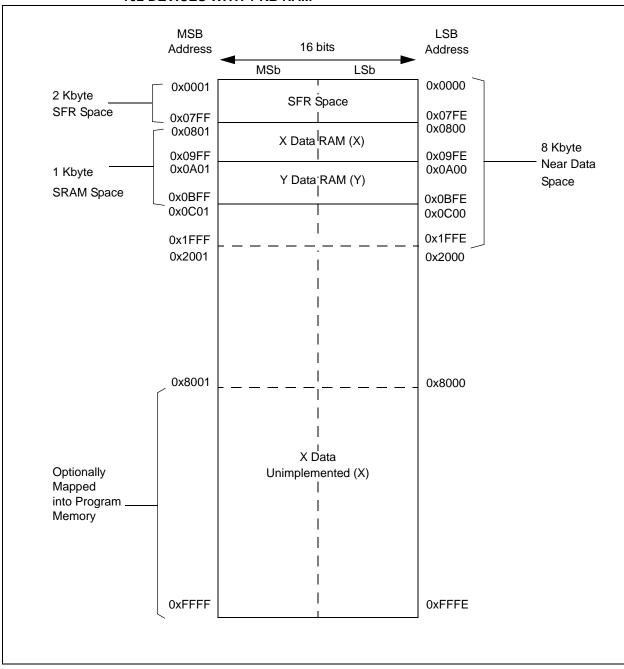
To maintain backward compatibility with PIC[®] MCU devices and improve data space memory usage efficiency, the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 instruction set supports both word and byte operations. As a consequence of byte accessibility, all effective address calculations are internally scaled to step through word-aligned memory. For example, the core recognizes that Post-Modified Register Indirect Addressing mode [Ws++] will result in a value of Ws + 1 for byte operations and Ws + 2 for word operations.

Data byte reads will read the complete word that contains the byte, using the LSB of any EA to determine which byte to select. The selected byte is placed onto the LSB of the data path. That is, data memory and registers are organized as two parallel byte-wide entities with shared (word) address decoding but separate write lines. Data byte writes only write to the corresponding side of the array or register that matches the byte address. All word accesses must be aligned to an even address. Misaligned word data fetches are not supported, so care must be taken when mixing byte and word operations, or translating from 8-bit MCU code. If a misaligned read or write is attempted, an address error trap is generated. If the error occurred on a read, the instruction in progress is completed. If the error occurred on a write, the instruction is executed but the write does not occur. In either case, a trap is then executed, allowing the system and/or user application to examine the machine state prior to execution of the address Fault.

All byte loads into any W register are loaded into the LSB. The MSB is not modified.

A sign-extend instruction (SE) is provided to allow user applications to translate 8-bit signed data to 16-bit signed values. Alternately, for 16-bit unsigned data, user applications can clear the MSB of any W register by executing a zero-extend (ZE) instruction on the appropriate address.

4.2.3 SFR SPACE


The first 2 Kbytes of the Near Data Space, from 0x0000 to 0x07FF, is primarily occupied by Special Function Registers (SFRs). These are used by the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/ 102 core and peripheral modules for controlling the operation of the device.

SFRs are distributed among the modules that they control, and are generally grouped together by module. Much of the SFR space contains unused addresses; these are read as '0'.

Note: The actual set of peripheral features and interrupts varies by the device. Refer to the corresponding device tables and pinout diagrams for device-specific information.

4.2.4 NEAR DATA SPACE

The 8-Kbyte area between 0x0000 and 0x1FFF is referred to as the near data space. Locations in this space are directly addressable via a 13-bit absolute address field within all memory direct instructions. Additionally, the whole data space is addressable using MOV class of instructions, which support Memory Direct Addressing mode with a 16-bit address field, or by using Indirect Addressing mode with a working register as an address pointer.

FIGURE 4-3: DATA MEMORY MAP FOR dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/ 102 DEVICES WITH 1 KB RAM

4.2.5 X AND Y DATA SPACES

The core has two data spaces, X and Y. These data spaces can be considered either separate (for some DSP instructions), or as one unified linear address range (for MCU instructions). The data spaces are accessed using two Address Generation Units (AGUs) and separate data paths. This feature allows certain instructions to concurrently fetch two words from RAM, thereby enabling efficient execution of DSP algorithms such as Finite Impulse Response (FIR) filtering and Fast Fourier transform (FFT).

The X data space is used by all instructions and supports all addressing modes. X data space has separate read and write data buses. The X read data bus is the read data path for all instructions that view data space as combined X and Y address space. It is also the X data prefetch path for the dual operand DSP instructions (MAC class).

The Y data space is used in concert with the X data space by the MAC class of instructions (CLR, ED, EDAC, MAC, MOVSAC, MPY, MPY.N, and MSC) to provide two concurrent data read paths.

Both the X and Y data spaces support Modulo Addressing mode for all instructions, subject to addressing mode restrictions. Bit-Reversed Addressing mode is only supported for writes to X data space.

All data memory writes, including in DSP instructions, view data space as combined X and Y address space. The boundary between the X and Y data spaces is device-dependent and is not user-programmable.

All effective addresses are 16 bits wide and point to bytes within the data space. Therefore, the data space address range is 64 Kbytes, or 32K words, although the implemented memory locations vary by device.

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
WREG0	0000								Working Re	gister 0								xxxx
WREG1	0002								Working Re	gister 1								xxxx
WREG2	0004								Working Re	gister 2								xxxx
WREG3	0006								Working Re	gister 3								xxxx
WREG4	0008								Working Re	gister 4								xxxx
WREG5	000A								Working Re	gister 5								xxxx
WREG6	000C								Working Re	gister 6								xxxx
WREG7	000E								Working Re	gister 7								xxxx
WREG8	0010								Working Re	gister 8								xxxx
WREG9	0012								Working Re	gister 9								xxxx
WREG10	0014								Working Re	gister 10								xxxx
WREG11	0016								Working Re	gister 11								xxxx
WREG12	0018								Working Re	gister 12								xxxx
WREG13	001A								Working Re	gister 13								xxxx
WREG14	001C								Working Re	gister 14								xxxx
WREG15	001E								Working Re	gister 15								0800
SPLIM	0020							Sta	ck Pointer Li	mit Register	•							xxxx
ACCAL	0022							Accum	ulator A Low	Word Regi	ster							xxxx
ACCAH	0024							Accum	ulator A High	Word Regi	ster							xxxx
ACCAU	0026							Accumu	lator A Uppe	er Word Reg	lister							xxxx
ACCBL	0028							Accum	ulator B Low	Word Regi	ster							xxxx
ACCBH	002A							Accum	ulator B High	Word Regi	ster							xxxx
ACCBU	002C							Accumu	lator B Uppe	er Word Reg	jister							xxxx
PCL	002E							Program	Counter Lo	w Word Reg	gister							0000
PCH	0030		_	_	_	_	_		—			Progra	m Counter I	High Byte F	Register			0000
TBLPAG	0032					_	—	_	—			Table F	Page Addres	ss Pointer F	Register			0000
PSVPAG	0034	—	—		—	—	—	—	—		Progr	am Memory	v Visibility Pa	age Addres	s Pointer Re	egister		0000
RCOUNT	0036							Repe	at Loop Cou	inter Registe	ər							xxxx
DCOUNT	0038								DCOUNT	<15:0>							T	xxxx
DOSTARTL	003A							DOS	TARTL<15:	1>							0	xxxx
DOSTARTH	003C	—	—	—	—	—	—	—	—	_				DOSTAF	RTH<5:0>		1	00xx
DOENDL	003E							DO	ENDL<15:1	>							0	xxxx
DOENDH	0040	—	—	—	—	—	—	—	—		—		1	DOE	INDH	1	1	00xx
SR	0042	OA	OB	SA	SB	OAB	SAB	DA	DC	IPL2	IPL1	IPL0	RA	Ν	OV	Z	С	0000
CORCON	0044	—	—	—	US	EDT		DL<2:0>		SATA	SATB	SATDW	ACCSAT	IPL3	PSV	RND	IF	0020
MODCON	0046	XMODEN	YMODEN	—	—		BWN	1<3:0>			YWM	<3:0>			XWM	<3:0>		0000

DS70652C-page 42

Preliminary

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/102

TABLE 4-1: **CPU CORE REGISTERS MAP (CONTINUED)**

© 2011
Microchip
Technology
n

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
XMODSRT	0048							>	(S<15:1>								0	xxxx
XMODEND	004A			XE<15:1>													1	xxxx
YMODSRT	004C		XE<15:1> YS<15:1>													0	xxxx	
YMODEND	004E							١	/E<15:1>								1	xxxx
XBREV	0050	BREN							2	(B<14:0>								xxxx
DISICNT	0052	_	_						Disable	Interrupts	Counter R	egister						0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-2: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ16GP102 AND dsPIC33FJ16MC102 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	CN15IE	CN14IE	CN13IE	CN12IE	CN11IE	—	_	_	CN7IE	CN6IE	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	_	CN30IE	CN29IE	_	CN27IE	-	_	CN24IE	CN23IE	CN22IE	CN21IE	_	-			CN16IE	0000
CNPU1	0068	CN15PUE	CN14PUE	CN13PUE	CN12PUE	CN11PUE	-	_	_	CN7PUE	CN6PUE	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	—	CN30PUE	CN29PUE	_	CN27PUE	_	—	CN24PUE	CN23PUE	CN22PUE	CN21PUE	_	—	_	_	CN16PUE	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-3: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ16GP101 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060				CN12IE	CN11IE	_	I	—	—		CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062	I	CN30IE	CN29IE	_	_	-	I	—	CN23IE	CN22IE	CN21IE	—	_				0000
CNPU1	0068		-		CN12PUE	CN11PUE	Ι		—	—		CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A		CN30PUE	CN29PUE	_	_	_		—	CN23PUE	CN22PUE	CN21PUE	—	_				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-4: CHANGE NOTIFICATION REGISTER MAP FOR dsPIC33FJ16MC101 DEVICES

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CNEN1	0060	-	CN14IE	CN13IE	CN12IE	CN11IE	—			—	—	CN5IE	CN4IE	CN3IE	CN2IE	CN1IE	CN0IE	0000
CNEN2	0062		CN30IE	CN29IE		—				CN23IE	CN22IE	CN21IE			-	_		0000
CNPU1	0068	-	CN14PUE	CN13PUE	CN12PUE	CN11PUE	-	-	-	—	—	CN5PUE	CN4PUE	CN3PUE	CN2PUE	CN1PUE	CN0PUE	0000
CNPU2	006A	-	CN30PUE	CN29PUE	—	_	_	_	_	CN23PUE	CN22PUE	CN21PUE	_	_	_	_	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-5:	INTERRUPT CONTROLLER REGISTER MAP
------------	-----------------------------------

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
INTCON1	0080	NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE	SFTACERR	DIV0ERR	_	MATHERR	ADDRERR	STKERR	OSCFAIL	_	0000
INTCON2	0082	ALTIVT	DISI		_	_		_	_	—		_	_	_	INT2EP	INT1EP	INT0EP	0000
IFS0	0084	_	_	AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF	T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INT0IF	0000
IFS1	0086	_	_	INT2IF	_	_	_	_	_	_	_	_	INT1IF	CNIF	CMIF	MI2C1IF	SI2C1IF	0000
IFS2	0088	_	—	_	—	_	—	_		—	—	IC3IF	—	—	—			0000
IFS3	008A	FLTA1IF	RTCIF	—	—	—	—	PWM1IF ⁽¹⁾		—	—		—	_	—			0000
IFS4	008C		—	CTMUIF	—	—	—	—		—	—		—	_	—	U1EIF	FLTB1IF ⁽¹⁾	0000
IEC0	0094		—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE	T2IE	OC2IE	IC2IE	—	T1IE	OC1IE	IC1IE	INT0IE	0000
IEC1	0096		—	INT2IE	—	—	—	—		—	—		INT1IE	CNIE	CMIE	MI2C1IE	SI2C1IE	0000
IEC2	0098		—	—	—	—	—	—		—	—	IC3IE	—	_	—			0000
IEC3	009A	FLTA1IE	RTCIE	—	—	—	—	PWM1IE ⁽¹⁾		—	—		—	_	—			0000
IEC4	009C		—	CTMUIE	—	—	—	—		—	—		—	_	—	U1EIE	FLTB1IE ⁽¹⁾	0000
IPC0	00A4			T1IP<2:0>	•	—		OC1IP<2:0>		—		IC1IP<2:0	>	_		INT0IP<2:)>	4444
IPC1	00A6			T2IP<2:0>	•	—		OC2IP<2:0>		—		IC2IP<2:0	>	_	—			4440
IPC2	00A8		ι	J1RXIP<2:0)>	—		SPI1IP<2:0>	•	—	S	PI1EIP<2	:0>	_		T3IP<2:0	>	4444
IPC3	00AA		—	—	—	—	—	—		—		AD1IP<2:()>	_	l	J1TXIP<2:	0>	0044
IPC4	00AC	-		CNIP<2:0>	>	—		CMIP<2:0>		—	N	II2C1IP<2	:0>	—	5	SI2C1IP<2	0>	4444
IPC5	00AE	-	_	—	—	—	_	—	-	—	_	-	—	—		INT1IP<2:)>	0004
IPC7	00B2	-	_	—	—	—	_	—	-	—	I	NT2IP<2:)>	—	_	-	-	0040
IPC9	00B6	-	_	—	—	—	_	—	-	—		IC3IP<2:0	>	—	_	-	-	0040
IPC14	00C0		-	—	-	_	_	_		—	Р	WM1IP<2	:0>		-			0040
IPC15	00C2		FL	_TA1IP<2:0	>(1)	—		RTCIP<2:0>		_	_	-	-		_		-	4400
IPC16	00C4		—	—	—	—	_	—	—	—		U1EIP<2:()>	-	FL	_TB1IP<2:()> ⁽¹⁾	0040
IPC19	00CA		-	_	-	_	_	_		_	C	TMUIP<2	:0>		_		_	0040
INTTREG	00E0	_	_	_	_		ILR<	<3:0>		_			V	ECNUM<6:0	>			0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: These bits are available on the dsPIC33FJ16MC101 and dsPIC33FJ16MC102 devices only.

TABLE 4-6: TIMER REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TMR1	0100								Timer1	Register								0000
PR1	0102								Period F	Register 1								FFFF
T1CON	0104	TON	_	TSIDL	—	—	—	_	—	_	TGATE	TCKP	S<1:0>	_	TSYNC	TCS	_	0000
TMR2	0106	5													0000			
TMR3HLD	0108						Tim	ner3 Holding	Register (fo	r 32-bit timei	operations o	only)						xxxx
TMR3	010A								Timer3	Register								0000
PR2	010C								Period F	Register 2								FFFF
PR3	010E								Period F	Register 3								FFFF
T2CON	0110	TON	_	TSIDL	—	—	—	_	—	_	TGATE	TCKP	S<1:0>	T32	—	TCS	_	0000
T3CON	0112	TON	—	TSIDL	_	_	—	_	_	_	TGATE	TCKP	S<1:0>	_	—	TCS	_	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-7: INPUT CAPTURE REGISTER MAP

	· · · ·																	
SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
IC1BUF	0140								Input 1 Ca	pture Regis	er							xxxx
IC1CON	0142	—	_	ICSIDL	—	—	—	—	—	ICTMR	ICI<	1:0>	ICOV ICBNE ICM<2:0>					
IC2BUF	0144								Input 2 Ca	pture Regis	er							xxxx
IC2CON	0146	_	—	ICSIDL	—	—	—	—	—	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
IC3BUF	0148								Input 3 Ca	pture Regis	er							XXXX
IC3CON	014A	—	_	ICSIDL	—	_	—	—	—	ICTMR	ICI<	1:0>	ICOV	ICBNE		ICM<2:0>		0000
						1 / - 1	D											

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-8: OUTPUT COMPARE REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
OC1RS	0180							Out	put Compar	e 1 Second	ary Register							xxxx
OC1R	0182		Output Compare 1 Register													xxxx		
OC1CON	0184												0000					
OC2RS	0186							Out	put Compar	e 2 Second	ary Register							xxxx
OC2R	0188								Output Co	ompare 2 Re	egister							xxxx
OC2CON	018A			OCSIDL			—	_		—	—	_	OCFLT	OCTSEL		OCM<2:0>		0000
Lanandi			-			1 (01	D · ·		anne in hear									

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-9): (6-OUTP	UT PV	VM1 RE	GISTE	R MAP	FOR d	IsPIC33	BFJ116N	/C10X	DEVI	CES						
SFR Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	Reset State
P1TCON	01C0	PTEN	_	PTSIDL	—	—	-	—	—		PTOF	PS<3:0>		PTCKF	PS<1:0>	PTMO	D<1:0>	0000 0000 0000 0000
P1TMR	01C2	PTDIR							PWM Time	Count Val	ue Regis	ter						0000 0000 0000 0000
P1TPER	01C4	_							PWM Time	Base Peri	od Regist	ter						0111 1111 1111 1111
P1SECMP	01C6	SEVTDIR						PV	VM Special	Event Con	npare Reg	gister						0000 0000 0000 0000
PWM1CON1	01C8	_	_	_	_	_	PMOD3	PMOD2	PMOD1	_	PEN3H	PEN2H	PEN1H	—	PEN3L	PEN2L	PEN1L	0000 0000 0000 0000
PWM1CON2	01CA	_	_	_	_		SEVOF	PS<3:0>		_	_	—	_	—	IUE	OSYNC	UDIS	0000 0000 0000 0000
P1DTCON1	01CC	DTBPS	PS<1:0> DTB<5:0>							DTAPS	<1:0>			DTA	<5:0>			0000 0000 0000 0000
P1DTCON2	01CE	_	_	_	_	_	_	_	_	_	_	DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I	0000 0000 0000 0000
P1FLTACON	01D0			FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L	FLTAM	—	—	_	—	FAEN3	FAEN2	FAEN1	0000 0000 0000 0111
P1FLTBCON	01D2	_	_	FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L	FLTBM	_	—	_	—	FBEN3	FBEN2	FBEN1	0000 0000 0000 0111
P10VDCON	01D4			POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L	_		POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L	0011 1111 0000 0000
P1DC1	01D6							PW	/M Duty Cy	cle 1 Regis	ster							0000 0000 0000 0000
P1DC2	01D8							PW	/M Duty Cy	cle 2 Regis	ster							0000 0000 0000 0000
P1DC3	01DA							PW	/M Duty Cy	cle 3 Regis	ster							0000 0000 0000 0000
PWM1KEY	01DE								PWMKE	(<15:0>								0000 0000 0000 0000

~ L DIOGOE HAADAOX DEVICE

Legend: --- = unimplemented, read as '0'

TABLE 4-10: I2C1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets	
I2C1RCV	0200	_	—	—	—	_	_	-	_				Receive	Register				0000	
I2C1TRN	0202	-	_	_	_	-	_	_		Transmit Deviator									
I2C1BRG	0204	-	_	_	_	-	_	_				0000							
I2C1CON	0206	I2CEN	_	I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN	GCEN	STREN	ACKDT	ACKEN	RCEN	PEN	RSEN	SEN	1000	
I2C1STAT	0208	ACKSTAT	TRSTAT	_	_	-	BCL	GCSTAT	ADD10	IWCOL	I2COV	D_A	Р	S	R_W	RBF	TBF	0000	
I2C1ADD	020A	-	_	_	_	-	_					Address	Register					0000	
I2C1MSK	020C	_	_	-	—	_	—			Address Register Address Mask Register									

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-11: UART1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
U1MODE	0220	UARTEN	—	USIDL	IREN	RTSMD	—	UEN1	UEN0	WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL	0000
U1STA	0222	UTXISEL1	UTXINV	UTXISEL0	_	UTXBRK	UTXEN	UTXBF	TRMT	URXISE	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA	0110
U1TXREG	0224	_			_	_	_					UART	Transmit Re	gister				xxxx
U1RXREG	0226	_			_	_	_					UART	Receive Reo	gister				0000
U1BRG	0228							Bau	d Rate Ger	erator Presc	aler							0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-12: SPI1 REGISTER MAP

SFR Name	SFR Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
SPI1STAT	0240	SPIEN	—	SPISIDL	—	—	—			-	SPIROV	—		—		SPITBF	SPIRBF	0000
SPI1CON1	0242	_	_	—	DISSCK	DISSDO	MODE16	SMP	CKE	SSEN	CKP	MSTEN		SPRE<2:0>	•	PPRE	<1:0>	0000
SPI1CON2	0244	FRMEN	SPIFSD	FRMPOL	_	_	_	_	_	_	_	_	_	_	_	FRMDLY	_	0000
SPI1BUF	0248							SPI1 Trans	mit and Red	ceive Buffer	Register							0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

IABLE 4-1	3: A	ADC1 R	EGIST		FOR as	PIC33F	JIGGP	102 AF	ND aspic	-33FJ16		DEVIC	-9					
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300								ADC Dat	ta Buffer 0								xxxx
ADC1BUF1	0302								ADC Dat	ta Buffer 1								xxxx
ADC1BUF2	0304								ADC Dat	ta Buffer 2								xxxx
ADC1BUF3	0306								ADC Dat	ta Buffer 3								xxxx
ADC1BUF4	0308								ADC Dat	ta Buffer 4								xxxx
ADC1BUF5	030A								ADC Dat	ta Buffer 5								xxxx
ADC1BUF6	030C								ADC Dat	ta Buffer 6								xxxx
ADC1BUF7	030E																xxxx	
ADC1BUF8	0310		ADC Data Buffer 8														xxxx	
ADC1BUF9	0312		ADC Data Buffer 9														xxxx	
ADC1BUFA	0314																xxxx	
ADC1BUFB	0316								ADC Data	a Buffer 11								xxxx
ADC1BUFC	0318								ADC Data	a Buffer 12								xxxx
ADC1BUFD	031A								ADC Data	a Buffer 13								xxxx
ADC1BUFE	031C								ADC Data	a Buffer 14								xxxx
ADC1BUFF	031E								ADC Data	a Buffer 15								xxxx
AD1CON1	0320	ADON	-	ADSIDL			-	FOR	M<1:0>		SSRC<2:0>	>		SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	,	VCFG<2:0:	>	—	—	CSCNA	CHF	PS<1:0>	BUFS	—		SMP	<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC	_	—		5	SAMC<4:0:	>	1			-	ADCS	6<7:0>			1	0000
AD1CHS123	0326	—			—	—		NB<1:0>	CH123SB				—	—	CH1231		CH123SA	0000
AD1CHS0	0328	CH0NB	—	—		С	H0SB<4:0	>		CH0NA	—	—			H0SA<4:0			0000
AD1PCFGL	032C	—	_	—	_		_	—		—	_	PCFG5	PCFG4	PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	—	_	—	_	—	—	—	—	—	—	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0	0000

TABLE 4-13: ADC1 REGISTER MAP FOR dsPIC33FJ16GP102 AND dsPIC33FJ16MC102 DEVICES

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-14: ADC1 REGISTER MAP FOR dsPIC33FJ16GP101 AND dsPIC33FJ16MC101 DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ADC1BUF0	0300			•					ADC Da	ta Buffer 0			•				•	xxxx
ADC1BUF1	0302								ADC Da	ta Buffer 1								xxxx
ADC1BUF2	0304								ADC Da	ta Buffer 2								xxxx
ADC1BUF3	0306								ADC Da	ta Buffer 3								xxxx
ADC1BUF4	0308								ADC Da	ta Buffer 4								xxxx
ADC1BUF5	030A								ADC Da	ta Buffer 5								xxxx
ADC1BUF6	030C								ADC Da	ta Buffer 6								xxxx
ADC1BUF7	030E								ADC Da	ta Buffer 7								xxxx
ADC1BUF8	0310								ADC Da	ta Buffer 8								xxxx
ADC1BUF9	0312								ADC Da	ta Buffer 9								xxxx
ADC1BUFA	0314								ADC Dat	a Buffer 10								xxxx
ADC1BUFB	0316								ADC Dat	a Buffer 11								xxxx
ADC1BUFC	0318								ADC Dat	a Buffer 12								xxxx
ADC1BUFD	031A								ADC Dat	a Buffer 13								xxxx
ADC1BUFE	031C								ADC Dat	a Buffer 14								xxxx
ADC1BUFF	031E								ADC Dat	a Buffer 15								xxxx
AD1CON1	0320	ADON	_	ADSIDL	—	—	—	FOR	M<1:0>	ŝ	SSRC<2:0>		_	SIMSAM	ASAM	SAMP	DONE	0000
AD1CON2	0322	,	VCFG<2:0	>	—	—	CSCNA	CHP	S<1:0>	BUFS	—		SMP	l<3:0>		BUFM	ALTS	0000
AD1CON3	0324	ADRC		—		:	SAMC<4:0>		1				ADC	S<7:0>	1		1	0000
AD1CHS123	0326	—	_	—	_	—	CH123N		CH123SB	—	—		—	—	1	NA<1:0>	CH123SA	0000
AD1CHS0	0328	CH0NB	_	—		(CH0SB<4:0	>		CH0NA	_	—		-	H0SA<4:0:			0000
AD1PCFGL	032C		_	-	_	_		_		—	_	_		PCFG3	PCFG2	PCFG1	PCFG0	0000
AD1CSSL	0330	—	_	—	_	—		—	vn in hexade	—	—	—	—	CSS3	CSS2	CSS1	CSS0	0000

Preliminary

© 2011 Microchip Technology Inc.

TABLE 4-15: CTMU REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CTMUCON1	033A	CTMUEN	—	CTMUSIDL	TGEN	EDGEN	EDGSEQEN	IDISSEN	CTTRIG	-	—	—	—	_		_	_	0000
CTMUCON2	033C	EDG2MOD	EDG1POL		EDG18	SEL<3:0>		EDG2STAT	EDG1STAT	EDG2MOD	EDG2POL		EDG2SEI	_<3:0>		-	_	0000
CTMUICON	033E			ITRIM<5	5:0>			IRNG	<1:0>		—	_	_				_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-16: REAL-TIME CLOCK AND CALENDAR REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
ALRMVAL	0620		Alarm Value Register Window based on APTR<1:0>														xxxx	
ALCFGRPT	0622	ALRMEN	CHIME		AMASK	(<3:0>		ALRMP	[R<1:0>				ARP	<7:0>				0000
RTCVAL	0624						RTCC	Value Registe	er Window bas	ed on RTCF	PTR<1:0>							xxxx
RCFGCAL	0626	RTCEN	_	RTCWREN	RTCSYNC	HALFSEC	RTCOE	RTCPT	R<1:0>				CAL	<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-17: PAD CONFIGURATION REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PADCFG1	02FC	_	—	—	—	—	—	_	—	_	_	—	_	—	—	RTSECSEL	_	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-18: COMPARATOR REGISTER MAP

File Name	Addr.	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
CMSTAT	0650	CMSIDL		—	_		C3EVT	C2EVT	C1EVT	—	—	—	—	_	C3OUT	C2OUT	C10UT	0000
CVRCON	0652	_	—	_	_	_	VREFSEL	BGSE	L<1:0>	CVREN	CVROE	CVRR	_		CVR	<3:0>		0000
CM1CON	0654	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM1MSKSRC	0656	_	—	_	_		SELSRO	CC<3:0>			SELSR	CB<3:0>			SELSRO	CA<3:0>		0000
CM1MSKCON	0658	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM1FLTR	065A	_	_	_	_	_	_	_	_	_	(CFSEL<2:0	>	CFLTREN		CFDIV<2:0	>	0000
CM2CON	065C	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM2MSKSRC	065E	_	_	_	_		SELSRO	CC<3:0>			SELSR	CB<3:0>			SELSRO	CA<3:0>		0000
CM2MSKCON	0660	HLMS	_	OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM2FLTR	0662	_	_	_	_	_	_	_	_	_	(CFSEL<2:0	>	CFLTREN		CFDIV<2:0	>	0000
CM3CON	0664	CON	COE	CPOL	_	_	_	CEVT	COUT	EVPO	L<1:0>	_	CREF	_	_	CCH	<1:0>	0000
CM3MSKSRC	0666	_	_	_	_		SELSRO	CC<3:0>			SELSR	CB<3:0>			SELSRO	CA<3:0>		0000
CM3MSKCON	0668	HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN	NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN	0000
CM3FLTR	066A	_		—			_	_	—	—	(CFSEL<2:0	>	CFLTREN	(CFDIV<2:0:	; >	0000
		wn value on	Reset, —	= unimplen	nented, read	as '0'. Res	et values are	e shown in l	ı nexadecima	l I.	`			o. Entert	1	0. 2.7 (2.0)	-	

TABLE 4-19: PERIPHERAL PIN SELECT INPUT REGISTER MAP

IADEE	+ I J .																	
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPINR0	0680	—	—	—		I	NT1R<4:0>			-	—	—	—	—	-	—	-	1F00
RPINR1	0682	—	—	—	—	-	—	—	—	-	—	-		I	INT2R<4:0>			001F
RPINR3	0686	_	—	_		Т	3CKR<4:0>			—	_	-		٦	C2CKR<4:0>			1F1F
RPINR7	068E	_	—	_			IC2R<4:0>			—	—	_			IC1R<4:0>			1F1F
RPINR8	0690	_	—	_	—	-	_	—	_	-	—	_			IC3R<4:0>			001F
RPINR11	0696	—	—	—	-	_	_	—	_	—	—	_		C	OCFAR<4:0>	•		001F
RPINR18	06A4	_	—	-		U	1CTSR<4:0>			—	_	-		ι	J1RXR<4:0>	•		1F1F
RPINR21	06AA	—	—	—	—	_	—	—	—	-	—	_			SS1R<4:0>			001F

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-20:PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ16GP102 AND dsPIC33FJ16MC102 DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0		—				RP1R<4:0>	•		_	—	_			RP0R<4:0>			0000
RPOR1	06C2		_	-			RP3R<4:0>			_	_	_			RP2R<4:0>			0000
RPOR2	06C4	_	_	_			RP5R<4:0>			_	_	_			RP4R<4:0>			0000
RPOR3	06C6	_	_				RP7R<4:0>			_	_	_			RP6R<4:0>			0000
RPOR4	06C8		_				RP9R<4:0>			_	_	_			RP8R<4:0>			0000
RPOR5	06CA	_	_	_			RP11R<4:0:	>		_	_	_		F	RP10R<4:0>			0000
RPOR6	06CC	_	_	_			RP13R<4:0:	>		_	_	_		F	RP12R<4:0>			0000
RPOR7	06CE		_				RP15R<4:0:	>		_	_	_		F	RP14R<4:0>			0000

Legend: x = unknown value on Reset, -- = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-21: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ16GP101 DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0	_	_	_			RP1R<4:0>			_	_	_			RP0R<4:0>			0000
RPOR2	06C4		_	_	-	_	_	_	_	_		_			RP4R<4:0>			0000
RPOR3	06C6		_	_			RP7R<4:0>			_		_	_	_	_	_	_	0000
RPOR4	06C8		_	_			RP9R<4:0>			_		_			RP8R<4:0>			0000
RPOR7	06CE	_	_	—			RP15R<4:0:	>			_			F	RP14R<4:0>	•		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-22: PERIPHERAL PIN SELECT OUTPUT REGISTER MAP FOR dsPIC33FJ16MC101 DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RPOR0	06C0		_	_			RP1R<4:0>	•		_	_	—			RP0R<4:0>			0000
RPOR2	06C4	_	-	_			_	_	_	_	-	_			RP4R<4:0>			0000
RPOR3	06C6		_	_			RP7R<4:0>			_	_	_	_		-	_		0000
RPOR4	06C8	_	_	_			RP9R<4:0>			_		_			RP8R<4:0>			0000
RPOR6	06CC	_	_	_			RP13R<4:0	>		_		_		F	RP12R<4:0>			0000
RPOR7	06CE			_		RP15R<4:0>				-	_	_		F	RP14R<4:0>	•		0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-23: PORTA REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISA	02C0	_	_	-	—	_		-	_		_		TRISA4	TRISA3	TRISA2	TRISA1	TRISA0	001F
PORTA	02C2	_		_		_	_	_		-	-	_	RA4	RA3	RA2	RA1	RA0	xxxx
LATA	02C4	_		_		_	_	_		-	-	_	LATA4	LATA3	LATA2	LATA1	LATA0	xxxx
ODCA	02C6	_	-	_	_	_	_	_	_	_	_	_	ODCA4	ODCA3	ODCA2	ODCA1	ODCA0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-24: PORTB REGISTER MAP FOR dsPIC33FJ16GP102 AND dsPIC33FJ16MC102 DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	TRISB11	TRISB10	TRISB9	TRISB8	TRISB7	TRISB6	TRISB5	TRISB4	TRISB3	TRISB2	TRISB1	TRISB0	FFFF
PORTB	02CA	RB15	RB14	RB13	RB12	RB11	RB10	RB9	RB8	RB7	RB6	RB5	RB4	RB3	RB2	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	LATB11	LATB10	LATB9	LATB8	LATB7	LATB6	LATB5	LATB4	LATB3	LATB2	LATB1	LATB0	xxxx
ODCB	02CE	ODCB15	ODCB14	ODCB13	ODCB12	ODCB11	ODCB10	ODCB9	ODCB8	ODCB7	ODCB6	ODCB5	ODCB4	ODCB3	ODCB2	ODCB1	ODCB0	0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

TABLE 4-25: PORTB REGISTER MAP FOR dsPIC33FJ16MC101 DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	TRISB13	TRISB12	—	_	TRISB9	TRISB8	TRISB7	—		TRISB4	_		TRISB1	TRISB0	F393
PORTB	02CA	RB15	RB14	RB13	RB12	-	_	RB9	RB8	RB7	_	-	RB4		-	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	LATB13	LATB12	_	—	LATB9	LATB8	LATB7	—		LATB4	-		LATB1	LATB0	xxxx
ODCB	02CE	ODCB15	ODCB14	ODCB13	ODCB12	—	_	ODCB9	ODCB8	ODCB7	_		ODCB4	_		ODCB1	ODCB0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal

TABLE 4-26: PORTB REGISTER MAP FOR dsPIC33FJ16GP101 DEVICES

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
TRISB	02C8	TRISB15	TRISB14	—	—			TRISB9	TRISB8	TRISB7			TRISB4			TRISB1	TRISB0	C393
PORTB	02CA	RB15	RB14	_	—	_	-	RB9	RB8	RB7	_	-	RB4	_	-	RB1	RB0	xxxx
LATB	02CC	LATB15	LATB14	—	—	-	-	LATB9	LATB8	LATB7	-	-	LATB4	-	-	LATB1	LATB0	xxxx
ODCB	02CE	ODCB15	ODCB14	_	_	_	_	ODCB9	ODCB8	ODCB7	_	_	ODCB4	_	_	ODCB1	ODCB0	0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal

TABLE 4-27: SYSTEM CONTROL REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
RCON	0740	TRAPR	IOPUWR		—	—		CM	VREGS	EXTR	SWR	SWDTEN	WDTO	SLEEP	IDLE	BOR	POR	_{XXXX} (1)
OSCCON	0742			COSC<2:0:	>	—	1	NOSC<2:0:	>	CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN	₀₃₀₀ (2)
CLKDIV	0744	ROI		DOZE<2:0;	>	DOZEN	F	RCDIV<2:0)>	—	_		_	_		_		3040
OSCTUN	0748	_	_	_	_	_	_	-	_	_	_			TUN	<5:0>			0000

Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: RCON register Reset values dependent on type of Reset.

2: OSCCON register Reset values dependent on the FOSC Configuration bits and by type of Reset.

TABLE 4-28: NVM REGISTER MAP

File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
NVMCON	0760	WR	WREN	WRERR	_		_		_	_	ERASE				NVMO	P<3:0>		₀₀₀₀ (1)
NVMKEY	0766	—	_		_	-	_	-					NVMKE	Y<7:0>				0000

Legend: x = unknown value on Reset, — = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: Reset value shown is for POR only. Value on other Reset states is dependent on the state of memory write or erase operations at the time of Reset.

TABLE 4-29: PMD REGISTER MAP

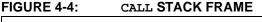
File Name	Addr	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	All Resets
PMD1	0770	_	—	T3MD	T2MD	T1MD	—	PWM1MD ⁽¹⁾	-	I2C1MD	—	U1MD	—	SPI1MD	—	—	AD1MD	0000
PMD2	0772	_	_	_	_	_	IC3MD	IC2MD	IC1MD	_	_	—	_	_	-	OC2MD	OC1MD	0000
PMD3	0774	_	_	_	-	_	CMPMD	RTCCMD	_	_	_	—	_	_	-	_	_	0000
PMD4	0776	_	_	_	-	_	_	_	_	_	_	—	_	_	CTMUMD	_	_	0000

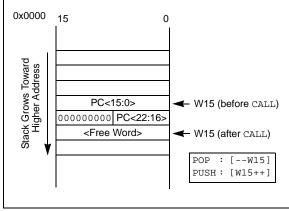
Legend: x = unknown value on Reset, - = unimplemented, read as '0'. Reset values are shown in hexadecimal.

Note 1: This bit is available on dsPIC33FJ16MC101 and dsPIC33FJ16MC102 devices only.

4.2.6 SOFTWARE STACK

In addition to its use as a working register, the W15 register in the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices is also used as a software Stack Pointer. The Stack Pointer always points to the first available free word and grows from lower to higher addresses. It pre-decrements for stack pops and post-increments for stack pushes, as shown in Figure 4-4. For a PC push during any CALL instruction, the MSb of the PC is zero-extended before the push, ensuring that the MSb is always clear.


Note:	A PC push during exception processing
	concatenates the SRL register to the MSb
	of the PC prior to the push.


The Stack Pointer Limit register (SPLIM) associated with the Stack Pointer sets an upper address boundary for the stack. SPLIM is uninitialized at Reset. As is the case for the Stack Pointer, SPLIM<0> is forced to '0' because all stack operations must be word aligned.

Whenever an EA is generated using W15 as a source or destination pointer, the resulting address is compared with the value in SPLIM. If the contents of the Stack Pointer (W15) and the SPLIM register are equal and a push operation is performed, a stack error trap will not occur. However, the stack error trap will occur on a subsequent push operation. For example, to cause a stack error trap when the stack grows beyond address 0x0C00 in RAM, initialize the SPLIM with the value 0x0BFE.

Similarly, a Stack Pointer underflow (stack error) trap is generated when the Stack Pointer address is found to be less than 0x0800. This prevents the stack from interfering with the SFR space.

A write to the SPLIM register should not be immediately followed by an indirect read operation using W15.

4.2.7 DATA RAM PROTECTION FEATURE

The dsPIC33F product family supports Data RAM protection features that enable segments of RAM to be protected when used in conjunction with Boot and Secure Code Segment Security. BSRAM (Secure RAM segment for BS) is accessible only from the Boot Segment Flash code, when enabled. SSRAM (Secure RAM segment for RAM) is accessible only from the Secure Segment Flash code, when enabled. See Table 4-1 for an overview of the BSRAM and SSRAM SFRs.

4.3 Instruction Addressing Modes

The addressing modes shown in Table 4-30 form the basis of the addressing modes that are optimized to support the specific features of individual instructions. The addressing modes provided in the MAC class of instructions differ from those provided in other instruction types.

4.3.1 FILE REGISTER INSTRUCTIONS

Most file register instructions use a 13-bit address field (f) to directly address data present in the first 8192 bytes of data memory (near data space). Most file register instructions employ a working register, W0, which is denoted as WREG in these instructions. The destination is typically either the same file register or WREG (with the exception of the MUL instruction), which writes the result to a register or register pair. The MOV instruction allows additional flexibility and can access the entire data space.

4.3.2 MCU INSTRUCTIONS

The three-operand MCU instructions are of the form:

Operand 3 = Operand 1 < function> Operand 2

where Operand 1 is always a working register (that is, the addressing mode can only be register direct), which is referred to as Wb. Operand 2 can be a W register, fetched from data memory, or a 5-bit literal. The result location can be either a W register or a data memory location. The following addressing modes are supported by MCU instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-Modified
- Register Indirect Pre-Modified
- 5-bit or 10-bit Literal
 - Note: Not all instructions support all of the addressing modes given above. Individual instructions can support different subsets of these addressing modes.

Addressing Mode	Description
File Register Direct	The address of the file register is specified explicitly.
Register Direct	The contents of a register are accessed directly.
Register Indirect	The contents of Wn forms the Effective Address (EA).
Register Indirect Post-Modified	The contents of Wn forms the EA. Wn is post-modified (incremented or decremented) by a constant value.
Register Indirect Pre-Modified	Wn is pre-modified (incremented or decremented) by a signed constant value to form the EA.
Register Indirect with Register Offset (Register Indexed)	The sum of Wn and Wb forms the EA.
Register Indirect with Literal Offset	The sum of Wn and a literal forms the EA.

TABLE 4-30: FUNDAMENTAL ADDRESSING MODES SUPPORTED

4.3.3 MOVE AND ACCUMULATOR INSTRUCTIONS

Move instructions and the DSP accumulator class of instructions provide a greater degree of addressing flexibility than other instructions. In addition to the addressing modes supported by most MCU instructions, move and accumulator instructions also support Register Indirect with Register Offset Addressing mode, also referred to as Register Indexed mode.

For the MOV instructions, the addressing
mode specified in the instruction can differ
for the source and destination EA.
However, the 4-bit Wb (Register Offset)
field is shared by both source and
destination (but typically only used by one).

In summary, the following addressing modes are supported by move and accumulator instructions:

- Register Direct
- Register Indirect
- Register Indirect Post-modified
- Register Indirect Pre-modified
- Register Indirect with Register Offset (Indexed)
- Register Indirect with Literal Offset
- 8-bit Literal
- 16-bit Literal

Note: Not all instructions support all the addressing modes given above. Individual instructions may support different subsets of these addressing modes.

4.3.4 MAC INSTRUCTIONS

The dual source operand DSP instructions (CLR, ED, EDAC, MAC, MPY, MPY.N, MOVSAC, and MSC), also referred to as MAC instructions, use a simplified set of addressing modes to allow the user application to effectively manipulate the data pointers through register indirect tables.

The two-source operand prefetch registers must be members of the set {W8, W9, W10, W11}. For data reads, W8 and W9 are always directed to the X RAGU, and W10 and W11 are always directed to the Y AGU. The effective addresses generated (before and after modification) must, therefore, be valid addresses within X data space for W8 and W9 and Y data space for W10 and W11.

Note: Register Indirect with Register Offset Addressing mode is available only for W9 (in X space) and W11 (in Y space).

In summary, the following addressing modes are supported by the ${\tt MAC}$ class of instructions:

- Register Indirect
- Register Indirect Post-Modified by 2
- Register Indirect Post-Modified by 4
- Register Indirect Post-Modified by 6
- Register Indirect with Register Offset (Indexed)

4.3.5 OTHER INSTRUCTIONS

In addition to the addressing modes outlined previously, some instructions use literal constants of various sizes. For example, BRA (branch) instructions use 16-bit signed literals to specify the branch destination directly, whereas the DISI instruction uses a 14-bit unsigned literal field. In some instructions, such as ADD Acc, the source of an operand or result is implied by the opcode itself. Certain operations, such as NOP, do not have any operands.

4.4 Modulo Addressing

Modulo Addressing mode is a method of providing an automated means to support circular data buffers using hardware. The objective is to remove the need for software to perform data address boundary checks when executing tightly looped code, as is typical in many DSP algorithms.

Modulo Addressing can operate in either data or program space (since the data pointer mechanism is essentially the same for both). One circular buffer can be supported in each of the X (which also provides the pointers into program space) and Y data spaces. Modulo Addressing can operate on any W register pointer. However, it is not advisable to use W14 or W15 for Modulo Addressing since these two registers are used as the Stack Frame Pointer and Stack Pointer, respectively.

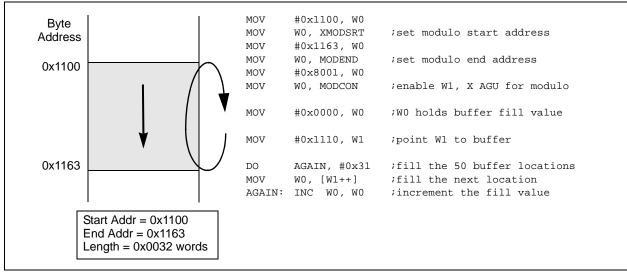
In general, any particular circular buffer can be configured to operate in only one direction as there are certain restrictions on the buffer start address (for incrementing buffers), or end address (for decrementing buffers), based upon the direction of the circular buffer.

The only exception to the usage restrictions is for buffers that have a power-of-two length. As these buffers satisfy the start and end address criteria, they can operate in a bidirectional mode (that is, address boundary checks are performed on both the lower and upper address boundaries).

4.4.1 START AND END ADDRESS

The Modulo Addressing scheme requires that a starting and ending address be specified and loaded into the 16-bit Modulo Buffer Address registers: XMODSRT, XMODEND, YMODSRT, and YMODEND (see Table 4-1).

Note: Y space Modulo Addressing EA calculations assume word-sized data (LSb of every EA is always clear). The length of a circular buffer is not directly specified. It is determined by the difference between the corresponding start and end addresses. The maximum possible length of the circular buffer is 32K words (64 Kbytes).


4.4.2 W ADDRESS REGISTER SELECTION

- The Modulo and Bit-Reversed Addressing Control register, MODCON<15:0>, contains enable flags as well as a W register field to specify the W Address registers. The XWM and YWM fields select which registers will operate with Modulo Addressing.
- If XWM = 15, X RAGU and X WAGU Modulo addressing is disabled.
- If YWM = 15, Y AGU Modulo Addressing is disabled.

The X Address Space Pointer W register (XWM), to which Modulo Addressing is to be applied, is stored in MODCON<3:0> (see Table 4-1). Modulo Addressing is enabled for X data space when XWM is set to any value other than '15' and the XMODEN bit is set at MODCON<15>.

The Y Address Space Pointer W register (YWM) to which Modulo Addressing is to be applied is stored in MODCON<7:4>. Modulo Addressing is enabled for Y data space when YWM is set to any value other than '15' and the YMODEN bit is set at MODCON<14>.

FIGURE 4-5: MODULO ADDRESSING OPERATION EXAMPLE

4.4.3 MODULO ADDRESSING APPLICABILITY

Modulo Addressing can be applied to the Effective Address (EA) calculation associated with any W register. Address boundaries check for addresses equal to:

- The upper boundary addresses for incrementing buffers
- The lower boundary addresses for decrementing buffers

It is important to realize that the address boundaries check for addresses less than or greater than the upper (for incrementing buffers) and lower (for decrementing buffers) boundary addresses (not just equal to). Address changes can, therefore, jump beyond boundaries and still be adjusted correctly.

Note: The modulo corrected effective address is written back to the register only when Pre-Modify or Post-Modify Addressing mode is used to compute the effective address. When an address offset (such as [W7 + W2]) is used, Modulo Address correction is performed, but the contents of the register remain unchanged.

4.5 Bit-Reversed Addressing

Bit-Reversed Addressing mode is intended to simplify data reordering for radix-2 FFT algorithms. It is supported by the X AGU for data writes only.

The modifier, which can be a constant value or register contents, is regarded as having its bit order reversed. The address source and destination are kept in normal order. Thus, the only operand requiring reversal is the modifier.

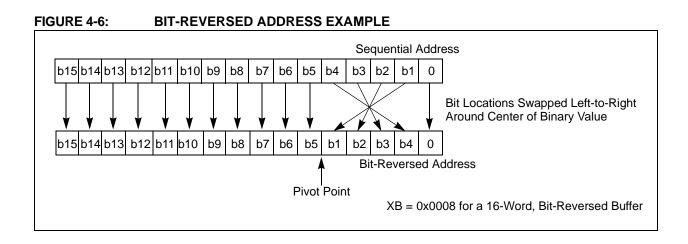
4.5.1 BIT-REVERSED ADDRESSING IMPLEMENTATION

Bit-Reversed Addressing mode is enabled in any of these situations:

- BWM bits (W register selection) in the MODCON register are any value other than '15' (the stack cannot be accessed using Bit-Reversed Addressing)
- The BREN bit is set in the XBREV register
- The addressing mode used is Register Indirect with Pre-Increment or Post-Increment

If the length of a bit-reversed buffer is $M = 2^{N}$ bytes, the last 'N' bits of the data buffer start address must be zeros.

XB<14:0> is the Bit-Reversed Address modifier, or 'pivot point,' which is typically a constant. In the case of an FFT computation, its value is equal to half of the FFT data buffer size.


Note:	All bit-reversed EA calculations assume
	word-sized data (LSb of every EA is
	always clear). The XB value is scaled
	accordingly to generate compatible (byte)
	addresses.

When enabled, Bit-Reversed Addressing is executed only for Register Indirect with Pre-Increment or Post-Increment Addressing, and word-sized data writes. It will not function for any other addressing mode or for byte-sized data, and normal addresses are generated instead. When Bit-Reversed Addressing is active, the W Address Pointer is always added to the address modifier (XB), and the offset associated with the Register Indirect Addressing mode is ignored. In addition, as word-sized data is a requirement, the LSb of the EA is ignored (and always clear).

Note:	Modulo Addressing and Bit-Reversed							
	Addressing should not be enabled							
	together. If an application attempts to do							
	so, Bit-Reversed Addressing will assume							
	priority, when active, for the X WAGU, and							
	X WAGU, Modulo Addressing will be							
	disabled. However, Modulo Addressing will							
	continue to function in the X RAGU.							

If Bit-Reversed Addressing has already been enabled by setting the BREN (XBREV<15>) bit, a write to the XBREV register should not be immediately followed by an indirect read operation using the W register that has been designated as the bit-reversed pointer.

dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/102

TABLE 4-31: BIT-REVERSED ADDRESS SEQUENCE (16-ENTRY)

Normal Address						Bit-Reversed Address				
A3	A2	A1	A0	Decimal	A3	A2	A1	A0	Decimal	
0	0	0	0	0	0	0	0	0	0	
0	0	0	1	1	1	0	0	0	8	
0	0	1	0	2	0	1	0	0	4	
0	0	1	1	3	1	1	0	0	12	
0	1	0	0	4	0	0	1	0	2	
0	1	0	1	5	1	0	1	0	10	
0	1	1	0	6	0	1	1	0	6	
0	1	1	1	7	1	1	1	0	14	
1	0	0	0	8	0	0	0	1	1	
1	0	0	1	9	1	0	0	1	9	
1	0	1	0	10	0	1	0	1	5	
1	0	1	1	11	1	1	0	1	13	
1	1	0	0	12	0	0	1	1	3	
1	1	0	1	13	1	0	1	1	11	
1	1	1	0	14	0	1	1	1	7	
1	1	1	1	15	1	1	1	1	15	

4.6 Interfacing Program and Data Memory Spaces

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 architecture uses a 24-bitwide program space and a 16-bit-wide data space. The architecture is also a modified Harvard scheme, meaning that data can also be present in the program space. To use this data successfully, it must be accessed in a way that preserves the alignment of information in both spaces.

Aside from normal execution, the dsPIC33FJ16GP101/ 102 and dsPIC33FJ16MC101/102 architecture provides two methods by which program space can be accessed during operation:

- Using table instructions to access individual bytes, or words, anywhere in the program space
- Remapping a portion of the program space into the data space (Program Space Visibility)

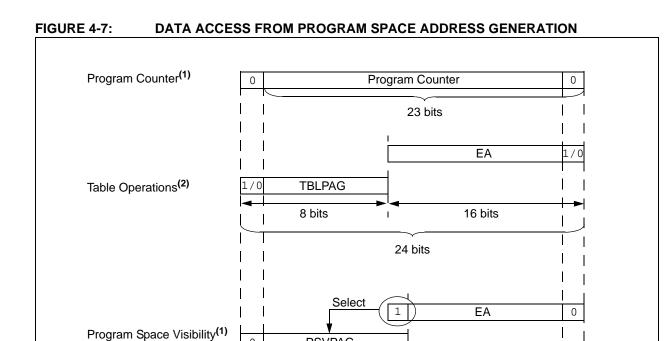
Table instructions allow an application to read or write to small areas of the program memory. This capability makes the method ideal for accessing data tables that need to be updated periodically. It also allows access to all bytes of the program word. The remapping method allows an application to access a large block of data on a read-only basis, which is ideal for lookups from a large table of static data. The application can only access the lsw of the program word.

4.6.1 ADDRESSING PROGRAM SPACE

Since the address ranges for the data and program spaces are 16 and 24 bits, respectively, a method is needed to create a 23-bit or 24-bit program address from 16-bit data registers. The solution depends on the interface method to be used.

For table operations, the 8-bit Table Page register (TBLPAG) is used to define a 32K word region within the program space. This is concatenated with a 16-bit EA to arrive at a full 24-bit program space address. In this format, the MSb of TBLPAG is used to determine if the operation occurs in the user memory (TBLPAG<7> = 0) or the configuration memory (TBLPAG<7> = 1).

For remapping operations, the 8-bit Program Space Visibility register (PSVPAG) is used to define a 16K word page in the program space. When the MSb of the EA is '1', PSVPAG is concatenated with the lower 15 bits of the EA to form a 23-bit program space address. Unlike table operations, this limits remapping operations strictly to the user memory area.


Table 4-32 and Figure 4-7 show how the program EA is created for table operations and remapping accesses from the data EA.

	Access	Program Space Address					
Access Type	Space	<23>	<22:16>	<15>	<14:1>	<0>	
Instruction Access	User	0 PC<22:1>				0	
(Code Execution)							
TBLRD/TBLWT	User	TBLPAG<7:0>		Data EA<15:0>			
(Byte/Word Read/Write)		0xxx xxxx xxxx xxxx xxxx					
	Configuration	TBLPAG<7:0>		Data EA<15:0>			
		1xxx xxxx xxxx xxxx xxxx xxxx					
Program Space Visibility	bace Visibility User		0 PSVPAG<7:0>		Data EA<14:0> ⁽¹⁾		
(Block Remap/Read)		0	XXXX XXXX		xxx xxxx xxxx xxxx		

TABLE 4-32: PROGRAM SPACE ADDRESS CONSTRUCTION

Note 1: Data EA<15> is always '1' in this case, but is not used in calculating the program space address. Bit 15 of the address is PSVPAG<0>.

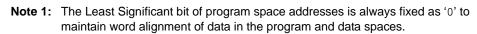
dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/102

PSVPAG

8 bits

15 bits

23 bits


0

User/Configuration

Space Select

ī. Т

(Remapping)

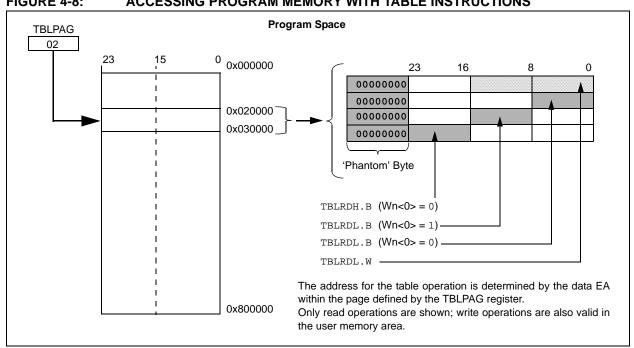
2: Table operations are not required to be word aligned. Table read operations are permitted in the configuration memory space.

Byte Select

4.6.2 DATA ACCESS FROM PROGRAM MEMORY USING TABLE INSTRUCTIONS

The TBLRDL and TBLWTL instructions offer a direct method of reading or writing the lower word of any address within the program space without going through data space. The TBLRDH and TBLWTH instructions are the only method to read or write the upper 8 bits of a program space word as data.

The PC is incremented by two for each successive 24-bit program word. This allows program memory addresses to directly map to data space addresses. Program memory can thus be regarded as two 16-bit-wide word address spaces, residing side by side, each with the same address range. TBLRDL and TBLWTL access the space that contains the least significant data word. TBLRDH and TBLWTH access the space that contains the upper data byte.


Two table instructions are provided to move byte or word-sized (16-bit) data to and from program space. Both function as either byte or word operations.

- TBLRDL (Table Read Low):
 - In Word mode, this instruction maps the lower word of the program space location (P<15:0>) to a data address (D<15:0>).
 - In Byte mode, either the upper or lower byte of the lower program word is mapped to the lower byte of a data address. The upper byte is selected when Byte Select is '1'; the lower byte is selected when it is '0'.

- TBLRDH (Table Read High):
 - In Word mode, this instruction maps the entire upper word of a program address (P<23:16>) to a data address. Note that D<15:8>, the 'phantom byte', will always be '0'.
 - In Byte mode, this instruction maps the upper or lower byte of the program word to D<7:0> of the data address, in the TBLRDL instruction. The data is always '0' when the upper 'phantom' byte is selected (Byte Select = 1).

In a similar fashion, two table instructions, TBLWTH and TBLWTL, are used to write individual bytes or words to a program space address. The details of their operation are explained in Section 5.0 "Flash Program Memory".

For all table operations, the area of program memory space to be accessed is determined by the Table Page register (TBLPAG). TBLPAG covers the entire program memory space of the device, including user and configuration spaces. When TBLPAG<7> = 0, the table page is located in the user memory space. When TBLPAG<7> = 1, the page is located in configuration space.

FIGURE 4-8: ACCESSING PROGRAM MEMORY WITH TABLE INSTRUCTIONS

4.6.3 READING DATA FROM PROGRAM MEMORY USING PROGRAM SPACE VISIBILITY

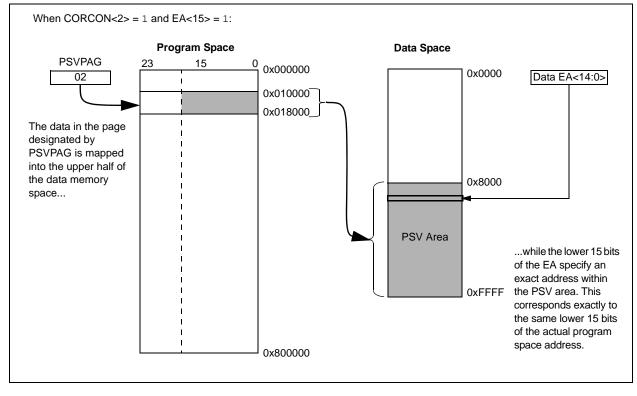
The upper 32 Kbytes of data space may optionally be mapped into any 16K word page of the program space. This option provides transparent access to stored constant data from the data space without the need to use special instructions (such as TBLRDL and TBLRDH).

Program space access through the data space occurs if the MSb of the data space EA is '1' and program space visibility is enabled by setting the PSV bit in the Core Control register (CORCON<2>). The location of the program memory space to be mapped into the data space is determined by the Program Space Visibility Page register (PSVPAG). This 8-bit register defines any one of 256 possible pages of 16K words in program space. In effect, PSVPAG functions as the upper 8 bits of the program memory address, with the 15 bits of the EA functioning as the lower bits. By incrementing the PC by 2 for each program memory word, the lower 15 bits of data space addresses directly map to the lower 15 bits in the corresponding program space addresses.

Data reads to this area add a cycle to the instruction being executed, since two program memory fetches are required.

Although each data space address 0x8000 and higher maps directly into a corresponding program memory address (see Figure 4-9), only the lower 16 bits of the

24-bit program word are used to contain the data. The upper 8 bits of any program space location used as data should be programmed with '1111 1111' or '0000 0000' to force a NOP. This prevents possible issues should the area of code ever be accidentally executed.


Note:	PSV access is temporarily disabled during
	table reads/writes.

For operations that use PSV and are executed outside a REPEAT loop, the MOV and MOV.D instructions require one instruction cycle in addition to the specified execution time. All other instructions require two instruction cycles in addition to the specified execution time.

For operations that use PSV, and are executed inside a REPEAT loop, these instances require two instruction cycles in addition to the specified execution time of the instruction:

- Execution in the first iteration
- · Execution in the last iteration
- Execution prior to exiting the loop due to an interrupt
- Execution upon re-entering the loop after an interrupt is serviced

Any other iteration of the REPEAT loop will allow the instruction using PSV to access data, to execute in a single cycle.

FIGURE 4-9: PROGRAM SPACE VISIBILITY OPERATION

5.0 FLASH PROGRAM MEMORY

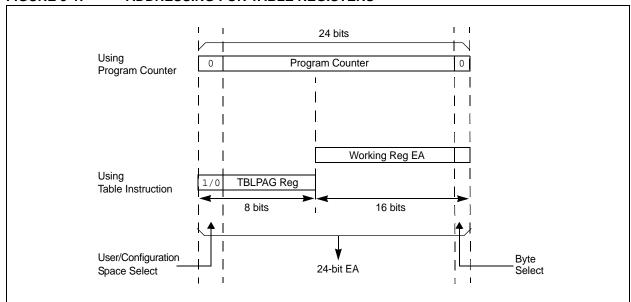
- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 5. "Flash Programming" (DS70191) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices contain internal Flash program memory for storing and executing application code. The memory is readable, writable, and erasable during normal operation over the entire VDD range.

Flash memory can be programmed in two ways:

- In-Circuit Serial Programming[™] (ICSP[™]) programming capability
- Run-Time Self-Programming (RTSP)

ICSP allows a device to be serially programmed while in the end application circuit. This is done with two lines for programming clock and programming data (one of the alternate programming pin pairs: PGECx/PGEDx), and three other lines for power (VDD), ground (VSS) and Master Clear (MCLR). This allows users to manufacture boards with unprogrammed devices, and then program the digital signal controller just before shipping the product. This also allows the most recent firmware or a custom firmware to be programmed.


RTSP is accomplished using TBLRD (table read) and TBLWT (table write) instructions. With RTSP, the user application can write program memory data in a single program memory word, and erase program memory in blocks or 'pages' of 512 instructions (1536 bytes).

5.1 Table Instructions and Flash Programming

Regardless of the method used, all programming of Flash memory is done with the table-read and tablewrite instructions. These allow direct read and write access to the program memory space from the data memory while the device is in normal operating mode. The 24-bit target address in the program memory is formed using bits <7:0> of the TBLPAG register and the Effective Address (EA) from a W register specified in the table instruction, as shown in Figure 5-1.

The TBLRDL and the TBLWTL instructions are used to read or write to bits <15:0> of program memory. TBLRDL and TBLWTL can access program memory in both Word and Byte modes.

The TBLRDH and TBLWTH instructions are used to read or write to bits <23:16> of program memory. TBLRDH and TBLWTH can also access program memory in Word or Byte mode.

FIGURE 5-1: ADDRESSING FOR TABLE REGISTERS

5.2 RTSP Operation

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 Flash program memory array is organized into rows of 64 instructions or 192 bytes. RTSP allows the user application to erase a page of memory, which consists of eight rows (512 instructions); and to program one word. Table 26-12 shows typical erase and programming times. The 8-row erase pages are edge-aligned from the beginning of program memory, on boundaries of 1536 bytes.

5.3 **Programming Operations**

A complete programming sequence is necessary for programming or erasing the internal Flash in RTSP mode. The processor stalls (waits) until the operation is finished.

For erase and program times, refer to parameters DI37a and DI37b (Page Erase Time), and DI38a and DI38b (Word Write Cycle Time), in Table 26-12: "DC Characteristics: Program Memory".

Setting the WR bit (NVMCON<15>) starts the operation, and the WR bit is automatically cleared when the operation is finished.

5.3.1 PROGRAMMING ALGORITHM FOR FLASH PROGRAM MEMORY

Programmers can program one word (24 bits) of program Flash memory at a time. To do this, it is necessary to erase the 8-row erase page that contains the desired address of the location the user wants to change.

For protection against accidental operations, the write initiate sequence for NVMKEY must be used to allow any erase or program operation to proceed. After the programming command has been executed, the user application must wait for the programming time until programming is complete. The two instructions following the start of the programming sequence should be NOPS.

Note: Performing a page erase operation on the last page of program memory will clear the Flash Configuration words, thereby enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

Refer to **Section 5. "Flash Programming"** (DS70191) in the *"dsPIC33F/PIC24H Family Reference Manual"* for details and codes examples on programming using RTSP.

5.4 Control Registers

Two SFRs are used to read and write the program Flash memory: NVMCON and NVMKEY.

The NVMCON register (Register 5-1) controls which blocks are to be erased, which memory type is to be programmed, and the start of the programming cycle.

NVMKEY is a write-only register that is used for write protection. To start a programming or erase sequence, the user application must consecutively write 0x55 and 0xAA to the NVMKEY register. Refer to **Section 5.3 "Programming Operations"** for further details.

dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/102

WR WREN WRERR -	REGISTER 5-		N: FLASH		ONTROL RE	GISTER			
bit 15 U-0 R/W-0 ⁽¹⁾ U-0 U-0 R/W-0 ⁽¹⁾ R/W/W-0 ⁽¹⁾ R/W-0 ⁽¹⁾ R/W/W-0 ⁽¹⁾ R/W/W-0 ⁽¹⁾ R/W/W-0 ⁽¹⁾ R/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W/W	R/SO-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	U-0	U-0	U-0	U-0	U-0	
U-0 R/W-0 ⁽¹⁾ U-0 R/W-0 ⁽¹⁾ R/W R/W R/W	WR	WREN	WRERR	—	—			—	
- ERASE - NVMOP<3:0-(2)	bit 15							bit 8	
bit 7 Legend: SO = Settable only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the erase operation Select bits ⁽²⁾ If ERASE = 1: 1111 = No operation 1101 = Erase General Segment 1100 = No operation 0011 = No operation 00	U-0	R/W-0 ⁽¹⁾	U-0	U-0	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	R/W-0 ⁽¹⁾	
Legend: SO = Settable only bit R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' .n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Initibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation bit 3-0 NVMOPA:0>:NVM Operation Select bits ⁽²⁾ If ERASE = 1: 11111 = No operation 101 = Erase General Segment 100 = No operation 0010 = No operation 001 = No operation 001 = No operation 0111 = No operation 101 = No operation 101 = No operation		ERASE	_	_		NVMOF	P<3:0> ⁽²⁾		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOPa:3:0>: NVM Operation Select bits ⁽²⁾ If ERASE = 1: 1111 = No operation 100 = No operation 001 = No operation 001 = No operation 001 = No operation 0101 = No operation 100 = No operation 100 = No operation 0101 = No operation 101 = No operation 101 = No operation	bit 7							bit 0	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15 WR: Write Control bit 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation scomplete normally bit 12-7 Unimplemented: Read as '0' bit 14 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' If ERASE = 1: 1111 = No operation 1101 = Erase General Segment 1100 = No operation 0011 = No operation 0011 = No operation 0010 = No operation 0010 = No operation 1100 = No operation 0111 = No operation 1100 = No operation 0101 = No operation 1100 = No operation 0101 = No operation	Legend:		SO = Settal	ble only bit					
bit 15 WR: Write Control bit 1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inibit Flash program/erase operations 0 = Inibit Flash program/erase operations 0 = Inibit Flash program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the grogram operation specified by NVMOP<3:0> on the next WR command 0 = Perform the grogram operation Select bits ⁽²⁾ If ERASE = 1: 1111 = No operation 100 = No operation 0011 = Monopration 0010 = No operation 0010 = No operation 0010 = No operation 1010 = No operation 1010 = No operation 1111 = No operation 1111 = No operation 1111 = No operation	R = Readable	bit	W = Writab	le bit	U = Unimpler	nented bit, read	d as '0'		
1 = Initiates a Flash memory program or erase operation. The operation is self-timed and the cleared by hardware once operation is complete 0 = Program or erase operation is complete and inactive bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP NVMOP Silo : NVM Operation Select bits ⁽²⁾ If ERASE = 1: 1111 = No operation 1001 = Erase General Segment 1000 = No operation 0010 = Memory page erase operation 001 = No operation 0011 = No operation 111 = No operation 1100 = No operation 1101 = No operation 11	-n = Value at P	OR	'1' = Bit is s	et	'0' = Bit is cle	ared	x = Bit is unkr	nown	
bit 14 WREN: Write Enable bit 1 = Enable Flash program/erase operations 0 = Inhibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit 1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP-3:0>: NVM Operation Select bits ⁽²⁾ If ERASE = 1: 1111 = No operation 1101 = Erase General Segment 1100 = No operation 0010 = Ne operation 0011 = No operation 0011 = No operation 0010 = No operation 0010 = No operation 1111 = No operation 1101 = No operation 1101 = No operation 0101 = No operation 1101 = No operation 0101 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 1101 =	bit 15	1 = Initiates a cleared by	Flash memor hardware on	ce operation	is complete	-	on is self-timed	and the bit is	
 0 = Inhibit Flash program/erase operations bit 13 WRERR: Write Sequence Error Flag bit An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits⁽²⁾ <u>If ERASE = 1:</u> 1111 = No operation 1001 = Erase General Segment 1001 = No operation 0011 = No operation 1101 = No operation 1101 = No operation 0001 = No operation 0001 = No operation 1101 = No operation 0001 = No operation 0001 = No operation 0001 = No operation 100 = No operation 100 = No operation 100 = No operation 101 = No operation 101 = No operation 100 = No operation 100 = No operation 101 = No operation 101 = No operation 101 = No operation 1010 = No operation 101 = No operation 1010 = No operation 0011 = No operation 0	bit 14								
1 = An improper program or erase sequence attempt or termination has occurred (bit is set automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ⁽²⁾ If ERASE = 1: 1111 = No operation 1101 = Erase General Segment 1100 = No operation 0011 = No operation 0011 = No operation 0010 = Memory page erase operation 0000 = No operation 0000 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 0010 = Memory page erase operation 0011 = No operation 0000 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 0010 = No operation 0011 = No operation 0101 = Memory word program operation 0011 = No operation 0101 = No operation 0011 = No operatio									
automatically on any set attempt of the WR bit) 0 = The program or erase operation completed normally bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ⁽²⁾ If ERASE = 1: 1111 = No operation 1101 = Erase General Segment 1100 = No operation 0011 = No operation 0011 = No operation 0010 = Memory page erase operation 0011 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 001 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 1001 = No operation 1001 = No operation 0011 = No operation 1001 = No operation 0011 = No operation 1001 = No operation 0011 = No operation 0011 = No operation 0011 = No operation 1001 = No operation 0011 = No operation 1001 = No operation 0011 = No operation	bit 13	WRERR: Write	Sequence E	rror Flag bit					
bit 12-7 Unimplemented: Read as '0' bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ⁽²⁾ If ERASE = 1: 1111 = No operation 1101 = Erase General Segment 1100 = No operation 0011 = No operation 0011 = No operation 0010 = Memory page erase operation 0001 = No operation 011 = No operation 1101 = Crase General Segment 1100 = No operation 0011 = No operation 011 = No operation 0011 = No operation 0101 = No operation 0000 = No operation 0101 = No operation 1101 = No operation 0101 = No operation 0011 = Memory word program operation 011 = Memory word program operation 0011 = No operation 0101 = No operation 0010 = No operation 011 = No operation 0010 = No operation 0100 = No operation 0010 = No operation 0101 = No operation 0011 = No operation 0101 = No operation 0011		automatica	ally on any se	t attempt of th	ne WR bit)		s occurred (bit i	s set	
bit 6 ERASE: Erase/Program Enable bit 1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ⁽²⁾ If ERASE = 1: 1111 = No operation 1101 = Erase General Segment 1100 = No operation 0011 = No operation 0010 = Memory page erase operation 0000 = No operation 1111 = No operation 1101 = No operation 000 = No operation 011 = No operation 0101 = Memory page erase operation 0000 = No operation 0101 = No operation 0101 = No operation 0101 = No operation 0101 = No operation 0101 = No operation 0101 = No operation 011 = Memory word program operation 011 = Memory word program operation 001 = No operation 0101 = No operation	bit 12-7			-					
1 = Perform the erase operation specified by NVMOP<3:0> on the next WR command 0 = Perform the program operation specified by NVMOP<3:0> on the next WR command bit 5-4 Unimplemented: Read as '0' bit 3-0 NVMOP<3:0>: NVM Operation Select bits ⁽²⁾ If ERASE = 1: 1111 = No operation 100 = Frase General Segment 100 = No operation 0011 = No operation 0010 = Memory page erase operation 0000 = No operation 0000 = No operation 1101 = No operation 1101 = No operation 0100 = No operation 0011 = No operation 0101 = No operation 0001 = No operation 0101 = No operation 0000 = No operation 0001 = No operation 1101 = No operation 0100 = No operation 0011 = Memory word program operation 0011 = Memory word program operation 0011 = No operation 0010 = No operation 0011 = No operation 0011 = No operation 0011	bit 6	-							
bit 3-0 NVMO<3:0>: NVM Operation Select bits ⁽²⁾ $ \frac{If ERASE = 1:}{1111 = No operation} 1101 = Erase General Segment 1100 = No operation 0011 = No operation 0010 = Memory page erase operation 0001 = No operation 0000 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 1100 = No operation 1100 = No operation 0011 = Memory word program operation 0010 = No opera$		1 = Perform th	e erase opera	ation specifie					
If ERASE = 1: $1111 = No operation$ $1101 = Erase General Segment$ $1100 = No operation$ $0011 = No operation$ $0010 = Memory page erase operation$ $0001 = No operation$ $0000 = No operation$ $0000 = No operation$ $1111 = No operation$ $1101 = No operation$ $1101 = No operation$ $1100 = No operation$ $1100 = No operation$ $0011 = Memory word program operation$ $0011 = No operation$ $0010 = No operation$ $0011 = No operation$ $0010 = No operation$ $0001 = No operation$	bit 5-4			-	-				
1111 = No operation 1101 = Erase General Segment 1100 = No operation 0011 = No operation 0010 = Memory page erase operation 0001 = No operation 0000 = No operation If ERASE = 0: 1111 = No operation 1101 = No operation 1101 = No operation 1101 = No operation 1100 = No operation 011 = Memory word program operation 0010 = No operation 0011 = Memory word program operation 0010 = No operation	bit 3-0	•							
<pre>1111 = No operation 1101 = No operation 1100 = No operation 0011 = Memory word program operation 0010 = No operation 0001 = No operation</pre>		1111 = No ope 1101 = Erase (1100 = No ope 0011 = No ope 0010 = Memor 0001 = No ope	General Segn eration eration y page erase eration						
		1111 = No ope 1101 = No ope 1100 = No ope 0011 = Memor 0010 = No ope	eration eration y word progra eration eration	am operation					

2: All other combinations of NVMOP<3:0> are unimplemented.

dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/102

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	—	—	_	—	—
bit 15							bit 8
W-0	W-0	W-0	W-0	W-0	W-0	W-0	W-0
			NVMK	(EY<7:0>			
bit 7							bit 0
Legend:		SO = Settable	e only bit				
R = Readable bit W = Writable bit				U = Unimplen	nented bit, read	d as '0'	
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow					nown		

REGISTER 5-2: NVMKEY: NONVOLATILE MEMORY KEY REGISTER

bit 15-8 Unimplemented: Read as '0'

bit 7-0 **NVMKEY<7:0>:** Key Register (write-only) bits

6.0 RESETS

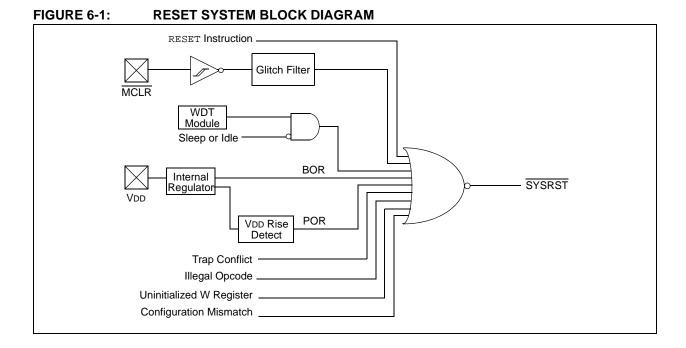
- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 8. "Reset" (DS70192) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Reset module combines all Reset sources and controls the device Master Reset Signal, SYSRST. The following is a list of device Reset sources:

- POR: Power-on Reset
- BOR: Brown-out Reset
- MCLR: Master Clear Pin Reset
- SWR: RESET Instruction
- WDTO: Watchdog Timer Reset
- CM: Configuration Mismatch Reset
- TRAPR: Trap Conflict Reset
- IOPUWR: Illegal Condition Device Reset
 - Illegal Opcode Reset
 - Uninitialized W Register Reset
 - Security Reset

A simplified block diagram of the Reset module is shown in Figure 6-1.

Any active source of Reset will make the SYSRST signal active. On system Reset, some of the registers associated with the CPU and peripherals are forced to a known Reset state, and some are unaffected.


Note: Refer to the specific peripheral section or Section 3.0 "CPU" of this data sheet for register Reset states.

All types of device Reset set a corresponding status bit in the RCON register to indicate the type of Reset (see Register 6-1).

All bits that are set, with the exception of the POR bit (RCON<0>), are cleared during a POR event. The user application can set or clear any bit at any time during code execution. The RCON bits only serve as status bits. Setting a particular Reset status bit in software does not cause a device Reset to occur.

The RCON register also has other bits associated with the Watchdog Timer and device power-saving states. The function of these bits is discussed in other sections of this data sheet.

Note: The status bits in the RCON register should be cleared after they are read so that the next RCON register value after a device Reset is meaningful.

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0				
TRAPR	IOPUWR		—	_		СМ	VREGS				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-1	R/W-1				
EXTR	SWR	SWDTEN ⁽²⁾	WDTO	SLEEP	IDLE	BOR	POR				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	oit	U = Unimpler	mented bit, read	d as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown				
bit 15	TRAPR: Trap	o Reset Flag bit									
	•	onflict Reset ha									
	0 = A Trap C	onflict Reset ha	s not occurre	d							
bit 14		egal Opcode or			-						
		al opcode deteo Pointer caused		gal address m	ode or uninitia	lized W registe	er used as a				
		I opcode or unit		Reset has not o	ccurred						
bit 13-10		nted: Read as '									
bit 9	-	ration Mismatch									
	1 = A configuration mismatch Reset has occurred										
	•	iration mismatcl									
bit 8		VREGS: Voltage Regulator Stand-by During Sleep bit									
	•	 1 = Voltage regulator is active during Sleep 0 = Voltage regulator goes into Stand-by mode during Sleep 									
	-		_	mode during SI	еер						
bit 7		EXTR: External Reset (MCLR) Pin bit 1 = A Master Clear (pin) Reset has occurred									
		Clear (pin) Res Clear (pin) Res									
bit 6											
	SWR: Software Reset (Instruction) Flag bit 1 = A RESET instruction has been executed										
	0 = A reset	instruction has	not been exe	ecuted							
bit 5	SWDTEN: S	oftware Enable/	Disable of W	DT bit ⁽²⁾							
	1 = WDT is enabled										
	0 = WDT is d										
bit 4	WDTO: Watchdog Timer Time-out Flag bit										
	1 = WDT time-out has occurred 0 = WDT time-out has not occurred										
bit 3	SLEEP: Wake-up from Sleep Flag bit										
	1 = Device has been in Sleep made										
		as not been in S									
bit 2	IDLE: Wake-	up from Idle Fla	g bit								
	1 = Device was in Idle mode										
		as not in Idle m									

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾

- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

REGISTER 6-1: RCON: RESET CONTROL REGISTER⁽¹⁾ (CONTINUED)

- bit 1 BOR: Brown-out Reset Flag bit
 - 1 = A Brown-out Reset has occurred
 - 0 = A Brown-out Reset has not occurred
- bit 0 **POR:** Power-on Reset Flag bit
 - 1 = A Power-on Reset has occurred
 - 0 = A Power-on Reset has not occurred
- **Note 1:** All of the Reset status bits can be set or cleared in software. Setting one of these bits in software does not cause a device Reset.
 - 2: If the FWDTEN Configuration bit is '1' (unprogrammed), the WDT is always enabled, regardless of the SWDTEN bit setting.

6.1 System Reset

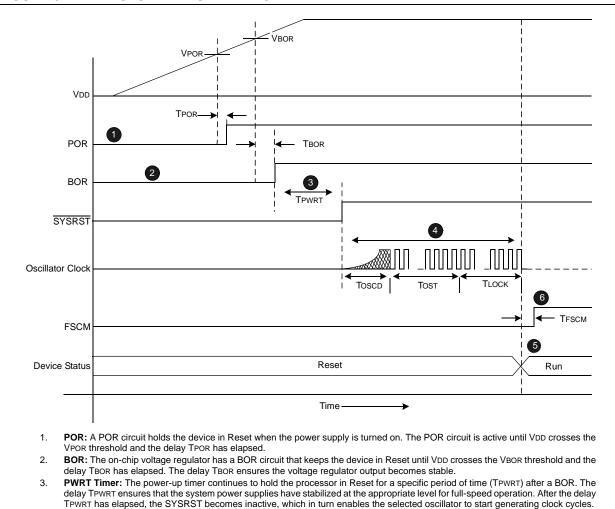
The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/ 102 family of devices have two types of Reset:

- Cold Reset
- Warm Reset

A cold Reset is the result of a POR or a BOR. On a cold Reset, the FNOSC configuration bits in the FOSC device configuration register selects the device clock source. A warm Reset is the result of all other Reset sources, including the RESET instruction. On warm Reset, the device will continue to operate from the current clock source as indicated by the Current Oscillator Selection (COSC<2:0>) bits in the Oscillator Control (OSCCON<14:12>) register.

The device is kept in a Reset state until the system power supplies have stabilized at appropriate levels and the oscillator clock is ready. The sequence in which this occurs is shown in Figure 6-2.

Oscillator Mode	Oscillator Startup Delay	Oscillator Startup Timer	PLL Lock Time	Total Delay
FRC, FRCDIV16, FRCDIVN	Toscd			Toscd
FRCPLL	Toscd	—	TLOCK	TOSCD + TLOCK
MS	Toscd	Tost	—	TOSCD + TOST
HS	Toscd	Tost	—	TOSCD + TOST
EC	—	—	—	—
MSPLL	Toscd	Tost	TLOCK	TOSCD + TOST + TLOCK
ECPLL	—	—	TLOCK	TLOCK
SOSC	Toscd	Тоѕт	_	TOSCD + TOST
LPRC	Toscd			Toscd


TABLE 6-1:OSCILLATOR DELAY

Note 1: ToscD = Oscillator Start-up Delay (1.1 μs max for FRC, 70 μs max for LPRC). Crystal Oscillator start-up times vary with crystal characteristics, load capacitance, etc.

2: TOST = Oscillator Start-up Timer Delay (1024 oscillator clock period). For example, TOST = 102.4 μs for a 10 MHz crystal and TOST = 32 ms for a 32 kHz crystal.

3: TLOCK = PLL lock time (1.5 ms nominal), if PLL is enabled.

- 4. Oscillator Delay: The total delay for the clock to be ready for various clock source selections are given in Table 6-1. Refer to Section 8.0 "Oscillator Configuration" for more information.
- 5. When the oscillator clock is ready, the processor begins execution from location 0x000000. The user application programs a GOTO instruction at the Reset address, which redirects program execution to the appropriate start-up routine.
- 6. The Fail-safe clock monitor (FSCM), if enabled, begins to monitor the system clock when the system clock is ready and the delay TFSCM elapsed.

Symbol	Parameter	Value
VPOR	POR threshold	1.8V nominal
TPOR	POR extension time	30 µs maximum
VBOR	BOR threshold	2.5V nominal
TBOR	BOR extension time	100 μs maximum
TPWRT	Power-up time delay	64 ms nominal
TFSCM	Fail-safe Clock Monitor Delay	900 μs maximum

	When the device exits the Reset condi- tion (begins normal operation), the device operating parameters (voltage, frequency, temperature, etc.) must be within their operating ranges, otherwise the device may not function correctly. The user application must ensure that the delay between the time power is first applied, and the time SYSRST becomes inactive, is long enough to get all operating parameters within specification.
--	---

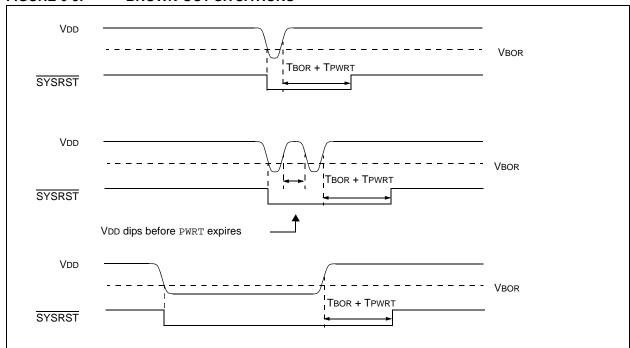
6.2 POR

A POR circuit ensures the device is reset from poweron. The POR circuit is active until VDD crosses the VPOR threshold and the delay TPOR has elapsed. The delay TPOR ensures the internal device bias circuits become stable.

The device supply voltage characteristics must meet the specified starting voltage and rise rate requirements to generate the POR. Refer to **Section 26.0** "**Electrical Characteristics**" for details.

The POR status (POR) bit in the Reset Control (RCON<0>) register is set to indicate the Power-on Reset.

6.3 BOR and PWRT


The on-chip regulator has a BOR circuit that resets the device when the VDD is too low (VDD < VBOR) for proper device operation. The BOR circuit keeps the device in Reset until VDD crosses the VBOR threshold and the delay TBOR has elapsed. The delay TBOR ensures the voltage regulator output becomes stable.

The BOR status (BOR) bit in the Reset Control (RCON<1>) register is set to indicate the Brown-out Reset.

The device will not run at full speed after a BOR as the VDD should rise to acceptable levels for full-speed operation. The PWRT provides power-up time delay (TPWRT) to ensure that the system power supplies have stabilized at the appropriate levels for full-speed operation before the SYSRST is released.

Refer to **Section 23.0 "Special Features"** for further details.

Figure 6-3 shows the typical brown-out scenarios. The Reset delay (TBOR + TPWRT) is initiated each time VDD rises above the VBOR trip point.

FIGURE 6-3: BROWN-OUT SITUATIONS

6.4 External Reset (EXTR)

The external Reset is generated by driving the MCLR pin low. The MCLR pin is a Schmitt trigger input with an additional glitch filter. Reset pulses that are longer than the minimum pulse width will generate a Reset. Refer to **Section 26.0** "Electrical Characteristics" for minimum pulse width specifications. The External Reset (MCLR) Pin (EXTR) bit in the Reset Control (RCON) register is set to indicate the MCLR Reset.

6.4.1 EXTERNAL SUPERVISORY CIRCUIT

Many systems have external supervisory circuits that generate Reset signals to Reset multiple devices in the system. This external Reset signal can be directly connected to the MCLR pin to Reset the device when the rest of system is Reset.

6.4.2 INTERNAL SUPERVISORY CIRCUIT

When using the internal power supervisory circuit to Reset the device, the external Reset pin (MCLR) should be tied directly or resistively to VDD. In this case, the MCLR pin will not be used to generate a Reset. The external Reset pin (MCLR) does not have an internal pull-up and must not be left unconnected.

6.5 Software RESET Instruction (SWR)

Whenever the RESET instruction is executed, the device will assert SYSRST, placing the device in a special Reset state. This Reset state will not re-initialize the clock. The clock source in effect prior to the RESET instruction will remain. SYSRST is released at the next instruction cycle, and the Reset vector fetch will commence.

The Software Reset (Instruction) Flag (SWR) bit in the Reset Control (RCON<6>) register is set to indicate the software Reset.

6.6 Watchdog Time-out Reset (WDTO)

Whenever a Watchdog <u>Time-out</u> occurs, the device will asynchronously assert <u>SYSRST</u>. The clock source will remain unchanged. A WDT time-out during Sleep or Idle mode will wake-up the processor, but will not reset the processor.

The Watchdog Timer Time-out Flag (WDTO) bit in the Reset Control (RCON<4>) register is set to indicate the Watchdog Reset. Refer to **Section 23.4** "**Watchdog Timer (WDT)**" for more information on Watchdog Reset.

6.7 Trap Conflict Reset

If a lower-priority hard trap occurs while a higher-priority trap is being processed, a hard trap conflict Reset occurs. The hard traps include exceptions of priority level 13 through level 15, inclusive. The address error (level 13) and oscillator error (level 14) traps fall into this category.

The Trap Reset Flag (TRAPR) bit in the Reset Control (RCON<15>) register is set to indicate the Trap Conflict Reset. Refer to **Section 7.0 "Interrupt Controller**" for more information on trap conflict Resets.

6.8 Configuration Mismatch Reset

To maintain the integrity of the peripheral pin select control registers, they are constantly monitored with shadow registers in hardware. If an unexpected change in any of the registers occur (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset occurs.

The Configuration Mismatch Flag (CM) bit in the Reset Control (RCON<9>) register is set to indicate the configuration mismatch Reset. Refer to **Section 10.0 "I/O Ports"** for more information on the configuration mismatch Reset.

Note: The configuration mismatch feature and associated Reset flag is not available on all devices.

6.9 Illegal Condition Device Reset

An illegal condition device Reset occurs due to the following sources:

- Illegal Opcode Reset
- Uninitialized W Register Reset
- Security Reset

The Illegal Opcode or Uninitialized W Access Reset Flag (IOPUWR) bit in the Reset Control (RCON<14>) register is set to indicate the illegal condition device Reset.

6.9.1 ILLEGAL OPCODE RESET

A device Reset is generated if the device attempts to execute an illegal opcode value that is fetched from program memory.

The illegal opcode Reset function can prevent the device from executing program memory sections that are used to store constant data. To take advantage of the illegal opcode Reset, use only the lower 16 bits of each program memory section to store the data values. The upper 8 bits should be programmed with 0x3F, which is an illegal opcode value.

6.9.2 UNINITIALIZED W REGISTER RESET

Any attempts to use the uninitialized W register as an address pointer will Reset the device. The W register array (with the exception of W15) is cleared during all Resets and is considered uninitialized until written to.

6.9.3 SECURITY RESET

If a Program Flow Change (PFC) or Vector Flow Change (VFC) targets a restricted location in a protected segment (Boot and Secure Segment), that operation will cause a security Reset.

The PFC occurs when the Program Counter is reloaded as a result of a Call, Jump, Computed Jump, Return, Return from Subroutine, or other form of branch instruction.

The VFC occurs when the Program Counter is reloaded with an Interrupt or Trap vector.

6.10 Using the RCON Status Bits

The user application can read the Reset Control (RCON) register after any device Reset to determine the cause of the Reset.

Note:	The status bits in the RCON register							
	should be cleared after they are read so							
	that the next RCON register value after a							
	device Reset will be meaningful.							

Table 6-3 provides a summary of Reset flag bit operation.

TABLE 6-3:RESET FLAG BIT OPERATION

Flag Bit	Set by:	Cleared by:
TRAPR (RCON<15>)	Trap conflict event	POR, BOR
IOPWR (RCON<14>)	Illegal opcode or uninitialized W register access or Security Reset	POR, BOR
CM (RCON<9>)	Configuration Mismatch	POR, BOR
EXTR (RCON<7>)	MCLR Reset	POR
SWR (RCON<6>)	RESET instruction	POR, BOR
WDTO (RCON<4>)	WDT Time-out	PWRSAV instruction, CLRWDT instruction, POR, BOR
SLEEP (RCON<3>)	PWRSAV #SLEEP instruction	POR, BOR
IDLE (RCON<2>)	PWRSAV #IDLE instruction	POR, BOR
BOR (RCON<1>)	POR, BOR	_
POR (RCON<0>)	POR	_

Note: All Reset flag bits can be set or cleared by user software.

7.0 INTERRUPT CONTROLLER

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 41. "Interrupts (Part IV)" (DS70300) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Interrupt Controller reduces the numerous peripheral interrupt request signals to a single interrupt request signal to the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 CPU. It has the following features:

- Up to eight processor exceptions and software traps
- Seven user-selectable priority levels
- Interrupt Vector Table (IVT) with up to 118 vectors
- A unique vector for each interrupt or exception source
- Fixed priority within a specified user priority level
- Alternate Interrupt Vector Table (AIVT) for debug support
- Fixed interrupt entry and return latencies

7.1 Interrupt Vector Table

The Interrupt Vector Table (IVT) is shown in Figure 7-1. The IVT resides in program memory, starting at location 000004h. The IVT contains 126 vectors consisting of eight non-maskable trap vectors, plus up to 118 sources of interrupt. In general, each interrupt source has its own vector. Each interrupt vector contains a 24bit-wide address. The value programmed into each interrupt vector location is the starting address of the associated Interrupt Service Routine (ISR).

Interrupt vectors are prioritized in terms of their natural priority. This priority is linked to their position in the vector table. Lower addresses generally have a higher natural priority. For example, the interrupt associated with vector 0 will take priority over interrupts at any other vector address.

dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/ 102 devices implement up to 26 unique interrupts and 4 nonmaskable traps. These are summarized in Table 7-1 and Table 7-2.

7.1.1 ALTERNATE INTERRUPT VECTOR TABLE

The Alternate Interrupt Vector Table (AIVT) is located after the IVT, as shown in Figure 7-1. Access to the AIVT is provided by the ALTIVT control bit (INTCON2<15>). If the ALTIVT bit is set, all interrupt and exception processes use the alternate vectors instead of the default vectors. The alternate vectors are organized in the same manner as the default vectors.

The AIVT supports debugging by providing a way to switch between an application and a support environment without requiring the interrupt vectors to be reprogrammed. This feature also enables switching between applications to facilitate evaluation of different software algorithms at run time. If the AIVT is not needed, the AIVT should be programmed with the same addresses used in the IVT.

7.2 Reset Sequence

A device Reset is not a true exception because the interrupt controller is not involved in the Reset process. The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 device clears its registers in response to a Reset, forcing the PC to zero. The digital signal controller then begins program execution at location 0x000000. A GOTO instruction at the Reset address can redirect program execution to the appropriate start-up routine.

Note: Any unimplemented or unused vector locations in the IVT and AIVT should be programmed with the address of a default interrupt handler routine that contains a RESET instruction.

FIGURE 7-1: dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/102 INTERRUPT VECTOR TABLE

	Reset – GOTO Instruction	0x000000	
	Reset – GOTO Address	0x000002	
	Reserved	0x000004	
	Oscillator Fail Trap Vector		
	Address Error Trap Vector		
	Stack Error Trap Vector		
	Math Error Trap Vector		
	Reserved		
	Reserved		
	Reserved		
	Interrupt Vector 0	0x000014	
	Interrupt Vector 1		
	~		
	~		
	~		
	Interrupt Vector 52	0x00007C	Interrupt Vector Table (IVT) ⁽¹⁾
	Interrupt Vector 53	0x00007E	
nity	Interrupt Vector 54	0x000080	
Dric	~	_	
г Н	~	_	
Drde	~		
O T	Interrupt Vector 116	0x0000FC	
nue	Interrupt Vector 117	0x0000FE	
Nat	Reserved	0x000100	
l Bí	Reserved	0x000102	1
Decreasing Natural Order Priority	Reserved	-	
Crea	Oscillator Fail Trap Vector	_	
Dec	Address Error Trap Vector Stack Error Trap Vector	-	
	Math Error Trap Vector	-	
	Reserved	-	
	Reserved	-	
	Reserved		
	Interrupt Vector 0	0x000114	
	Interrupt Vector 1		
	~		
	~		
	~	1	Alternate Interrupt Vector Table (AIVT) ⁽¹⁾
	Interrupt Vector 52	0x00017C	
	Interrupt Vector 53	0x00017E	
	Interrupt Vector 54	0x000180	
	~		
	~		
	~		
	Interrupt Vector 116		
Ļ	Interrupt Vector 117	0x0001FE	
V	Start of Code	0x000200	-
Note 1: Se	e Table 7-1 for the list of impleme	ented interrupt v	rectors.

Vector Number	Interrupt Request (IRQ) IVT Address AIVT Address Number		AIVT Address	Interrupt Source
8	0	0x000014	0x000114	INT0 – External Interrupt 0
9	1	0x000016	0x000116	IC1 – Input Capture 1
10	2	0x000018	0x000118	OC1 – Output Compare 1
11	3	0x00001A	0x00011A	T1 – Timer1
12	4	0x00001C	0x00011C	Reserved
13	5	0x00001E	0x00011E	IC2 – Input Capture 2
14	6	0x000020	0x000120	OC2 – Output Compare 2
15	7	0x000022	0x000122	T2 – Timer2
16	8	0x000024	0x000124	T3 – Timer3
17	9	0x000026	0x000126	SPI1E – SPI1 Error
18	10	0x000028	0x000128	SPI1 – SPI1 Transfer Done
19	11	0x00002A	0x00012A	U1RX – UART1 Receiver
20	12	0x00002C	0x00012C	U1TX – UART1 Transmitter
21	13	0x00002E	0x00012E	ADC1 – ADC1
22	14	0x000030	0x000130	Reserved
23	15	0x000032	0x000132	Reserved
24	16	0x000034	0x000134	SI2C1 – I2C1 Slave Events
25	17	0x000036	0x000136	MI2C1 – I2C1 Master Events
26	18	0x000038	0x000138	CMP – Comparator Interrupt
27	19	0x00003A	0x00013A	Change Notification Interrupt
28	20	0x00003C	0x00013C	INT1 – External Interrupt 1
29-36	21-28	0x00003E- 0x00004C	0x00013E- 0x00014C	Reserved
37	29	0x00004E	0x00014E	INT2 – External Interrupt 2
38-44	30-36	0x000050- 0x00005C	0x000150- 0x00015C	Reserved
45	37	0x00005E	0x00015E	IC3 – Input Capture 3
46-64	38-56	0x000060- 0x000084	0x000160- 0x000184	Reserved
65	57	0x000086	0x000186	PWM1 – PWM1 Period Match
66-69	58-61	0x000088- 0x00008E	0x000188- 0x00018E	Reserved
70	62	0x000090	0x000190	RTCC – Real-Time Clock and Calendar
71	63	0x000092	0x000192	FLTA1 – PWM1 Fault A
72	64	0x000094	0x000194	FLTB1 – PWM1 Fault B
73	65	0x000096	0x000196	U1E – UART1 Error
74-84	66-76	0x000098- 0x0000AC	0x000198- 0x0001AC	Reserved
85	77	0x0000AE	0x0001AE	CTMU – Charge Time Measurement Unit
86-125	78-117	0x0000B0- 0x0000FE	0x0001B0- 0x0001FE	Reserved

TABLE 7-1: INTERRUPT VECTORS

Vector Number	or Number IVT Address		Trap Source
0	0x000004	0x000104	Reserved
1	0x000006	0x000106	Oscillator Failure
2	2 0x00008		Address Error
3	0x00000A	0x00010A	Stack Error
4	0x00000C	0x00010C	Math Error
5	0x00000E	0x00010E	Reserved
6 0x000010		0x000110	Reserved
7	0x000012	0x000112	Reserved

TABLE 7-2: TRAP VECTORS

7.3 Interrupt Control and Status Registers

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices implement a total of 22 registers for the interrupt controller:

- INTCON1
- INTCON2
- IFSx
- IECx
- IPCx
- INTTREG

7.3.1 INTCON1 AND INTCON2

Global interrupt control functions are controlled from INTCON1 and INTCON2. INTCON1 contains the Interrupt Nesting Disable (NSTDIS) bit as well as the control and status flags for the processor trap sources. The INTCON2 register controls the external interrupt request signal behavior and the use of the Alternate Interrupt Vector Table.

7.3.2 IFSx

The IFS registers maintain all of the interrupt request flags. Each source of interrupt has a status bit, which is set by the respective peripherals or external signal and is cleared via software.

7.3.3 IECx

The IEC registers maintain all of the interrupt enable bits. These control bits are used to individually enable interrupts from the peripherals or external signals.

7.3.4 IPCx

The IPC registers are used to set the interrupt priority level for each source of interrupt. Each user interrupt source can be assigned to one of eight priority levels.

7.3.5 INTTREG

The INTTREG register contains the associated interrupt vector number and the new CPU interrupt priority level, which are latched into vector number (VECNUM<6:0>) and interrupt level (ILR<3:0>) bit fields in the INTTREG register. The new interrupt priority level is the priority of the pending interrupt.

The interrupt sources are assigned to the IFSx, IECx and IPCx registers in the same sequence that they are listed in Table 7-1. For example, the INT0 (External Interrupt 0) is shown as having vector number 8 and a natural order priority of 0. Thus, the INT0IF bit is found in IFS0<0>, the INT0IE bit in IEC0<0>, and the INT0IP bits in the first positions of IPC0 (IPC0<2:0>).

7.3.6 STATUS/CONTROL REGISTERS

Although they are not specifically part of the interrupt control hardware, two of the CPU Control registers contain bits that control interrupt functionality.

- The CPU STATUS register, SR, contains the IPL<2:0> bits (SR<7:5>). These bits indicate the current CPU interrupt priority level. The user application can change the current CPU priority level by writing to the IPL bits.
- The CORCON register contains the IPL3 bit which, together with IPL<2:0>, also indicates the current CPU priority level. IPL3 is a read-only bit so that trap events cannot be masked by the user software.

All Interrupt registers are described in Register 7-1 through Register 7-27 in the following pages.

R-0 OB	R/C-0 SA	R/C-0 SB	R-0 OAB	R/C-0	R -0	R/W-0	
OB	SA	SB					
			UAD	SAB	DA	DC	
						bit 8	
		R-0	R/W-0	R/W-0	R/W-0	R/W-0	
IPL1 ⁽²⁾	IPL0 ⁽²⁾	RA	N	OV	Z	С	
						bit (
it	R = Readable	ble bit U = Unimplemented bit, read as '0'					
	W = Writable bit		-n = Value at POR				
	'0' = Bit is clea	ared	x = Bit is unkr	x = Bit is unknown			
PL<2:0>: CF	PU Interrupt Price	ority Level St	atus bits ⁽²⁾				
111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled							
110 = CPU Interrupt Priority Level is 6 (14)							
101 = CPU Ir	nterrupt Priority	Level is 5 (1	3)				
	• •	•	,				
	• •	•	,				
	PL<2:0>: CF 111 = CPU lr 100 = CPU lr 101 = CPU lr 100 = CPU lr 101 = CPU lr	IPL1 ⁽²⁾ IPL0 ⁽²⁾ it R = Readable W = Writable H '0' = Bit is clear '0' = Bit is clear '11 = CPU Interrupt Priority 11 = CPU Interrupt Priority CPU Interrupt Priority 10 = CPU Interrupt Priority CPU Interrupt Priority 01 = CPU Interrupt Priority CPU Interrupt Priority 11 = CPU Interrupt Priority CPU Interrupt Priority 11 = CPU Interrupt Priority CPU Interrupt Priority 11 = CPU Interrupt Priority CPU Interrupt Priority	IPL1 ⁽²⁾ IPL0 ⁽²⁾ RA it R = Readable bit W = Writable bit '0' = Bit is cleared PL<2:0>: CPU Interrupt Priority Level is 7 (1: 11 = CPU Interrupt Priority Level is 7 (1: 10 = CPU Interrupt Priority Level is 6 (1: 01 = CPU Interrupt Priority Level is 5 (1: 00 = CPU Interrupt Priority Level is 4 (1:) 011 = CPU Interrupt Priority Level is 3 (1:)	IPL1 ⁽²⁾ IPL0 ⁽²⁾ RANitR = Readable bitU = UnimplenW = Writable bit-n = Value at'0' = Bit is clearedx = Bit is unkrPL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾ 111 = CPU Interrupt Priority Level is 7 (15), user interrup	IPL1 ⁽²⁾ IPL0 ⁽²⁾ RA N OV it R = Readable bit U = Unimplemented bit, read W = Writable bit -n = Value at POR '0' = Bit is cleared x = Bit is unknown PL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾ 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 100 = CPU Interrupt Priority Level is 6 (14) 001 = CPU Interrupt Priority Level is 5 (13) 000 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11)	IPL1 ⁽²⁾ IPL0 ⁽²⁾ RA N OV Z it R = Readable bit U = Unimplemented bit, read as '0' W = Writable bit -n = Value at POR '0' = Bit is cleared x = Bit is unknown PL<2:0>: CPU Interrupt Priority Level Status bits ⁽²⁾ 111 = CPU Interrupt Priority Level is 7 (15), user interrupts disabled 100 = CPU Interrupt Priority Level is 6 (14) 001 = CPU Interrupt Priority Level is 5 (13) 000 = CPU Interrupt Priority Level is 4 (12) 011 = CPU Interrupt Priority Level is 3 (11)	

REGISTER 7-1: SR: CPU STATUS REGISTER⁽¹⁾

Note 1: For complete register details, see Register 3-1: "SR: CPU Status Register".

- 2: The IPL<2:0> bits are concatenated with the IPL<3> bit (CORCON<3>) to form the CPU Interrupt Priority Level. The value in parentheses indicates the IPL if IPL<3> = 1. User interrupts are disabled when IPL<3> = 1.
- **3:** The IPL<2:0> Status bits are read-only when NSTDIS (INTCON1<15>) = 1.

REGISTER 7-2:	CORCON: CORE CONTROL REGISTER ⁽¹⁾	
REGISTER /-2:	CORCON: CORE CONTROL REGISTER	

001 = CPU Interrupt Priority Level is 1 (9) 000 = CPU Interrupt Priority Level is 0 (8)

U-0	U-0	U-0	R/W-0	R/W-0	R-0	R-0	R-0	
_	_		US	EDT		DL<2:0>		
bit 15	•			-			bit 8	
R/W-0	R/W-0	R/W-1	R/W-0	R/C-0	R/W-0	R/W-0	R/W-0	
SATA	SATB	SATDW	ACCSAT	IPL3 ⁽²⁾	PSV	RND	IF	
bit 7				·			bit 0	
Legend:		C = Clear only	y bit					
-		W = Writable	= Writable bit		POR	'1' = Bit is set		
0' = Bit is cleared 'x = Bit is unknown			nown	U = Unimplemented bit, read as '0'				
bit 3	IPL3: CPU In	terrupt Priority	Level Status	bit 3 (2)				
1 = CPU interrupt priority level is greater				han 7				

0 = CPU interrupt priority level is 7 or less

Note 1: For complete register details, see Register 3-2: "CORCON: Core Control Register".

2: The IPL3 bit is concatenated with the IPL<2:0> bits (SR<7:5>) to form the CPU Interrupt Priority Level.

REGISTER 7	-3: INTCC	ON1: INTERR	UPT CONTR	ROL REGISTE	ER 1				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
NSTDIS	OVAERR	OVBERR	COVAERR	COVBERR	OVATE	OVBTE	COVTE		
bit 15	·			· · ·		·	bit 8		
R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0		
SFTACERR	DIV0ERR	—	MATHERR	ADDRERR	STKERR	OSCFAIL	_		
bit 7							bit		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplem	nented bit, read	d as '0'			
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own		
bit 15	NSTDIS: Inte	errupt Nesting [)isahla hit						
		nesting is disat							
		nesting is enab							
bit 14	OVAERR: Ac	cumulator A O	verflow Trap F	lag bit					
	•	caused by ove							
	•	not caused by							
bit 13		ccumulator B C	•	•					
	 1 = Trap was caused by overflow of Accumulator B 0 = Trap was not caused by overflow of Accumulator B 								
bit 12	COVAERR: Accumulator A Catastrophic Overflow Trap Flag bit								
	1 = Trap was caused by catastrophic overflow of Accumulator A								
	0 = Trap was	not caused by	catastrophic of	overflow of Accu	umulator A				
bit 11	COVBERR: Accumulator B Catastrophic Overflow Trap Flag bit								
	1 = Trap was caused by catastrophic overflow of Accumulator B								
bit 10	-	0 = Trap was not caused by catastrophic overflow of Accumulator B							
	OVATE: Accumulator A Overflow Trap Enable bit 1 = Trap overflow of Accumulator A								
	1 = Trap overnow of Accumulator A 0 = Trap disabled								
bit 9	OVBTE: Accumulator B Overflow Trap Enable bit								
	1 = Trap over 0 = Trap disa	rflow of Accum bled	ulator B						
bit 8	COVTE: Cata	astrophic Overf	low Trap Enat	ole bit					
	1 = Trap on c 0 = Trap disa	•	erflow of Accu	mulator A or B e	enabled				
bit 7	SFTACERR: Shift Accumulator Error Status bit								
				ilid accumulator invalid accumul					
bit 6	DIV0ERR: Arithmetic Error Status bit								
		or trap was cau or trap was not	•	•					
bit 5	Unimplemen	ted: Read as '	0'						
bit 4	MATHERR: A	Arithmetic Erro	Status bit						
		or trap has occu							
		or trap has not							
bit 3		Address Error	-						
		error trap has c error trap has r							

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1

REGISTER 7-3: INTCON1: INTERRUPT CONTROL REGISTER 1 (CONTINUED)

- bit 2 STKERR: Stack Error Trap Status bit
 - 1 = Stack error trap has occurred
 - 0 = Stack error trap has not occurred
- bit 1 OSCFAIL: Oscillator Failure Trap Status bit
 - 1 = Oscillator failure trap has occurred
 - 0 = Oscillator failure trap has not occurred
- bit 0 Unimplemented: Read as '0'

	, ,							
R/W-0	R-0	U-0	U-0	U-0	U-0	U-0	U-0	
ALTIVT	DISI		—	_	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	
—		—	—		INT2EP	INT1EP	INT0EP	
bit 7							bit (
Legend:								
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'		
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unki	Bit is unknown	
bit 15	ALTIVT: Ena	able Alternate In	terrupt Vecto	r Table bit				
		rnate vector tab dard (default) v						
bit 14	DISI: DISI	nstruction Statu	s bit					
		struction is active						
		struction is not a						
bit 13-3	-	nted: Read as '						
bit 2		ernal Interrupt 2	-	t Polarity Selec	ct bit			
		on negative edg						
L:4	•	on positive edg			-4 h i4			
bit 1		ernal Interrupt 1 on negative ed	•	t Polarity Selec				
		on positive edg	•					
bit 0	•	ernal Interrupt (t Polarity Selec	ct bit			
		on negative ed	U		~~~~			

REGISTER 7-4: INTCON2: INTERRUPT CONTROL REGISTER 2

REGISTER 7	7-5: IFS0: I	INTERRUPT	FLAG STAT	US REGISTE	ER 0		
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—		AD1IF	U1TXIF	U1RXIF	SPI1IF	SPI1EIF	T3IF
bit 15							bit 8
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0
T2IF	OC2IF	IC2IF	_	T1IF	OC1IF	IC1IF	INTOIF
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkn	own
bit 15-14	-	ted: Read as					
bit 13			-	rupt Flag Status	s bit		
		request has oc request has no					
bit 12	-	-	er Interrupt Flag	n Status bit			
		request has or		g olatoo bh			
		request has no					
bit 11	U1RXIF: UAF	RT1 Receiver I	nterrupt Flag S	Status bit			
	•	request has or					
bit 10	-	request has no	ot occurred	,it			
		request has or		JIL			
		request has no					
bit 9	SPI1EIF: SPI	1 Fault Interru	pt Flag Status	bit			
		request has or					
	-	request has no					
bit 8		Interrupt Flag request has or					
		request has or					
bit 7	-	Interrupt Flag					
		request has or					
	•	request has no					
bit 6	-	-		upt Flag Status	bit		
	•	request has oc request has no					
bit 5	-	-	nel 2 Interrupt F	Flag Status bit			
	•	request has oc	•				
	0 = Interrupt i	request has no	ot occurred				
bit 4	Unimplemen	ted: Read as	'0'				
bit 3		Interrupt Flag					
	d Laternaria		ourrod				
	1 = Interrupt i						
bit 2	0 = Interrupt i	request has no	ot occurred	upt Flag Status	bit		
bit 2	0 = Interrupt i OC1IF: Output	request has no	ot occurred nannel 1 Interre	upt Flag Status	bit		

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0

REGISTER 7-5: IFS0: INTERRUPT FLAG STATUS REGISTER 0 (CONTINUED)

- bit 1 IC1IF: Input Capture Channel 1 Interrupt Flag Status bit 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred
- bit 0 INTOIF: External Interrupt 0 Flag Status bit
 - 1 = Interrupt request has occurred
 - 0 = Interrupt request has not occurred

REGISTER	<i>1</i> -0. IF31.	INTERRUPT	FLAG STAT	03 KEGISTE			
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	INT2IF	—	—	_	—	
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			INT1IF	CNIF	CMPIF	MI2C1IF	SI2C1IF
bit 7							bit C
Legend:							
R = Readab	le hit	W = Writable	hit	II – Unimpler	nented bit, rea	d as '0'	
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	own
	IT OK	1 - Dit 13 361	•		aleu		IOWIT
bit 15-14	Unimplemer	nted: Read as '	0'				
bit 13	-	rnal Interrupt 2		t			
		request has oc	•	-			
		request has no					
bit 12-5	Unimplemer	nted: Read as '	0'				
bit 4	INT1IF: Exte	rnal Interrupt 1	Flag Status bi	t			
		request has oc					
		request has no					
bit 3	•	Change Notifica	•	Flag Status bit			
		request has oc request has no					
bit 2		parator Interru		bit			
on 2		request has oc	•	bit			
		request has no					
bit 1	MI2C1IF: 120	C1 Master Ever	ts Interrupt Fla	ag Status bit			
		request has oc					
	•	request has no					
bit 0		1 Slave Events		status bit			
		request has oc request has no					
	o – menupi	request has no	locuneu				

REGISTER 7-6: IFS1: INTERRUPT FLAG STATUS REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—	_	—	—	—	—
bit 15							bit 8
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	_	IC3IF	—	—	—	—	—
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable I	bit	U = Unimpler	mented bit, read	l as '0'	
-n = Value at Po	OR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknow		iown	

REGISTER 7-7: IFS2: INTERRUPT FLAG STATUS REGISTER 2

bit 15-6	Unimplemented: Read as '0'
bit 5	IC3IF: Input Capture Channel 3 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 4-0	Unimplemented: Read as '0'

REGISTER 7-8: IFS3: INTERRUPT FLAG STATUS REGISTER 3

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	U-0
FLTA1IF	RTCCIF	—	—	—	—	PWM1IF	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	_	_	_	_	_	_	_
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	FLTA1IF: PWM1 Fault A Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 14	RTCCIF: RTCC Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 13-10	Unimplemented: Read as '0'
bit 9	PWM1IF: PWM1 Interrupt Flag Status bit
	1 = Interrupt request has occurred
	0 = Interrupt request has not occurred
bit 8-0	Unimplemented: Read as '0'

REGISTER 7-9:	IFS4: INTERRUPT FLAG STATUS REGISTER 4	
---------------	--	--

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
	—	CTMUIF	—		—	—	—		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0		
		—	_		—	U1EIF	FLTB1IF		
bit 7							bit 0		
Legend:									
R = Readable bit		W = Writable bit		U = Unimplemented bit, rea		d as '0'			
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown			
bit 15-14	Unimplemen	ted: Read as '	כי						
bit 13	CTMUIF: CTM	MU Interrupt Fla	ag Status bit						
	•	equest has occ							
	0 = Interrupt r	equest has not	occurred						
bit 12-2	Unimplemen	ted: Read as '	כ'						
bit 1	U1EIF: UART	1 Error Interru	ot Flag Status	bit					
	1 = Interrupt request has occurred								
	0 = Interrupt r	equest has not	occurred						
bit 0		/M1 Fault B Inte		atus bit					
		equest has occ							
	0 = Interrupt r	0 = Interrupt request has not occurred							

REGISTER	7-10: IEC0:	INTERRUPT	ENABLE CO		GISTER 0					
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_	—	AD1IE	U1TXIE	U1RXIE	SPI1IE	SPI1EIE	T3IE			
bit 15							bit			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
T2IE	OC2IE	IC2IE		T1IE	OC1IE	IC1IE	INTOIE			
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value at		'1' = Bit is se		'0' = Bit is cle		x = Bit is unkn	own			
			•	0 2.1.10 0.10						
bit 15-14	Unimplemen	ted: Read as	ʻ0'							
bit 13	AD1IE: ADC1	1 Conversion (Complete Inter	rupt Enable bit						
	•	request enable request not en								
bit 12	U1TXIE: UAF	RT1 Transmitte	er Interrupt Ena	able bit						
		U1TXIE: UART1 Transmitter Interrupt Enable bit 1 = Interrupt request enabled								
	-	request not en								
bit 11			nterrupt Enab	le bit						
	•	request enable request not en								
bit 10	-	Event Interrup								
	1 = Interrupt r	request enable	ed							
	-	request not en								
bit 9		1 Event Interr	•							
		request enable request not en								
bit 8	-	Interrupt Enat								
		request enable								
	0 = Interrupt i	request not en	abled							
bit 7		Interrupt Enat								
		request enable request not en								
bit 6	•	•		upt Enable bit						
	OC2IE: Output Compare Channel 2 Interrupt Enable bit 1 = Interrupt request enabled									
	•	request not en								
bit 5	-	-	nel 2 Interrupt l	Enable bit						
		request enable								
bit 4	-	request not en I ted: Read as								
bit 3	-	Interrupt Enat								
211 0		request enable								
		request not en								
bit 2		-		upt Enable bit						
		request enable								
	0 = Interrupt i	request not en	apled							

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0

REGISTER 7-10: IEC0: INTERRUPT ENABLE CONTROL REGISTER 0 (CONTINUED)

- bit 1 IC1IE: Input Capture Channel 1 Interrupt Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled
- bit 0 INTOIE: External Interrupt 0 Enable bit
 - 1 = Interrupt request enabled
 - 0 = Interrupt request not enabled

KEGIƏTER		INTERRUPT					
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
	<u> </u>	INT2IE	—	—		<u> </u>	
bit 15							bit
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
	_	_	INT1IE	CNIE	CMPIE	MI2C1IE	SI2C1IE
bit 7							bit
Legend: R = Readab	lo hit	W = Writable	hit		nented bit, read		
-n = Value a		'1' = Bit is set		$0^{\circ} = \text{Bit is cle}$		x = Bit is unkn	011/0
-n = value a	IPUR	I = DILIS SEL		0 = Dit is cie	areu		IOWN
bit 15-14	Unimplemen	ted: Read as '	٥'				
bit 13	-	rnal Interrupt 2					
		request enable					
	•	request not ena					
bit 12-5	Unimplemen	ted: Read as '	0'				
bit 4	INT1IE: Exter	rnal Interrupt 1	Enable bit				
		request enable					
	0 = Interrupt	request not ena	abled				
bit 3	•	Change Notifica		Enable bit			
	•	request enable					
1 1 0	-	request not ena					
bit 2		parator Interrup					
		request enable request not ena					
bit 1	•	1 Master Even		able bit			
		request enable	•				
		request not ena					
bit 0	SI2C1IE: 12C	1 Slave Events	Interrupt Ena	ble bit			
		request enable					
	0 = Interrupt	request not ena	abled				

REGISTER 7-11: IEC1: INTERRUPT ENABLE CONTROL REGISTER 1

REGISTER 7-12: IEC2: INTERRUPT ENABLE CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
_	—		—	—	_	_			
bit 15				•			bit 8		
U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
—	—	IC3IE	—	—	—	—	—		
bit 7							bit 0		
Legend:									
R = Readabl	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set				'0' = Bit is cleared x = Bit is unkno			nown		
bit 15-6	Unimplemen	ted: Read as '	0'						
bit 5	IC3IE: Input Capture Channel 3 Interrupt Enable bit								

bit 5	IC3IE: Input Capture Channel 3 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 4-0	Unimplemented: Read as '0'

REGISTER 7-13: IEC3: INTERRUPT ENABLE CONTROL REGISTER 3

R/W-0	R/W-0	U-0	U-0	U-0	U-0	R/W-0	U-0
FLTA1IE	RTCCIE	_	_	_	_	PWM1IE	_
bit 15				•			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—		—	—	_	—	—

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	FLTA1IE: PWM1 Fault A Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 14	RTCCIE: RTCC Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 13-10	Unimplemented: Read as '0'
bit 9	PWM1IE: PWM1 Interrupt Enable bit
	1 = Interrupt request enabled
	0 = Interrupt request not enabled
bit 8-0	Unimplemented: Read as '0'

bit 0

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
_	—	CTMUIE	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	
—	—	—	_	—		U1EIE	FLTB1IE	
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable	bit	U = Unimplemented bit, read as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown	
bit 15-14	Unimplemen	ted: Read as '	0'					
bit 13	CTMUIE: CTI	MU Interrupt Er	nable bit					
	1 = Interrupt r	request enable	d					
	0 = Interrupt r	request not ena	abled					
bit 12-2	Unimplemen	ted: Read as '	0'					
bit 1	U1EIE: UART	1 Error Interru	pt Enable bit					
		request enable						
	0 = Interrupt r	request not ena	abled					
bit 0		/M1 Fault B Int		bit				
		request has oc						
	0 = Interrupt r	request has not	cocurred					

REGISTER 7-14: IEC4: INTERRUPT ENABLE CONTROL REGISTER 4

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_		T1IP<2:0>		—		OC1IP<2:0>							
bit 15							bit						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
	N/ VV- 1	IC1IP<2:0>	N/ W-0	<u> </u>	N/ VV- I	INT0IP<2:0>	N/W-0						
bit 7					1		bit						
Legend:													
R = Readab	le bit	W = Writable I	oit	U = Unimple	mented bit, rea	ad as '0'							
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown						
bit 15	Unimpleme	ented: Read as 'o)'										
bit 14-12	T1IP<2:0>:	Timer1 Interrupt	Priority bits										
	111 = Interr	111 = Interrupt is priority 7 (highest priority interrupt)											
	•	•											
	•	•											
		001 = Interrupt is priority 1											
		upt source is disa											
bit 11	-	ented: Read as '0											
bit 10-8	OC1IP<2:0>: Output Compare Channel 1 Interrupt Priority bits												
	 111 = Interrupt is priority 7 (highest priority interrupt) • 												
	•												
	•												
		upt is priority 1	abled										
bit 7		ented: Read as '(
bit 6-4	-			errupt Priority b	its								
	IC1IP<2:0>: Input Capture Channel 1 Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)												
	•		0	,									
	•												
	• 001 = Interrupt is priority 1												
	000 = Interrupt source is disabled												
bit 3	Unimpleme	ented: Read as 'o)'										
bit 2-0	INT0IP<2:0	INTOIP<2:0>: External Interrupt 0 Priority bits											
	111 = Interr	upt is priority 7 (h	nighest priorit	ty interrupt)									
	•												
	•												
	001 = Interr	upt is priority 1											
		upt source is disa											

REGISTER 7-15: IPC0: INTERRUPT PRIORITY CONTROL REGISTER 0

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		T2IP<2:0>				OC2IP<2:0>						
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0					
-		IC2IP<2:0>			—	—						
bit 7							bit					
Legend:												
R = Readab	le bit	W = Writable	bit	U = Unimpler	mented bit, rea	d as '0'						
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own					
bit 15	Unimpleme	ented: Read as ')'									
bit 14-12	T2IP<2:0>: Timer2 Interrupt Priority bits											
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>											
	001 = Interrupt is priority 1											
		upt source is dis	abled									
bit 11	Unimpleme	ented: Read as ')'									
bit 10-8	OC2IP<2:0>: Output Compare Channel 2 Interrupt Priority bits											
	111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	• 001 = Interrupt is priority 1											
	0.01 = Interr	rupt is priority 1										
		upt is priority 1 upt source is dis	abled									
bit 7	000 = Interr											
bit 7 bit 6-4	000 = Interr Unimpleme	upt source is dis)'	errupt Priority b	its							
	000 = Interr Unimpleme IC2IP<2:0>	upt source is dis ented: Read as 'o)' Channel 2 Int		its							
	000 = Interr Unimpleme IC2IP<2:0>	rupt source is dis e nted: Read as '(: Input Capture C)' Channel 2 Int		its							
	000 = Interr Unimpleme IC2IP<2:0>	rupt source is dis e nted: Read as '(: Input Capture C)' Channel 2 Int		its							
	000 = Interr Unimpleme IC2IP<2:0> 111 = Interr •	rupt source is disa ented: Read as '(: Input Capture C rupt is priority 7 (I)' Channel 2 Int		its							
	000 = Interr Unimpleme IC2IP<2:0> 111 = Interr • • 001 = Interr	rupt source is dis e nted: Read as '(: Input Capture C	_o ' Channel 2 Int nighest priori		its							

REGISTER 7-16: IPC1: INTERRUPT PRIORITY CONTROL REGISTER 1

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
_		U1RXIP<2:0>		—		SPI1IP<2:0>							
bit 15							bit						
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0						
		SPI1EIP<2:0>		_		T3IP<2:0>	1010 0						
bit 7							bit						
Legend:													
R = Readabl	le bit	W = Writable	bit	U = Unimple	mented bit, rea	id as '0'							
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkn	iown						
bit 15	Unimpleme	ented: Read as '	0'										
bit 14-12	U1RXIP<2:	U1RXIP<2:0>: UART1 Receiver Interrupt Priority bits											
	111 = Interi	111 = Interrupt is priority 7 (highest priority interrupt)											
	•	•											
	•												
	001 = Interrupt is priority 1												
		rupt source is dis											
bit 11	-	ented: Read as '											
bit 10-8	SPI1IP<2:0>: SPI1 Event Interrupt Priority bits												
	 111 = Interrupt is priority 7 (highest priority interrupt) 												
	•												
	•												
	001 = Interrupt is priority 1												
		rupt source is dis											
bit 7	-	ented: Read as '											
bit 6-4	SPI1EIP<2:0>: SPI1 Error Interrupt Priority bits												
	 111 = Interrupt is priority 7 (highest priority interrupt) 												
	•												
	•												
		rupt is priority 1 rupt source is dis	abled										
bit 3	Unimpleme	ented: Read as '	0'										
bit 2-0	T3IP<2:0>:	Timer3 Interrupt	Priority bits										
	111 = Interi	rupt is priority 7 (highest priorit	y interrupt)									
	•												
	•												
	001 = Interi	runt is priority 1											

REGISTER 7-17: IPC2: INTERRUPT PRIORITY CONTROL REGISTER 2

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0					
_	_			—	_	—	_					
bit 15							bit 8					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		AD1IP<2:0>	10/00	_		U1TXIP<2:0>	10,00					
bit 7							bit 0					
Legend:												
R = Readable bit $W = Writable bit$				U = Unimpler	nented bit, rea	d as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unknown						
bit 15-7	Unimpleme	nted: Read as '0)'									
bit 6-4	AD1IP<2:0>: ADC1 Conversion Complete Interrupt Priority bits											
	111 = Interr	upt is priority 7 (ł	nighest priorit	ty interrupt)								
	•											
		001 = Interrupt is priority 1 000 = Interrupt source is disabled										
bit 3	Unimpleme	nted: Read as '0)'									
bit 2-0	U1TXIP<2:0	>: UART1 Trans	mitter Interru	pt Priority bits								
		upt is priority 7 (ł										
	•		•									
	•											
	•											
	001 - Interr	upt is priority 1										

REGISTER 7-18: IPC3: INTERRUPT PRIORITY CONTROL REGISTER 3

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		CNIP<2:0>				CMPIP<2:0>						
bit 15							bit					
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0					
_		MI2C1IP<2:0>				SI2C1IP<2:0>	1411 0					
bit 7							bit					
Legend:												
R = Readab	e bit	W = Writable b	oit	U = Unimpler	mented bit, re	ad as '0'						
-n = Value a	POR	'1' = Bit is set		-	I = Unimplemented bit, read as '0' I = Bit is cleared x = Bit is unknow							
bit 15	Unimplem	ented: Read as '0)'									
bit 14-12	-			t Priority bits								
	CNIP<2:0>: Change Notification Interrupt Priority bits 111 = Interrupt is priority 7 (highest priority interrupt)											
	•											
	•											
	001 = Interrupt is priority 1											
		rrupt source is disa										
bit 11	Unimplem	ented: Read as '0)'									
bit 10-8	CMPIP<2:0>: Comparator Interrupt Priority bits											
	 111 = Interrupt is priority 7 (highest priority interrupt) 											
	•											
	•											
	001 = Interrupt is priority 1 000 = Interrupt source is disabled											
L:1 7		-										
bit 7	-	ented: Read as '0			_							
bit 6-4		2:0>: I2C1 Master			6							
	 111 = Interrupt is priority 7 (highest priority interrupt) 											
	•											
	•											
		rrupt is priority 1 rrupt source is disa	abled									
bit 3		nented: Read as '0										
bit 2-0	-	2:0>: I2C1 Slave E		upt Priority bits								
5112 0		rrupt is priority 7 (h										
	•		5 1	, i ,								
	•											
	•											
	001 - Into	rrupt is priority 1										

REGISTER 7-19: IPC4: INTERRUPT PRIORITY CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
			_	—	—	—	_
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	R/W-1	R/W-0	R/W-0
—	—	—	_	—		INT1IP<2:0>	
bit 7	÷				•		bit 0
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-3	Unimplemen	ted: Read as 'd	כי				
bit 2-0	INT1IP<2:0>:	External Interr	upt 1 Priority	bits			

REGISTER 7-20: IPC5: INTERRUPT PRIORITY CONTROL REGISTER 5

111 = Interrupt is priority 7 (highest priority interrupt)

- ٠
 - •

001 = Interrupt is priority 1

000 = Interrupt source is disabled

REGISTER 7-21: IPC7: INTERRUPT PRIORITY CONTROL REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	_	—	—	—	—
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	INT2IP<2:0>			—	_	—	
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit		U = Unimplemented bit, read as '0'					
-n = Value at POR '1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	x = Bit is unknown		

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	_
bit 15		-					bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		IC3IP<2:0>			—	—	_
bit 7							bit 0
Legend:							
R = Readab	ole bit	W = Writable	oit	U = Unimpler	mented bit, read	as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-7	Unimplemen	ted: Read as ')'				
bit 6-4	IC3IP<2:0>:	External Interru	pt 3 Priority b	oits			
	111 = Interru	pt is priority 7 (I	nighest priorit	y interrupt)			
	•						
	•						

REGISTER 7-22: IPC9: INTERRUPT PRIORITY CONTROL REGISTER 9

DIT 6-4	IC3IP<2:0>: External interrupt 3 Priority bits
	111 = Interrupt is priority 7 (highest priority interru
	•
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

REGISTER 7-23: IPC14: INTERRUPT PRIORITY CONTROL REGISTER 14

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8

U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—		PWM1IP<2:0>		—	—	—	—
bit 7							bit 0

unknown

bit 15-7	Unimplemented: Read as '0'
bit 6-4	PWM1IP<2:0>: PWM1 Interrupt Priority bits
	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>
	•
	•
	•
	001 = Interrupt is priority 1
	000 = Interrupt source is disabled
bit 3-0	Unimplemented: Read as '0'

U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-1	R/W-0	R/W-0			
—		FLTA1IP<2:0>		_		RTCCIP<2:0>				
bit 15				•			bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
			_			_				
bit 7							bit (
Lonondi										
L egend: R = Readab	le bit	W = Writable I	oit	U = Unimpler	nented bit, rea	d as '0'				
-n = Value a		'1' = Bit is set		'0' = Bit is cle		x = Bit is unkn	own			
bit 15	Unimplem	ented: Read as 'd)'							
bit 14-12	FLTA1IP<2:0>: PWM1 Fault A Interrupt Priority bits									
	111 = Inter	rupt is priority 7 (h	nighest priori	ty interrupt)						
	•									
	•									
	001 = Interrupt is priority 1 000 = Interrupt source is disabled									
bit 11	Unimplem	ented: Read as '0)'							
bit 10-8	RTCCIP<2	:0>: RTCC Interru	pt Priority bi	ts						
		rupt is priority 7 (ł								
	•									
	•									
	001 – Inter	rupt is priority 1								
		rupt source is disa	abled							

REGISTER 7-24: IPC15: INTERRUPT PRIORITY CONTROL REGISTER 15

11.0											
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
		—	—	—		—					
bit 15							bit 8				
U-0	R/W-1	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0				
—		U1EIP<2:0>		—		FLTB1IP<2:0>					
bit 7							bit 0				
Legend:											
R = Readab	le bit	W = Writable I	oit	U = Unimpler	mented bit, rea	d as '0'					
-n = Value a	It POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-7	Unimplemer	nted: Read as 'o)'								
bit 6-4	U1EIP<2:0>:	: UART1 Error Ir	nterrupt Prior	ity bits							
	111 = Interru	ıpt is priority 7 (ł	nighest priori	ty interrupt)							
	•										
	•										
	•	•									
		001 = Interrupt is priority 1 000 = Interrupt source is disabled									
		-									
bit 3	-	nted: Read as '0									
bit 2-0		0>: PWM1 Fault	•	•							
	111 = Interru	<pre>111 = Interrupt is priority 7 (highest priority interrupt)</pre>									
	•	•									
	•										
	•										
		pt is priority 1	- 1- 11								
	000 = Interru	pt source is disa	abied								

REGISTER 7-25: IPC16: INTERRUPT PRIORITY CONTROL REGISTER 16

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—				—		—	
bit 15							bit 8
U-0	R/W-1	R/W-0	R/W-0	U-0	U-0	U-0	U-0
—	CTMUIP<2:0>			—		—	—
bit 7						bit 0	
Legend:							
R = Readable bit W = W		W = Writable I	bit	U = Unimplen	U = Unimplemented bit, read as '0'		
-n = Value at POR '1' = E		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	
bit 15-7	Unimplemer	nted: Read as 'd)'				
bit 6-4	CTMUIP<2:0	>: CTMU Interr	upt Priority b	its			
	111 = Interru	upt is priority 7 (I	nighest priorit	ty interrupt)			
	•						
	•						
	•						
		pt is priority 1					
		pt source is dis					
bit 3-0		nted: Read as '0					

REGISTER 7-26: IPC19: INTERRUPT PRIORITY CONTROL REGISTER 19

U-0	U-0	U-0	U-0	R-0	R-0	R-0	R-0
<u> </u>	<u> </u>	<u> </u>	<u> </u>	11-0		<3:0>	I\-∩
bit 15						<0.0>	bit 8
							Dit e
U-0	R-0	R-0	R-0	R-0	R-0	R-0	R-0
—				VECNUM<6:0	>		
bit 7							bit (
Legend:							
R = Readabl	le bit	W = Writable I	oit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 11-8	1111 = CPU • • • • • • • • • • • • • • • • • • •	New CPU Interrup J Interrupt Priorit J Interrupt Priorit J Interrupt Priorit	y Level is 15 y Level is 1 y Level is 0	el bits			
bit 7	Unimpleme	ented: Read as 'o)'				
bit 6-0	0111111 = • • 00000001 =	5:0>: Vector Num Interrupt Vector p Interrupt Vector p Interrupt Vector p	pending is nu	mber 135 mber 9			

REGISTER 7-27: INTTREG: INTERRUPT CONTROL AND STATUS REGISTER

7.4 Interrupt Setup Procedures

7.4.1 INITIALIZATION

To configure an interrupt source at initialization:

- 1. Set the NSTDIS bit (INTCON1<15>) if nested interrupts are not desired.
- 2. Select the user-assigned priority level for the interrupt source by writing the control bits into the appropriate IPCx register. The priority level will depend on the specific application and type of interrupt source. If multiple priority levels are not desired, the IPCx register control bits for all enabled interrupt sources can be programmed to the same non-zero value.

Note: At a device Reset, the IPCx registers are initialized such that all user interrupt sources are assigned to priority level 4.

- 3. Clear the interrupt flag status bit associated with the peripheral in the associated IFSx register.
- 4. Enable the interrupt source by setting the interrupt enable control bit associated with the source in the appropriate IECx register.

7.4.2 INTERRUPT SERVICE ROUTINE

The method used to declare an ISR and initialize the IVT with the correct vector address depends on the programming language (C or assembler) and the language development tool suite used to develop the application.

In general, the user application must clear the interrupt flag in the appropriate IFSx register for the source of interrupt that the ISR handles. Otherwise, program will re-enter the ISR immediately after exiting the routine. If the ISR is coded in assembly language, it must be terminated using a RETFIE instruction to unstack the saved PC value, SRL value and old CPU priority level.

7.4.3 TRAP SERVICE ROUTINE

A Trap Service Routine (TSR) is coded like an ISR, except that the appropriate trap status flag in the INTCON1 register must be cleared to avoid re-entry into the TSR.

7.4.4 INTERRUPT DISABLE

All user interrupts can be disabled using this procedure:

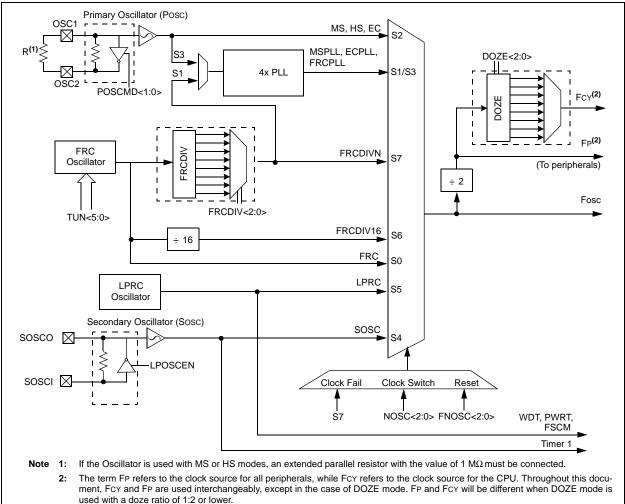
- 1. Push the current SR value onto the software stack using the PUSH instruction.
- 2. Force the CPU to priority level 7 by inclusive ORing the value OEh with SRL.

To enable user interrupts, the POP instruction can be used to restore the previous SR value.

Note:	Only user interrupts with a priority level of
	7 or lower can be disabled. Trap sources
	(level 8-level 15) cannot be disabled.

The DISI instruction provides a convenient way to disable interrupts of priority levels 1-6 for a fixed period of time. Level 7 interrupt sources are not disabled by the DISI instruction.

8.0 OSCILLATOR CONFIGURATION


- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 52. "Oscillator (Part VI)" (DS70644) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The oscillator system for dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices provides:

- External and internal oscillator options as clock sources
- An on-chip 4x Phase-Locked Loop (PLL) to scale the internal operating frequency to the required system clock frequency
- An internal FRC oscillator that can also be used with the PLL, thereby allowing full-speed operation without any external clock generation hardware
- Clock switching between various clock sources
- Programmable clock postscaler for system power savings
- A Fail-Safe Clock Monitor (FSCM) that detects clock failure and takes fail-safe measures
- A Clock Control register (OSCCON)
- Nonvolatile Configuration bits for main oscillator selection

A simplified diagram of the oscillator system is shown in Figure 8-1.

FIGURE 8-1: dsPIC33FJ16GP101/102 AND dsPIC33FJ16MC101/102 OSCILLATOR SYSTEM DIAGRAM

8.1 CPU Clocking System

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices provide seven system clock options:

- Fast RC (FRC) Oscillator
- FRC Oscillator with 4x PLL
- Primary (MS, HS or EC) Oscillator
- Primary Oscillator with 4x PLL
- Secondary (LP) Oscillator
- Low-Power RC (LPRC) Oscillator
- FRC Oscillator with postscaler

8.1.1 SYSTEM CLOCK SOURCES

8.1.1.1 Fast RC

The Fast RC (FRC) internal oscillator runs at a nominal frequency of 7.37 MHz. User software can tune the FRC frequency. User software can optionally specify a factor (ranging from 1:2 to 1:256) by which the FRC clock frequency is divided. This factor is selected using the FRCDIV<2:0> (CLKDIV<10:8>) bits.

The FRC frequency depends on the FRC accuracy (see Table 26-18) and the value of the FRC Oscillator Tuning register (see Register 8-3).

8.1.1.2 Primary

The primary oscillator can use one of the following as its clock source:

- MS (Crystal): Crystals and ceramic resonators in the range of 4 MHz to 10 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- HS (High-Speed Crystal): Crystals in the range of 10 MHz to 32 MHz. The crystal is connected to the OSC1 and OSC2 pins.
- EC (External Clock): The external clock signal is directly applied to the OSC1 pin.

8.1.1.3 Secondary

The secondary (LP) oscillator is designed for low power and uses a 32.768 kHz crystal or ceramic resonator. The LP oscillator uses the SOSCI and SOSCO pins.

8.1.1.4 Low-Power RC

The Low-Power RC (LPRC) internal oscIllator runs at a nominal frequency of 32.768 kHz. It is also used as a reference clock by the Watchdog Timer (WDT) and Fail-Safe Clock Monitor (FSCM).

8.1.1.5 PLL

The clock signals generated by the FRC and primary oscillators can be optionally applied to an on-chip 4x Phase-Locked Loop (PLL) to provide faster output frequencies for device operation. PLL configuration is described in Section 8.1.3 "PLL Configuration".

8.1.2 SYSTEM CLOCK SELECTION

The oscillator source used at a device Power-on Reset event is selected using Configuration bit settings. The oscillator Configuration bit settings are located in the Configuration registers in the program memory. (Refer to Section 23.1 "Configuration Bits" for further details.) The Initial Oscillator Configuration FNOSC<2:0> Selection bits, (FOSCSEL<2:0>), and the Primary Oscillator Mode Select Configuration POSCMD<1:0> bits, (FOSC<1:0>), select the oscillator source that is used at a Power-on Reset. The FRC primary oscillator is the default (unprogrammed) selection.

The Configuration bits allow users to choose among 12 different clock modes, shown in Table 8-1.

The output of the oscillator (or the output of the PLL if a PLL mode has been selected) FOSC is divided by 2 to generate the device instruction clock (FCY) and the peripheral clock time base (FP). FCY defines the operating speed of the device, and speeds up to 40 MHz are supported by the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 architecture.

Instruction execution speed or device operating frequency, FCY, is given by:

EQUATION 8-1: DEVICE OPERATING FREQUENCY

 $FCY = \frac{FOSC}{2}$

8.1.3 PLL CONFIGURATION

The primary oscillator and internal FRC oscillator can optionally use an on-chip 4x PLL to obtain higher speeds of operation.

For example, suppose a 8 MHz crystal is being used with the selected oscillator mode of MS with PLL. This provides a Fosc of 8 MHz * 4 = 32 MHz. The resultant device operating speed is 32/2 = 16 MIPS.

EQUATION 8-2: MS WITH PLL MODE EXAMPLE

$$F_{CY} = \frac{F_{OSC}}{2} = \frac{1}{2} (800000 \cdot 4) = 16 \text{ MIPS}$$

|--|

Oscillator Mode	Oscillator Source	POSCMD<1:0>	FNOSC<2:0>	See Note
Fast RC Oscillator with Divide-by-n (FRCDIVN)	Internal	xx	111	1, 2
Fast RC Oscillator with Divide-by-16 (FRCDIV16)	Internal	xx	110	1
Low-Power RC Oscillator (LPRC)	Internal	xx	101	1
Secondary (Timer1) Oscillator (SOSC)	Secondary	xx	100	1
Primary Oscillator (MS) with PLL (MSPLL)	Primary	01	011	
Primary Oscillator (EC) with PLL (ECPLL)	Primary	00	011	1
Primary Oscillator (HS)	Primary	10	010	
Primary Oscillator (MS)	Primary	01	010	
Primary Oscillator (EC)	Primary	00	010	1
Fast RC Oscillator (FRC) with Divide-by-n and PLL (FRCPLL)	Internal	xx	001	1
Fast RC Oscillator (FRC)	Internal	xx	000	1

Note 1: OSC2 pin function is determined by the OSCIOFNC Configuration bit.

2: This is the default oscillator mode for an unprogrammed (erased) device.

U-0	R-0	R-0	R-0	U-0	R/W-y	R/W-y	R/W-y
_		COSC<2:0>		—		NOSC<2:0>(2)	
bit 15							bit
R/W-0	R/W-0	R-0	U-0	R/C-0	U-0	R/W-0	R/W-0
CLKLOCK	IOLOCK	LOCK	_	CF	_	LPOSCEN	OSWEN
pit 7							bit
_egend:		y = Value se	t from Configu	ration bits on F	POR		
R = Readable	bit	W = Writable	e bit	U = Unimple	mented bit, rea	id as '0'	
n = Value at F	POR	'1' = Bit is se	et	'0' = Bit is cle		x = Bit is unkr	nown
bit 15	Unimplemer	nted: Read as	'0'				
	001 = Fast R 010 = Primar 011 = Primar 100 = Secon 101 = Low-P 110 = Fast R	y Oscillator (Ñ y Oscillator (N dary Oscillato ower RC Osci C Oscillator (f	FRC) with Divid IS, HS, EC) IS, EC) with P r (Sosc)	de-by-16	LL (FRCPLL)		
oit 11		ted: Read as					
oit 10-8	000 = Fast R 001 = Fast R 010 = Primar 011 = Primar 100 = Secon 101 = Low-P 110 = Fast R	C Oscillator (f C Oscillator (f cy Oscillator (M cy Oscillator (M dary Oscillator ower RC oscil C Oscillator (f	FRC) with Divid IS, HS, EC) IS, EC) with P r (Sosc)	de-by-n and PL LL de-by-16	LL (FCPLL)		
pit 7	If clock switcl 1 = Clock sw	itching is disa	d and FSCM is bled, system c	lock source is		<u>= 0b01)</u> by clock switchin	g
bit 6	1 = Peripher		s locked, write			ers not allowed gisters allowed	
bit 5	1 = Indicates		lock, or PLL s	start-up timer is -up timer is in	satisfied progress or PL	L is disabled	
oit 4		ted: Read as			-		
bit 3	CF: Clock Fa	il Detect bit (reas detected cl	ead/clear by ap	oplication)			
bit 2	Unimplemer	nted: Read as	ʻ0 '				
	ites to this regis he <i>"dsPIC33F/</i>					cillator (Part VI) " (DS70644

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾

2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

REGISTER 8-1: OSCCON: OSCILLATOR CONTROL REGISTER⁽¹⁾ (CONTINUED)

bit 1	LPOSCEN: Secondary (LP) Oscillator Enable bit
	1 = Enable secondary oscillator
	0 = Disable secondary oscillator
bit 0	OSWEN: Oscillator Switch Enable bit
	1 = Request oscillator switch to selection specified by NOSC<2:0> bits
	0 = Oscillator switch is complete

- Note 1: Writes to this register require an unlock sequence. Refer to Section 52. "Oscillator (Part VI)" (DS70644) in the "dsPIC33F/PIC24H Family Reference Manual" for details.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.

R/W-0	R/W-0	R/W-1	R/W-1	R/W-0	R/W-0	R/W-0	R/W-0			
ROI		DOZE<2:0> ^(2,3)		DOZEN ^(1,2,3)		FRCDIV<2:0>				
bit 15							bit 8			
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0			
				<u> </u>	—		_			
bit 7							bit			
Legend:										
R = Readabl	e bit	W = Writable b	it	U = Unimpleme	ented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clear	red	x = Bit is unkr	nown			
bit 15	ROI: Recov	ver on Interrupt bit								
	1 = Interrupts will clear the DOZEN bit and the processor clock/peripheral clock ratio is set to 1:1									
	0 = Interrup	ots have no effect	on the DOZ	ZEN bit						
bit 14-12	DOZE<2:0>: Processor Clock Reduction Select bits ^(2,3)									
	111 = FCY/128									
	110 = FCY/64									
	101 = FCY/32									
	100 = FCY/16									
	011 = FCY/8 (default)									
	010 = FCY/4 001 = FCY/2									
	001 = FCY/2 000 = FCY/2									
bit 11	DOUE = FCY/I DOZEN: DOZE Mode Enable bit ^(1,2,3)									
	DOZEN: DOZE Mode Enable bit $(1-5)^2$ 1 = DOZE<2:0> field specifies the ratio between the peripheral clocks and the processor clocks									
		sor clock/peripher				ind the process	JI CIUCKS			
bit 10-8	FRCDIV<2:0>: Internal Fast RC Oscillator Postscaler bits									
	111 = FRC divide by 256									
	110 = FRC divide by 64									
	101 = FRC divide by 32									
	100 = FRC divide by 16									
	011 = FRC divide by 8									
	010 = FRC divide by 4 001 = FRC divide by 2									
		divide by 2 divide by 1 (defau	l t)							
bit 7-0		ented: Read as '0'	-							
	ommpleme	FILEU. NEAU AS U								
Note 1: Th	nis bit is cleared	d when the ROI bi	t is set and	an interrupt occu	rs.					

REGISTER 8-2: CLKDIV: CLOCK DIVISOR REGISTER

- **2:** If DOZEN = 1, writes to DOZE<2:0> are ignored.
 - **3:** If DOZE<2:0> = 000, the DOZEN bit cannot be set by the user; writes are ignored.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	—		_	—	—	
bit 15							bit 8
	11.0	DAM 0	D/M/ O	D/M/ O	D/M/ O	D/M/ O	D/M/ 0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0 :5:0> ⁽¹⁾	R/W-0	R/W-0
 bit 7	—			TUN<	5:0>(7)		hit (
DIL 7							bit (
Legend:							
R = Readable b	oit	W = Writable I	oit	U = Unimplem	nented bit, read	d as '0'	
-n = Value at P	OR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$			iown
bit 15-6 bit 5-0	TUN<5:0>: 1 011111 = C 011110 = C • • • • • • • • • • • • • • • • • • •	nted: Read as '0 FRC Oscillator T enter frequency enter frequency enter frequency enter frequency enter frequency enter frequency enter frequency	uning bits ⁽¹⁾ +11.625% (8.2 +11.25% (8.2 +0.375% (7.4 (7.37 MHz no -0.375% (7.3 ² -11.625% (6.5	0 MHz) 0 MHz) minal) 15 MHz) 52 MHz)			

Note 1: OSCTUN functionality has been provided to help customers compensate for temperature effects on the FRC frequency over a wide range of temperatures. The tuning step size is an approximation and is neither characterized nor tested.

© 2011 Microchip Technology Inc.

8.2 Clock Switching Operation

Applications are free to switch among any of the four clock sources (Primary, LP, FRC, and LPRC) under software control at any time. To limit the possible side effects of this flexibility, dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices have a safeguard lock built into the switch process.

Note: Primary Oscillator mode has three different submodes (MS, HS, and EC), which are determined by the POSCMD<1:0> Configuration bits. While an application can switch to and from Primary Oscillator mode in software, it cannot switch among the different primary submodes without reprogramming the device.

8.2.1 ENABLING CLOCK SWITCHING

To enable clock switching, the FCKSM1 Configuration bit in the Configuration register must be programmed to '0'. (Refer to **Section 23.1 "Configuration Bits"** for further details.) If the FCKSM1 Configuration bit is unprogrammed ('1'), the clock switching function and Fail-Safe Clock Monitor function are disabled. This is the default setting.

The NOSC control bits (OSCCON<10:8>) do not control the clock selection when clock switching is disabled. However, the COSC bits (OSCCON<14:12>) reflect the clock source selected by the FNOSC Configuration bits.

The OSWEN control bit (OSCCON<0>) has no effect when clock switching is disabled. It is held at '0' at all times.

8.2.2 OSCILLATOR SWITCHING SEQUENCE

Performing a clock switch requires this basic sequence:

- 1. If desired, read the COSC bits (OSCCON<14:12>) to determine the current oscillator source.
- 2. Perform the unlock sequence to allow a write to the OSCCON register high byte.
- Write the appropriate value to the NOSC control bits (OSCCON<10:8>) for the new oscillator source.
- 4. Perform the unlock sequence to allow a write to the OSCCON register low byte.
- 5. Set the OSWEN bit (OSCCON<0>) to initiate the oscillator switch.

Once the basic sequence is completed, the system clock hardware responds automatically as follows:

 The clock switching hardware compares the COSC status bits with the new value of the NOSC control bits. If they are the same, the clock switch is a redundant operation. In this case, the OSWEN bit is cleared automatically and the clock switch is aborted.

- If a valid clock switch has been initiated, the LOCK (OSCCON<5>) and the CF (OSCCON<3>) status bits are cleared.
- The new oscillator is turned on by the hardware if it is not currently running. If a crystal oscillator must be turned on, the hardware waits until the Oscillator Start-up Timer (OST) expires. If the new source is using the PLL, the hardware waits until a PLL lock is detected (LOCK = 1).
- 4. The hardware waits for 10 clock cycles from the new clock source and then performs the clock switch.
- The hardware clears the OSWEN bit to indicate a successful clock transition. In addition, the NOSC bit values are transferred to the COSC status bits.
- The old clock source is turned off at this time, with the exception of LPRC (if WDT or FSCM are enabled) or LP (if LPOSCEN remains set).
 - Note 1: The processor continues to execute code throughout the clock switching sequence. Timing-sensitive code should not be executed during this time.
 - 2: Direct clock switches between any primary oscillator mode with PLL and FRCPLL mode are not permitted. This applies to clock switches in either direction. In these instances, the application must switch to FRC mode as a transition clock source between the two PLL modes.
 - 3: Refer to Section 7. "Oscillator" (DS70186) in the "dsPIC33F/PIC24H Family Reference Manual" for details.

8.3 Fail-Safe Clock Monitor (FSCM)

The Fail-Safe Clock Monitor (FSCM) allows the device to continue to operate even in the event of an oscillator failure. The FSCM function is enabled by programming. If the FSCM function is enabled, the LPRC internal oscillator runs at all times (except during Sleep mode) and is not subject to control by the Watchdog Timer.

In the event of an oscillator failure, the FSCM generates a clock failure trap event and switches the system clock over to the FRC oscillator. Then the application program can either attempt to restart the oscillator or execute a controlled shutdown. The trap can be treated as a warm Reset by simply loading the Reset address into the oscillator fail trap vector.

If the PLL multiplier is used to scale the system clock, the internal FRC is also multiplied by the same factor on clock failure. Essentially, the device switches to FRC with PLL on a clock failure.

9.0 POWER-SAVING FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 9. "Watchdog Timer and Power-Saving Modes" (DS70196) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices provide the ability to manage power consumption by selectively managing clocking to the CPU and the peripherals. In general, a lower clock frequency and a reduction in the number of circuits being clocked constitutes lower consumed power. Devices can manage power consumption in four different ways:

- Clock frequency
- Instruction-based Sleep and Idle modes
- Software-controlled Doze mode
- Selective peripheral control in software

Combinations of these methods can be used to selectively tailor an application's power consumption while still maintaining critical application features, such as timing-sensitive communications.

9.1 Clock Frequency and Clock Switching

dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/ 102 devices allow a wide range of clock frequencies to be selected under application control. If the system clock configuration is not locked, users can choose low-power or high-precision oscillators by simply changing the NOSC bits (OSCCON<10:8>). The process of changing a system clock during operation, as well as limitations to the process, are discussed in more detail in Section 8.0 "Oscillator Configuration".

9.2 Instruction-Based Power-Saving Modes

dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/ 102 devices have two special power-saving modes that are entered through the execution of a special PWRSAV instruction. Sleep mode stops clock operation and halts all code execution. Idle mode halts the CPU and code execution, but allows peripheral modules to continue operation. The assembler syntax of the PWRSAV instruction is shown in Example 9-1.

Note: SLEEP_MODE and IDLE_MODE are constants defined in the assembler include file for the selected device.

Sleep and Idle modes can be exited as a result of an enabled interrupt, WDT time-out or a device Reset. When the device exits these modes, it is said to wake-up.

9.2.1 SLEEP MODE

The following occur in Sleep mode:

- The system clock source is shut down. If an on-chip oscillator is used, it is turned off.
- The device current consumption is reduced to a minimum, provided that no I/O pin is sourcing current
- The Fail-Safe Clock Monitor does not operate, since the system clock source is disabled
- The LPRC clock continues to run in Sleep mode if the WDT is enabled
- The WDT, if enabled, is automatically cleared prior to entering Sleep mode
- Some device features or peripherals may continue to operate. This includes items such as the input change notification on the I/O ports, or peripherals that use an external clock input.
- Any peripheral that requires the system clock source for its operation is disabled

The device will wake-up from Sleep mode on any of the these events:

- · Any interrupt source that is individually enabled
- Any form of device Reset
- A WDT time-out

On wake-up from Sleep mode, the processor restarts with the same clock source that was active when Sleep mode was entered.

EXAMPLE 9-1: PWRSAV INSTRUCTION SYNTAX

PWRSAV #SLEEP_MODE ; Put the device into SLEEP mode
PWRSAV #IDLE_MODE ; Put the device into IDLE mode

9.2.2 IDLE MODE

The following occur in Idle mode:

- The CPU stops executing instructions
- The WDT is automatically cleared
- The system clock source remains active. By default, all peripheral modules continue to operate normally from the system clock source, but can also be selectively disabled (see Section 9.4 "Peripheral Module Disable").
- If the WDT or FSCM is enabled, the LPRC also remains active.

The device will wake from Idle mode on any of these events:

- Any interrupt that is individually enabled
- · Any device Reset
- A WDT time-out

On wake-up from Idle mode, the clock is reapplied to the CPU and instruction execution will begin (2-4 clock cycles later), starting with the instruction following the PWRSAV instruction, or the first instruction in the ISR.

9.2.3 INTERRUPTS COINCIDENT WITH POWER-SAVE INSTRUCTIONS

Any interrupt that coincides with the execution of a PWRSAV instruction is held off until entry into Sleep or Idle mode has completed. The device then wakes up from Sleep or Idle mode.

9.3 Doze Mode

The preferred strategies for reducing power consumption are changing clock speed and invoking one of the power-saving modes. In some circumstances, this may not be practical. For example, it may be necessary for an application to maintain uninterrupted synchronous communication, even while it is doing nothing else. Reducing system clock speed can introduce communication errors, while using a power-saving mode can stop communications completely.

Doze mode is a simple and effective alternative method to reduce power consumption while the device is still executing code. In this mode, the system clock continues to operate from the same source and at the same speed. Peripheral modules continue to be clocked at the same speed, while the CPU clock speed is reduced. Synchronization between the two clock domains is maintained, allowing the peripherals to access the SFRs while the CPU executes code at a slower rate. Doze mode is enabled by setting the DOZEN bit (CLKDIV<11>). The ratio between peripheral and core clock speed is determined by the DOZE<2:0> bits (CLKDIV<14:12>). There are eight possible configurations, from 1:1 to 1:128, with 1:1 being the default setting.

Programs can use Doze mode to selectively reduce power consumption in event-driven applications. This allows clock-sensitive functions, such as synchronous communications, to continue without interruption while the CPU idles, waiting for something to invoke an interrupt routine. An automatic return to full-speed CPU operation on interrupts can be enabled by setting the ROI bit (CLKDIV<15>). By default, interrupt events have no effect on Doze mode operation.

For example, suppose the device is operating at 20 MIPS and the UART module has been configured for 500 kbps based on this device operating speed. If the device is placed in Doze mode with a clock frequency ratio of 1:4, the UART module continues to communicate at the required bit rate of 500 kbps, but the CPU now starts executing instructions at a frequency of 5 MIPS.

9.4 Peripheral Module Disable

The Peripheral Module Disable (PMD) registers provide a method to disable a peripheral module by stopping all clock sources supplied to that module. When a peripheral is disabled using the appropriate PMD control bit, the peripheral is in a minimum power consumption state. The control and status registers associated with the peripheral are also disabled, so writes to those registers will have no effect and read values will be invalid.

A peripheral module is enabled only if both the associated bit in the PMD register is cleared and the peripheral is supported by the specific dsPIC[®] DSC variant. If the peripheral is present in the device, it is enabled in the PMD register by default.

Note: If a PMD bit is set, the corresponding module is disabled after a delay of one instruction cycle. Similarly, if a PMD bit is cleared, the corresponding module is enabled after a delay of one instruction cycle (assuming the module control registers are already configured to enable module operation).

U-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0				
—	—	T3MD	T2MD	T1MD	—	PWM1MD	—				
bit 15							bit a				
R/W-0	U-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0				
I2C1MD		U1MD	—	SPI1MD	—	—	AD1MD				
bit 7							bit (
Legend:											
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, re	ad as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkn	own				
bit 15-14	Unimpleme	nted: Read as '	0'								
bit 13	T3MD: Time	r3 Module Disal	ole bit								
		nodule is disable nodule is enable									
bit 12		r2 Module Disal									
	1 = Timer2 r	nodule is disable	ed								
	0 = Timer2 r	nodule is enable	ed								
bit 11	T1MD: Time	MD: Timer1 Module Disable bit									
		nodule is disable nodule is enable									
bit 10	Unimpleme	nted: Read as '	0'								
bit 9	PWM1MD: F	PWM1 Module E	Disable bit								
		nodule is disable									
		nodule is enable									
bit 18	-	nted: Read as '									
bit 7		C1 Module Disal									
		dule is disabled dule is enabled									
bit 6	Unimpleme	nted: Read as '	0'								
bit 5	U1MD: UAR	T1 Module Disa	ble bit								
	-	module is disabl module is enable									
bit 4	Unimpleme	nted: Read as '	0'								
bit 3	-	SPI1MD: SPI1 Module Disable bit									
		dule is disabled									
	0 = SPI1 mo	dule is enabled									
bit 2-1		nted: Read as '									
bit 0	AD1MD: AD	C1 Module Disa	able bit ⁽¹⁾								
		odule is disable									

Note 1: PCFGx bits have no effect if the ADC module is disabled by setting this bit. When the bit is set, all port pins that have been multiplexed with ANx will be in Digital mode.

REGISTER	8 9-2: PMD2	: PERIPHER	AL MODULE	E DISABLE C	ONTROL RE	EGISTER 2	
U-0	U-0	U-0 U-0	U-0	U-0	R/W-0	R/W-0	R/W-0
_		—	_	—	IC3MD	IC2MD	IC1MD
bit 15		•		·			bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
			_		—	OC2MD	OC1MD
bit 7							bit C
Legend:							
R = Readab	ole bit	W = Writable I	oit	•	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-11	Unimplemen	ted: Read as 'o)'				
bit 10	IC3MD: Input	Capture 3 Mod	ule Disable bi	t			
		ture 3 module i					
		ture 3 module i					
bit 9		Capture 2 Moc		t			
		ture 2 module i ture 2 module i					
bit 8				t			
	IC1MD: Input Capture 1 Module Disable bit 1 = Input Capture 1 module is disabled						
		ture 1 module i					
bit 7-2	Unimplemen	ted: Read as 'd)'				
bit 1	OC2MD: Output Compare 2 Module Disable bit						
	1 = Output Co	ompare 2 modu	le is disabled				
	0 = Output Co	ompare 2 modu	le is enabled				
bit 0		out Compare 1		le bit			
		ompare 1 modu					
	0 = Output Co	ompare 1 modu	le is enabled				

DND2 DEDIDLEDAL MODULE DISADLE CONTROL DECISTED 2

REGISTER 9-3: PMD3: PERIPHERAL MODULE DISABLE CONTROL REGISTER 3								
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	U-0	
—	—	—	—	—	CMPMD	RTCCMD	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
—	—	—	_	—		—		
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable I	oit	U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = Bit is set				0' = Bit is cleared $x = Bit is unknown$				
bit 15-11	Unimplemen	ted: Read as 'O)'					

bit 10	CMPMD: Comparator Module Disable bit				
	 1 = Comparator module is disabled 0 = Comparator module is enabled 				
bit 9	RTCCMD: RTCC Module Disable bit				
	1 = RTCC module is disabled				
	0 = RTCC module is enabled				
bit 8-0	Unimplemented: Read as '0'				

REGISTER 9-4: PMD4: PERIPHERAL MODULE DISABLE CONTROL REGISTER 4

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—		—	_	_	—	_	_		
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	U-0		
—	_	—	_	—	CTMUMD	_	—		
bit 7							bit 0		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimple	mented bit read	as '0'			

K = Keauable bit		0 = 0 miniplemented bit, rea	
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-4 Unimplemented: Read as '0'

bit 3 CTMUMD: CTMU Module Disable bit

1 = CTMU module is disabled

0 = CTMU module is enabled

bit 2-0 Unimplemented: Read as '0'

NOTES:

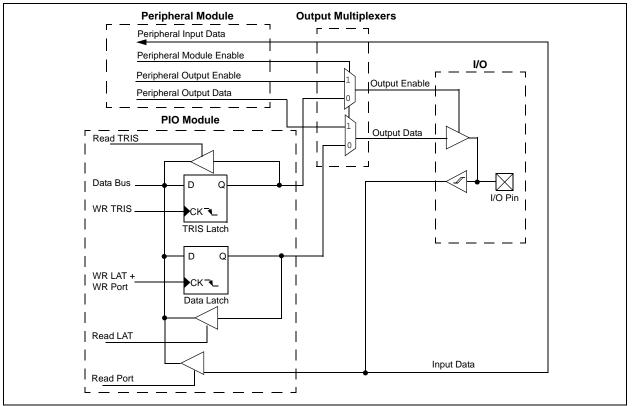
10.0 I/O PORTS

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 10.** "I/O Ports" (DS70193) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

All of the device pins (except VDD, VSS, MCLR, and OSC1/CLKI) are shared among the peripherals and the parallel I/O ports. All I/O input ports feature Schmitt Trigger inputs for improved noise immunity.

10.1 Parallel I/O (PIO) Ports

Generally a parallel I/O port that shares a pin with a peripheral is subservient to the peripheral. The peripheral's output buffer data and control signals are provided to a pair of multiplexers. The multiplexers select whether the peripheral or the associated port has ownership of the output data and control signals of the I/O pin. The logic also prevents "loop through," in which a port's digital output can drive the input of a peripheral that shares the same pin. Figure 10-1 shows how ports are shared with other peripherals and the associated I/O pin to which they are connected.


When a peripheral is enabled and the peripheral is actively driving an associated pin, the use of the pin as a general purpose output pin is disabled. The I/O pin can be read, but the output driver for the parallel port bit is disabled. If a peripheral is enabled, but the peripheral is not actively driving a pin, that pin can be driven by a port.

All port pins have three registers directly associated with their operation as digital I/O. The data direction register (TRISx) determines whether the pin is an input or an output. If the data direction bit is a '1', the pin is an input. All port pins are defined as inputs after a Reset. Reads from the latch (LATx) read the latch. Writes to the latch write the latch. Reads from the port (PORTx) read the port pins, while writes to the port pins write the latch.

Any bit and its associated data and control registers that are not valid for a particular device will be disabled. This means the corresponding LATx and TRISx registers and the port pin will read as zeros.

When a pin is shared with another peripheral or function that is defined as an input only, it is nevertheless regarded as a dedicated port because there is no other competing source of outputs.

10.1.1 OPEN-DRAIN CONFIGURATION

In addition to the PORT, LAT, and TRIS registers for data control, some port pins can also be individually configured for either digital or open-drain output. This is controlled by the Open-Drain Control register, ODCx, associated with each port. Setting any of the bits configures the corresponding pin to act as an open-drain output.

The open-drain feature allows the generation of outputs higher than VDD (e.g., 5V) on any desired 5V tolerant pins by using external pull-up resistors. The maximum open-drain voltage allowed is the same as the maximum VIH specification.

See "**Pin Diagrams**" for the available pins and their functionality.

10.2 Configuring Analog Port Pins

The AD1PCFG and TRIS registers control the operation of the analog-to-digital port pins. The port pins that are to function as analog inputs must have their corresponding TRIS bit set (input). If the TRIS bit is cleared (output), the digital output level (VOH or VOL) will be converted.

The AD1PCFGL register has a default value of 0x0000; therefore, all pins that share ANx functions are analog (not digital) by default.

When the PORT register is read, all pins configured as analog input channels will read as cleared (a low level).

Pins configured as digital inputs will not convert an analog input. Analog levels on any pin defined as a digital input (including the ANx pins) can cause the input buffer to consume current that exceeds the device specifications.

10.2.1 I/O PORT WRITE/READ TIMING

One instruction cycle is required between a port direction change or port write operation and a read operation of the same port. Typically this instruction would be an NOP. An demonstration is shown in Example 10-1.

EXAMPLE 10-1: PORT WRITE/READ EXAMPLE

MOV	0xFF00, W0	; Configure PORTB<15:8> as inputs
MOV	W0, TRISBB	; and PORTB<7:0> as outputs
NOP		; Delay 1 cycle
btss	PORTB, #13	; Next Instruction
1		

10.3 Input Change Notification

The input change notification function of the I/O ports allows the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices to generate interrupt requests to the processor in response to a change-ofstate on selected input pins. This feature can detect input change-of-states even in Sleep mode, when the clocks are disabled. Depending on the device pin count, up to 21 external signals (CNx pin) can be selected (enabled) for generating an interrupt request on a change-of-state.

Four control registers are associated with the CN module. The CNEN1 and CNEN2 registers contain the interrupt enable control bits for each of the CN input pins. Setting any of these bits enables a CN interrupt for the corresponding pins.

Each CN pin also has a weak pull-up connected to it. The pull-ups act as a current source connected to the pin, and eliminate the need for external resistors when push-button or keypad devices are connected. The pull-ups are enabled separately using the CNPU1 and CNPU2 registers, which contain the control bits for each of the CN pins. Setting any of the control bits enables the weak pull-ups for the corresponding pins.

Note: Pull-ups on change notification pins should always be disabled when the port pin is configured as a digital output.

10.4 Peripheral Pin Select

Peripheral pin select configuration enables peripheral set selection and placement on a wide range of I/O pins. By increasing the pinout options available on a particular device, programmers can better tailor the microcontroller to their entire application, rather than trimming the application to fit the device.

The peripheral pin select configuration feature operates over a fixed subset of digital I/O pins. Programmers can independently map the input and/or output of most digital peripherals to any one of these I/O pins. Peripheral pin select is performed in software, and generally does not require the device to be reprogrammed. Hardware safeguards are included that prevent accidental or spurious changes to the peripheral mapping, once it has been established.

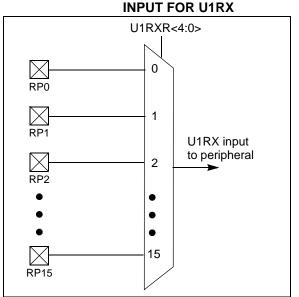
10.4.1 AVAILABLE PINS

The peripheral pin select feature is used with a range of up to 16 pins. The number of available pins depends on the particular device and its pin count. Pins that support the peripheral pin select feature include the designation "RPn" in their full pin designation, where "RP" designates a remappable peripheral and "n" is the remappable pin number.

10.4.2 CONTROLLING PERIPHERAL PIN SELECT

Peripheral pin select features are controlled through two sets of special function registers: one to map peripheral inputs, and one to map outputs. Because they are separately controlled, a particular peripheral's input and output (if the peripheral has both) can be placed on any selectable function pin without constraint.

The association of a peripheral to a peripheral selectable pin is handled in two different ways, depending on whether an input or output is being mapped.


10.4.2.1 Input Mapping

The inputs of the peripheral pin select options are mapped on the basis of the peripheral. A control register associated with a peripheral dictates the pin it will be mapped to. The RPINRx registers are used to configure peripheral input mapping (see Register 10-1 through Register 10-8). Each register contains sets of 5-bit fields, with each set associated with one of the remappable peripherals. Programming a given peripheral's bit field with an appropriate 5-bit value maps the RPn pin with that value to that peripheral. For any given device, the valid range of values for any bit field corresponds to the maximum number of peripheral pin selections supported by the device.

Figure 10-2 Illustrates remappable pin selection for U1RX input.

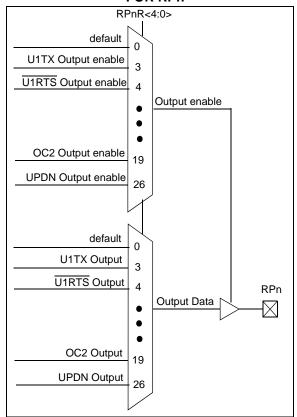
Note:	For input mapping only, the Peripheral Pin
	Select (PPS) functionality does not have
	priority over the TRISx settings. There-
	fore, when configuring the RPx pin for
	input, the corresponding bit in the TRISx
	register must also be configured for input
	(i.e., set to '1').

FIGURE 10-2: REMAPPABLE MUX

Input Name	Function Name	Register	Configuration Bits
External Interrupt 1	INT1	RPINR0	INT1R<4:0>
External Interrupt 2	INT2	RPINR1	INT2R<4:0>
Timer2 External Clock	T2CK	RPINR3	T2CKR<4:0>
Timer3 External Clock	T3CK	RPINR3	T3CKR<4:0>
Input Capture 1	IC1	RPINR7	IC1R<4:0>
Input Capture 2	IC2	RPINR7	IC2R<4:0>
Input Capture 3	IC3	RPINR8	IC3R<4:0>
Output Compare Fault A	OCFA	RPINR11	OCFAR<4:0>
UART1 Receive	U1RX	RPINR18	U1RXR<4:0>
UART1 Clear To Send	U1CTS	RPINR18	U1CTSR<4:0>
SPI1 Slave Select Input	SS1	RPINR21	SS1R<4:0>

TABLE 10-1: SELECTABLE INPUT SOURCES (MAPS INPUT TO FUNCTION)⁽¹⁾

Note 1: Unless otherwise noted, all inputs use the Schmitt input buffers.


10.4.2.2 Output Mapping

In contrast to inputs, the outputs of the peripheral pin select options are mapped on the basis of the pin. In this case, a control register associated with a particular pin dictates the peripheral output to be mapped. The RPORx registers are used to control output mapping. Like the RPINRx registers, each register contains sets of 5-bit fields, with each set associated with one RPn pin (see Register 10-9 through Register 10-16). The value of the bit field corresponds to one of the peripherals, and that peripheral's output is mapped to the pin (see Table 10-2 and Figure 10-3).

The list of peripherals for output mapping also includes a null value of '00000' because of the mapping technique. This permits any given pin to remain unconnected from the output of any of the pin selectable peripherals.

FIGURE 10-3:

MULTIPLEXING OF REMAPPABLE OUTPUT FOR RPn

Function	RPnR<4:0>	Output Name
NULL	00000	RPn tied to default port pin
C1OUT	00001	RPn tied to Comparator 1 Output
C2OUT	00010	RPn tied to Comparator 2 Output
U1TX	00011	RPn tied to UART1 Transmit
U1RTS	00100	RPn tied to UART1 Ready To Send
SS1	01001	RPn tied to SPI1 Slave Select Output
OC1	10010	RPn tied to Output Compare 1
OC2	10011	RPn tied to Output Compare 2
CTPLS	11101	RPn tied to CTMU Pulse Output
C3OUT	11110	RPn tied to Comparator 3 Output

TABLE 10-2: OUTPUT SELECTION FOR REMAPPABLE PIN (RPn)

10.4.3 CONTROLLING CONFIGURATION CHANGES

Because peripheral remapping can be changed during run time, some restrictions on peripheral remapping are needed to prevent accidental configuration changes. dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices include three features to prevent alterations to the peripheral map:

- Control register lock sequence
- · Continuous state monitoring
- Configuration bit pin select lock

10.4.3.1 Control Register Lock

Under normal operation, writes to the RPINRx and RPORx registers are not allowed. Attempted writes appear to execute normally, but the contents of the registers remain unchanged. To change these registers, they must be unlocked in hardware. The register lock is controlled by the IOLOCK bit (OSCCON<6>). Setting IOLOCK prevents writes to the control registers; clearing IOLOCK allows writes.

To set or clear IOLOCK, a specific command sequence must be executed:

- 1. Write 0x46 to OSCCON<7:0>.
- 2. Write 0x57 to OSCCON<7:0>.
- 3. Clear (or set) IOLOCK as a single operation.

Note:	MPLAB [®] C30 provides built-in C							
	language functions for unlocking the							
	OSCCON register:							
	builtin_write_OSCCONL(value)							
	builtin_write_OSCCONH(value)							
	See MPLAB IDE Help for more information.							

Unlike the similar sequence with the oscillator's LOCK bit, IOLOCK remains in one state until changed. This allows all of the peripheral pin selects to be configured with a single unlock sequence followed by an update to all control registers, then locked with a second lock sequence.

10.4.3.2 Continuous State Monitoring

In addition to being protected from direct writes, the contents of the RPINRx and RPORx registers are constantly monitored in hardware by shadow registers. If an unexpected change in any of the registers occurs (such as cell disturbances caused by ESD or other external events), a configuration mismatch Reset will be triggered.

10.4.3.3 Configuration Bit Pin Select Lock

As an additional level of safety, the device can be configured to prevent more than one write session to the RPINRx and RPORx registers. The IOL1WAY (FOSC<IOL1WAY>) configuration bit blocks the IOLOCK bit from being cleared after it has been set once. If IOLOCK remains set, the register unlock procedure will not execute, and the peripheral pin select control registers cannot be written to. The only way to clear the bit and re-enable peripheral remapping is to perform a device Reset.

In the default (unprogrammed) state, IOL1WAY is set, restricting users to one write session. Programming IOL1WAY allows user applications unlimited access (with the proper use of the unlock sequence) to the peripheral pin select registers.

10.5 Peripheral Pin Select Registers

ThedsPIC33FJ16GP101/102anddsPIC33FJ16MC101/102family of devices implement21 registers for remappable peripheral configuration:

- Input Remappable Peripheral Registers (13)
- Output Remappable Peripheral Registers (8)

Note: Input and Output Register values can only be changed if OSCCON<IOLOCK> = 0. See Section 10.4.3.1 "Control Register Lock" for a specific command sequence.

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	—	—			INT1R<4:0>				
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0		
—	—	—	—		—	—	—		
bit 7							bit 0		
Legend:									
R = Readab	le bit	W = Writable	bit	it U = Unimplemented bit, read as '0'					
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			nown		
bit 15-13	Unimplemen	ted: Read as '	0'						
bit 12-8	INT1R<4:0>:	Assign Externa	al Interrupt 1	(INTR1) to the	corresponding F	RPn pin			
	11111 = Inpu	it tied Vss							
	01111 = Inpu	It tied to RP15							
	•								
	•								
	00001 = Inpu								
	00000 = Inpu	it tied to RP0							
bit 7-0	Unimplemen	ted: Read as '	0'						

REGISTER 10-1: RPINR0: PERIPHERAL PIN SELECT INPUT REGISTER 0

REGISTER 10-2: RPINR1: PERIPHERAL PIN SELECT INPUT REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	—	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
			INT2R<4:0>				
bit 7							bit 0
Legend:							
R = Readable	bit	W = Writable	bit	U = Unimpler	mented bit, read	as '0'	
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared x = Bit is unknown			
bit 15-5	Unimplemen	ted: Read as '	0'				
bit 4-0	INT2R<4:0>:	Assign Externa	al Interrupt 2 (INTR2) to the	corresponding F	RPn pin	
	11111 = Inpu	-				·	
	01111 = Inpu	t tied to RP15					
	•						
	00001 = Inpu						
	00000 = Inpu	it lieu to RPU					

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	_	_	T3CKR<4:0>							
bit 15							bit 8			
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1			
_	_	_	T2CKR<4:0>							
bit 7							bit 0			
Legend: R = Readab	le hit	W = Writable	hit	II – I Inimpler	mented hit rea	ad as 'O'				
-n = Value a		1' = Bit is set		U = Unimplemented bit, rea '0' = Bit is cleared		x = Bit is unkr				
bit 15-13	-	nted: Read as '								
bit 15-13	Unimpleme	nted: Read as '	0'							
bit 12-8		>: Assign Timer	3 External Clo	ock (T3CK) to t	he correspond	ling RPn pin				
	11111 = Inp	out fied VSS out fied to RP15								
	•									
	00001 = Input tied to RP1 00000 = Input tied to RP0									
bit 7-5	-	nted: Read as '	∩'							
	-			ock (T2CK) to t	he correspond	ling PPn nin				
bit 4-0		T2CKR<4:0>: Assign Timer2 External Clock (T2CK) to the corresponding RPn pin								
	11111 = Input tied Vss 01111 = Input tied to RP15									
	01111 = Inp	out tied to RP15								
	01111 = Inp									

REGISTER 10-3: RPINR3: PERIPHERAL PIN SELECT INPUT REGISTER 3

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
_	_	_	IC2R<4:0>						
it 15							bit 8		
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1		
	—	—			IC1R<4:0>				
oit 7							bit C		
egend:									
R = Readable bit $W = Writable bit$ $U = Unimplemented bit$			mented bit, rea	ad as '0'					
n = Value a	t POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unkr	iown		
oit 15-13	Unimpleme	nted: Read as '	0'						
it 12-8	IC2R<4:0>:	Assign Input Ca	pture 2 (IC2)	to the correspo	onding RPn pi	n			
	11111 = Inp								
	01111 = Inp	out tied to RP15							
	•								
	00001 = Input tied to RP1								
		out tied to RP0							
	-	ented: Read as '							
	IC1R<4:0>: Assign Input Capture 1 (IC1) to the corresponding RPn pin								
		• .	pture 1 (IC1)	to the correspo	onding RPn pi	n			
	11111 = Inp	out tied Vss	pture 1 (IC1)	to the correspo	onding RPn pi	n			
	11111 = Inp	• .	pture 1 (IC1)	to the correspo	onding RPn pi	n			
	11111 = Inp	out tied Vss	pture 1 (IC1)	to the correspo	onding RPn pi	1			
	11111 = Inp	out tied Vss	pture 1 (IC1)	to the correspo	onding RPn pi				
bit 7-5 bit 4-0	11111 = Inp 01111 = Inp 00001 = Inp	out tied Vss	pture 1 (IC1)	to the correspo	onding RPn pi				

REGISTER 10-4: RPINR7: PERIPHERAL PIN SELECT INPUT REGISTER 7

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0						
—	—	—	—	—	—	—	—						
bit 15							bit 8						
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1						
—	—	—	IC3R<4:0>										
bit 7	·	•					bit 0						
Legend:													
R = Readab	ole bit	W = Writable	bit	U = Unimplei	mented bit, read	as '0'							
-n = Value a	at POR	'1' = Bit is set		0' = Bit is cleared $x = Bit is unknown$									
bit 15-5	Unimplemen	ted: Read as '	0'										
bit 4-0	IC3R<4:0>: A	ssign Input Ca	pture 3 (IC3)	to the correspo	onding pin RPn	pin							
	11111 = I npu	t tied Vss											
	01111 = Inpu	t tied to RP15											
	•												
	•												
	• • • • • • • • • • • • • • • • • • • •	t tigd to PD1											
	00001 = inpu					00001 = Input tied to RP1							

REGISTER 10-5: RPINR8: PERIPHERAL PIN SELECT INPUT REGISTER 8

00000 =Input tied to RP0

REGISTER 10-6: RPINR11: PERIPHERAL PIN SELECT INPUT REGISTER 11

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
_	—	—	—	—	—	—	_
bit 15	•						bit 8
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1
_		— OCFAR<4:0>					
bit 7							bit C
Legend:							
R = Readable	e bit	W = Writable	bit	U = Unimpler	nented bit, rea	d as '0'	
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-5	Unimpleme	nted: Read as '	0'				
bit 4-0	OCFAR<4:0	>: Assign Outp	ut Capture A (OCFA) to the c	orresponding I	RPn pin	
	11111 = I np					·	
		ut tied to RP15					
	00001 = Inp	ut tied to RP1					

00000 =Input tied to RP0

U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	—	—	U1CTSR<4:0>					
bit 15							bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
	—	—			U1RXR<4:0	>		
bit 7							bit 0	
Legend:								
R = Readab	le bit	W = Writable I	oit	U = Unimplem	nented bit, rea	ad as '0'		
-n = Value at POR '1' = Bit is set				'0' = Bit is clea	ared	x = Bit is unkr	nown	
	11111 = I npu	D>: Assign UAR at tied Vss at tied to RP15						
	•							
	00001 = Inpu 00000 = Inpu							
bit 7-5	00000 = Inpu		,					

REGISTER 10-7: RPINR18: PERIPHERAL PIN SELECT INPUT REGISTER 18

REGISTER 10-8: RPINR21: PERIPHERAL PIN SELECT INPUT REGISTER 21

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0	
_	—	_	_	_	—	_	_	
bit 15		·					bit 8	
U-0	U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	
_	—	_			SS1R<4:0>			
bit 7							bit 0	
Legend:								
R = Readable	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'		
-n = Value at	POR	'1' = Bit is set	t '0' = Bit is cleared x =			x = Bit is unkr	a = Bit is unknown	
bit 15-5	Unimplemen	ted: Read as '	0'					
bit 4-0	SS1R<4:0>:	Assign SPI1 SI	ave Select Inp	out (SS1IN) to	the correspondi	ng RPn pin		
	11111 = I npu	•		, , , , , , , , , , , , , , , , , , ,	•	0		
		It tied to RP15						
	•							
	•							
	00001 = Inpu							
	00000 = Input tied to RP0							

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
_	—	—			RP1R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP0R<4:0>		
bit 7							bit 0
Legend:							
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	d as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-13	Unimplemen	ted: Read as ')'				
bit 12-8	RP1R<4:0>:	Peripheral Outp	out Function	is Assigned to F	RP1 Output Pin	bits (see Table	10-2 for

REGISTER 10-9: RPOR0: PERIPHERAL PIN SELECT OUTPUT REGISTER 0

bit 7-5	Unimplemented: Read as '0'
bit 4-0	RP0R<4:0>: Peripheral Output Function is Assigned to RP0 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-10: RPOR1: PERIPHERAL PIN SELECT OUTPUT REGISTER 1

peripheral function numbers)

R = Readable bitW = Writable bit-n = Value at POR'1' = Bit is set			bit	bit U = Unimplemented bit, read as '0'			
Legend:							
							Dit (
bit 7							bit (
					RP2R<4:0>		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
							DIL
bit 15							bit
_	_	_			RP3R<4:0>		
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP3R<4:0>:** Peripheral Output Function is Assigned to RP3 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP2R<4:0>:** Peripheral Output Function is Assigned to RP2 Output Pin bits (see Table 10-2 for peripheral function numbers)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP5R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP4R<4:0>		
bit 7	·		•				bit 0

REGISTER 10-11: RPOR2: PERIPHERAL PIN SELECT OUTPUT REGISTER 2

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

- bit 12-8 **RP5R<4:0>:** Peripheral Output Function is Assigned to RP5 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP4R<4:0>:** Peripheral Output Function is Assigned to RP4 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-12: RPOR3: PERIPHERAL PIN SELECT OUTPUT REGISTER 3

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP7R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP6R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP7R<4:0>:** Peripheral Output Function is Assigned to RP7 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP6R<4:0>:** Peripheral Output Function is Assigned to RP6 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-13: RPOR4: PERIPHERAL PIN SELECT OUTPUT REGISTER 4

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP9R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP8R<4:0>		
bit 7	•						bit 0
Legend:							
R = Readable b	bit	W = Writable	e bit U = Unimplemented bit, read as '0'				
-n = Value at P	OR	'1' = Bit is set	t '0' = Bit is cleared $x = Bit$ is unknown				

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP9R<4:0>:** Peripheral Output Function is Assigned to RP9 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP8R<4:0>:** Peripheral Output Function is Assigned to RP8 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-14: RPOR5: PERIPHERAL PIN SELECT OUTPUT REGISTER 5

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP11R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	
—	—	—	RP10R<4:0>					
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP11R<4:0>:** Peripheral Output Function is Assigned to RP11 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP10R<4:0>:** Peripheral Output Function is Assigned to RP10 Output Pin bits (see Table 10-2 for peripheral function numbers)

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP13R<4:0>		
bit 15							bit 8
U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	_			RP12R<4:0>		
bit 7	•						bit 0

REGISTER 10-15: RPOR6: PERIPHERAL PIN SELECT OUTPUT REGISTER 6

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
-----------	----------------------------

- bit 12-8 **RP13R<4:0>:** Peripheral Output Function is Assigned to RP13 Output Pin bits (see Table 10-2 for peripheral function numbers)
- bit 7-5 Unimplemented: Read as '0'
- bit 4-0 **RP12R<4:0>:** Peripheral Output Function is Assigned to RP12 Output Pin bits (see Table 10-2 for peripheral function numbers)

REGISTER 10-16: RPOR7: PERIPHERAL PIN SELECT OUTPUT REGISTER 7

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP15R<4:0>		
bit 15							bit 8

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—			RP14R<4:0>		
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, rea	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13 Unimplemented: Read as '0'

bit 12-8 **RP15R<4:0>:** Peripheral Output Function is Assigned to RP15 Output Pin bits (see Table 10-2 for peripheral function numbers)

bit 7-5 Unimplemented: Read as '0'

bit 4-0 **RP14R<4:0>:** Peripheral Output Function is Assigned to RP14 Output Pin bits (see Table 10-2 for peripheral function numbers)

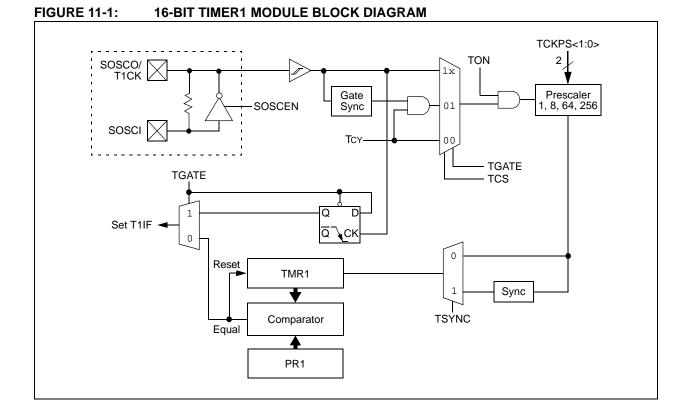
NOTES:

11.0 TIMER1

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11. "Timers"** (DS70205) in the *"dsPIC33F/PIC24H Family Reference Manual"*, which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer1 module is a 16-bit timer, which can serve as the time counter for the real-time clock, or operate as a free-running interval timer/counter. Timer1 can operate in three modes:

- 16-bit Timer
- 16-bit Synchronous Counter
- 16-bit Asynchronous Counter


Timer1 also supports these features:

- Timer gate operation
- Selectable prescaler settings
- Timer operation during CPU Idle and Sleep modes
- Interrupt on 16-bit Period register match or falling edge of external gate signal

Figure 11-1 presents a block diagram of the 16-bit timer module.

To configure Timer1 for operation:

- 1. Load the timer value into the TMR1 register.
- 2. Load the timer period value into the PR1 register.
- 3. Select the timer prescaler ratio using the TCKPS<1:0> bits in the T1CON register.
- 4. Set the Clock and Gating modes using the TCS and TGATE bits in the T1CON register.
- 5. Set or clear the TSYNC bit in T1CON to select synchronous or asynchronous operation.
- 6. If interrupts are required, set the interrupt enable bit, T1IE. Use the priority bits, T1IP<2:0>, to set the interrupt priority.
- 7. Set the TON bit (= 1) in the T1CON register.

© 2011 Microchip Technology Inc.

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0				
TON ⁽¹⁾		TSIDL	_		_		—				
bit 15				•			bit				
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	U-0				
—	TGATE	TCKP	S<1:0>	—	TSYNC	TCS ⁽¹⁾	—				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set	:	'0' = Bit is cle		x = Bit is unkno	own				
bit 15	TON: Timer1	On bit ⁽¹⁾									
	1 = Starts 16										
	0 = Stops 16-										
bit 14	-	ted: Read as '									
bit 13	•	in Idle Mode bi									
		module operat		device enters lo ode	die mode						
bit 12-7		ted: Read as '									
bit 6	TGATE: Timer1 Gated Time Accumulation Enable bit										
	When TCS = 1:										
	This bit is ignored.										
	When TCS = 0 :										
		ne accumulatio ne accumulatio									
bit 5-4				le Select hits							
bit 5 ⁻ 1	TCKPS<1:0> Timer1 Input Clock Prescale Select bits 11 = 1:256										
	10 = 1:64										
	01 = 1:8										
	00 = 1:1										
bit 3	-	ted: Read as '									
bit 2	TSYNC: Timer1 External Clock Input Synchronization Select bit										
	$\frac{\text{When TCS} = 1}{1 = \text{Synchronize external clock input}}$										
				out							
	0 = Do not synchronize external clock input When TCS = 0:										
	This bit is ignored.										
bit 1	TCS: Timer1	Clock Source	Select bit ⁽¹⁾								
	1 = External o 0 = Internal c	clock from pin ⁻ lock (FCY)	T1CK (on the	rising edge)							

REGISTER 11-1: T1CON: TIMER1 CONTROL REGISTER

Note 1: When TCS = 1 and TON = 1, writes to the TMR1 register are inhibited from the CPU.

12.0 TIMER2/3 FEATURE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to **Section 11.** "Timers" (DS70205) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Timer2/3 feature has three 2-bit timers that can also be configured as two independent 16-bit timers with selectable operating modes.

As a 32-bit timer, the Timer2/3 feature permits operation in three modes:

- Two Independent 16-bit timers (e.g., Timer2 and Timer3) with all 16-bit operating modes (except Asynchronous Counter mode)
- Single 32-bit timer (Timer2/3)
- Single 32-bit synchronous counter (Timer2/3)

The Timer2/3 feature also supports:

- Timer gate operation
- Selectable prescaler settings
- Timer operation during Idle and Sleep modes
- Interrupt on a 32-bit period register match
- Time base for Input Capture and Output Compare modules (Timer2 and Timer3 only)
- ADC1 event trigger (Timer2/3 only)

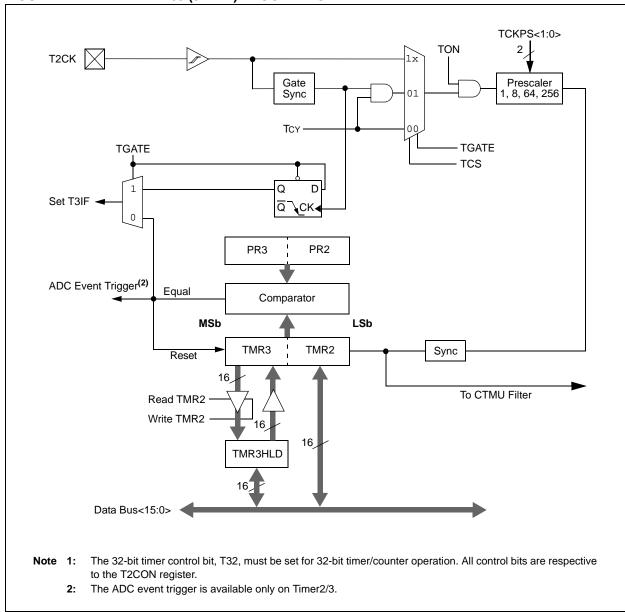
Individually, all eight of the 16-bit timers can function as synchronous timers or counters. They also offer the features listed above, except for the event trigger. The operating modes and enabled features are determined by setting the appropriate bit(s) in the T2CON, T3CON registers. T2CON registers are shown in generic form in Register 12-1. T3CON registers are shown in Register 12-2.

For 32-bit timer/counter operation, Timer2 is the least significant word, and Timer3 is the most significant word (msw) of the 32-bit timers.

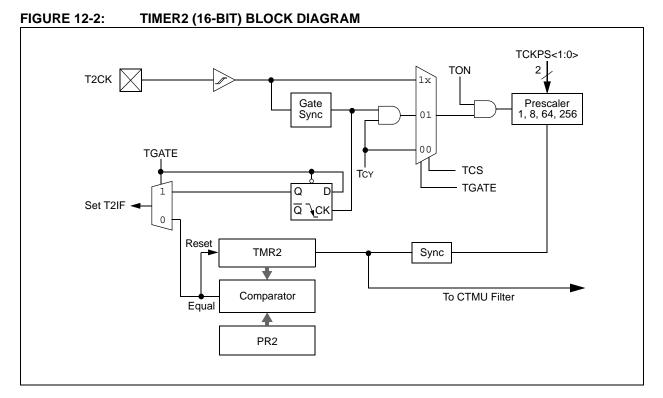
Note:	For 32-bit operation, T3CON control bits					
	are ignored. Only T2CON control bits are					
	used for setup and control. Timer2 clock					
	and gate inputs are used for the 32-bit					
	timer modules, but an interrupt is					
	generated with the Timer3 interrupt flags.					

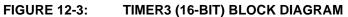
12.1 32-bit Operation

To configure the Timer2/3 feature timers for 32-bit operation:


- 1. Set the T32 control bit.
- Select the prescaler ratio for Timer2 using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the corresponding TCS and TGATE bits.
- 4. Load the timer period value. PR3 contains the msw of the value, while PR2 contains the least significant word (lsw).
- 5. If interrupts are required, set the interrupt enable bit, T3IE. Use the priority bits, T3IP<2:0>, to set the interrupt priority. While Timer2 controls the timer, the interrupt appears as a Timer3 interrupt.
- 6. Set the corresponding TON bit.

The timer value at any point is stored in the register pair, TMR3:TMR2, which always contains the msw of the count, while TMR2 contains the lsw.


12.2 16-bit Operation


To configure any of the timers for individual 16-bit operation:

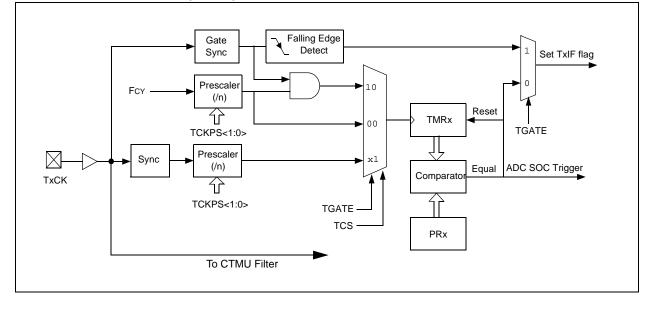

- 1. Clear the T32 bit corresponding to that timer.
- Select the timer prescaler ratio using the TCKPS<1:0> bits.
- 3. Set the Clock and Gating modes using the TCS and TGATE bits.
- 4. Load the timer period value into the PRx register.
- 5. If interrupts are required, set the interrupt enable bit, TxIE. Use the priority bits, TxIP<2:0>, to set the interrupt priority.
- 6. Set the TON bit.

FIGURE 12-1: TIMER2/3 (32-BIT) BLOCK DIAGRAM⁽¹⁾

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0					
TON	0-0	TSIDL	0-0	0-0	0-0	0-0	0-0					
bit 15		TSIDE	_	_			bit 8					
U-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	U-0					
—	TGATE	TCKP	S<1:0>	T32	_	TCS						
bit 7							bit (
Legend:												
R = Readabl	le bit	W = Writable	bit	U = Unimplem	ented bit, rea	d as '0'						
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkno	own					
			-									
bit 15	TON: Timer2	On bit										
	When T32 = 2											
	1 = Starts 32-											
	0 = Stops 32-											
	When T32 = 0: 1 = Starts 16-bit Timer2											
	0 = Stops 16-											
bit 14	Unimplemen	ted: Read as '	0'									
bit 13	TSIDL: Stop in Idle Mode bit											
				device enters Idl	e mode							
		module operat		ode								
bit 12-7	-	ted: Read as '										
bit 6	TGATE: Timer2 Gated Time Accumulation Enable bit											
	When TCS =											
	This bit is ignored. When TCS = 0:											
	1 = Gated time accumulation enabled											
	0 = Gated tim	e accumulatio	n disabled									
bit 5-4	TCKPS<1:0>	: Timer2 Input	Clock Presca	ale Select bits								
	11 = 1:256											
	10 = 1:64											
	01 = 1:8 00 = 1:1											
bit 3	T32: 32-bit Timer Mode Select bit											
		nd Timer3 form nd Timer3 act a										
bit 2	Unimplemen	ted: Read as '	0'									
bit 1	TCS: Timer2	Clock Source	Select bit									
		clock from pin [·]	T2CK (on the	rising edge)								
	0 = Internal c	lock (FCY)										

REGISTER 12-1: T2CON CONTROL REGISTER

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
TON ⁽²⁾		TSIDL ⁽¹⁾					_			
bit 15						· · ·	bit 8			
U-0	R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	U-0			
	TGATE ⁽²⁾	TCKPS<	:1:0> ⁽²⁾			TCS ⁽²⁾				
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable b	oit	U = Unimpler	mented bit, rea	d as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkne	own			
		(2)								
bit 15	TON: Timer3									
1 = Starts 16-bit Timer3 0 = Stops 16-bit Timer3										
bit 14	•	ted: Read as '0	,							
bit 13	•	n Idle Mode bit								
	1 = Discontinu	ue timer operati timer operation	on when dev		mode					
bit 12-7		ted: Read as '0								
bit 6	TGATE: Time	er3 Gated Time	Accumulatio	n Enable bit ⁽²⁾						
	When TCS = This bit is igno									
	$\frac{\text{When TCS}}{1 = \text{Gated tim}}$	0: e accumulation	enabled							
		e accumulation								
bit 5-4	TCKPS<1:0>	: Timer3 Input (Clock Presca	le Select bits ⁽²⁾)					
		11 = 1:256 prescale value								
		10 = 1:64 prescale value 01 = 1:8 prescale value								
	01 = 1.0 press 00 = 1.1 press									
bit 3-2	-	ted: Read as '0)'							
bit 1	TCS: Timer3	Clock Source S	elect bit ⁽²⁾							
	1 = External c 0 = Internal cl	clock from T3Ck lock (Fosc/2)	K pin							
bit 0	Unimplemen	ted: Read as '0)'							
	001.00			1) in the Timer						

REGISTER 12-2: T3CON CONTROL REGISTER

Note 1: When 32-bit timer operation is enabled (T32 = 1) in the Timer Control register (T2CON<3>), the TSIDL bit must be cleared to operate the 32-bit timer in Idle mode.

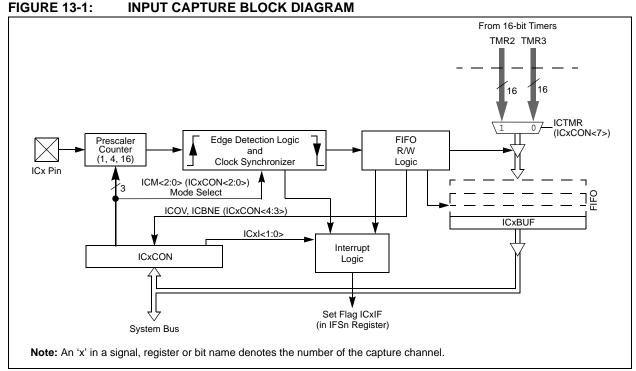
2: When the 32-bit timer operation is enabled (T32 = 1) in the Timer Control (T2CON<3>) register, these bits have no effect.

NOTES:

INPUT CAPTURE 13.0

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 12. "Input Capture" (DS70198) in the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Input Capture module is useful in applications requiring frequency (period) and pulse measurement. The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices support up to eight input capture channels.


The Input Capture module captures the 16-bit value of the selected Time Base register when an event occurs at the ICx pin. The events that cause a capture event are listed below in three categories:

- 1. Simple Capture Event modes:
 - Capture timer value on every falling edge of input at ICx pin
 - · Capture timer value on every rising edge of input at ICx pin
- 2. Capture timer value on every edge (rising and falling)
- 3. Prescaler Capture Event modes:
 - · Capture timer value on every 4th rising edge of input at ICx pin
 - Capture timer value on every 16th rising edge of input at ICx pin

Each Input Capture channel can select one of two 16-bit timers (Timer2 or Timer3) for the time base. The selected timer can use either an internal or external clock.

Other operational features include:

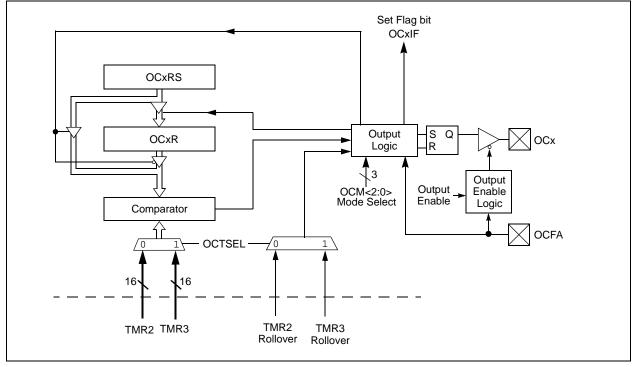
- Device wake-up from capture pin during CPU Sleep and Idle modes
- Interrupt on Input Capture event
- · 4-word FIFO buffer for capture values:
 - Interrupt optionally generated after 1, 2, 3, or 4 buffer locations are filled
- · Use of Input Capture to provide additional sources of external interrupts

13.1 Input Capture Registers

REGISTER 13-1: ICxCON: INPUT CAPTURE x CONTROL REGISTER

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0		
	—	ICSIDL	_	—	—	—	—		
bit 15	·						bit 8		
R/W-0	R/W-0	R/W-0	R-0, HC	R-0, HC	R/W-0	R/W-0	R/W-0		
ICTMR		<1:0>	ICOV	ICBNE	11/10-0	ICM<2:0>	10/00-0		
bit 7		(1.02	1007	ICDINE		10101<2.0>	bit		
							Dit		
Legend:									
R = Readable	bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'			
-n = Value at F	POR		'0' = Bit is clea	ared	x = Bit is unkn	own			
bit 15-14	Unimplemen	nted: Read as '	0'						
bit 13	ICSIDL: Input Capture Module Stop in Idle Control bit								
	1 = Input capture module will halt in CPU Idle mode								
	0 = Input capture module will continue to operate in CPU Idle mode								
bit 12-8	-	ted: Read as '							
bit 7	ICTMR: Input Capture Timer Select bits								
	 1 = TMR2 contents are captured on capture event 0 = TMR3 contents are captured on capture event 								
bit 6-5	ICI<1:0>: Select Number of Captures per Interrupt bits								
	11 = Interrupt on every fourth capture event								
	10 = Interrupt on every third capture event								
	01 = Interrupt on every second capture event00 = Interrupt on every capture event								
bit 4	-) bit (read-only)					
2	=	ture overflow o	-	, 211 (1992 911.))					
	0 = No input capture overflow occurred								
bit 3	ICBNE: Input	t Capture Buffe	r Empty Statu	s bit (read-only))				
	1 = Input capture buffer is not empty, at least one more capture value can be read								
	0 = Input capture buffer is empty								
bit 2-0		put Capture M							
	111 = Input capture functions as interrupt pin only when device is in Sleep or Idle mode (Rising edge detect only, all other control bits are not applicable.)								
		d (module disa			not applicable.)			
		re mode, every		lge					
	•	re mode, every		e					
		re mode, every							
		re mode, every re mode, every		and falling)					
				pt generation f	or this mode.)				
		apture module			,				

14.0 OUTPUT COMPARE


- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 13. "Output Compare" (DS70209) of the "dsPIC33F/ PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Output Compare module can select either Timer2 or Timer3 for its time base. The module compares the value of the timer with the value of one or two compare registers depending on the operating mode selected. The state of the output pin changes when the timer value matches the compare register value. The Output Compare module generates either a single output pulse or a sequence of output pulses, by changing the state of the output pin on the compare match events. The Output Compare module can also generate interrupts on compare match events.

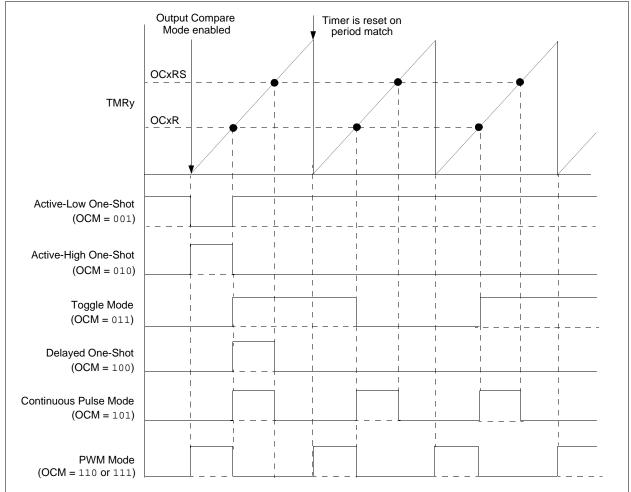
The Output Compare module has multiple operating modes:

- Active-Low One-Shot mode
- Active-High One-Shot mode
- Toggle mode
- · Delayed One-Shot mode
- Continuous Pulse mode
- PWM mode without fault protection
- PWM mode with fault protection

FIGURE 14-1: OUTPUT COMPARE MODULE BLOCK DIAGRAM

14.1 Output Compare Modes

Configure the Output Compare modes by setting the appropriate Output Compare Mode (OCM<2:0>) bits in the Output Compare Control (OCxCON<2:0>) register. Table 14-1 lists the different bit settings for the Output Compare modes. Figure 14-2 illustrates the output compare operation for various modes. The user


TABLE 14-1: OUTPUT COMPARE MODES

application must disable the associated timer when writing to the output compare control registers to avoid malfunctions.

Note:	See Section 13. "Output Compare" in						
	the "dsPIC33F/PIC24H Family Reference						
	Manual" (DS70209) for OCxR and						
	OCxRS register restrictions.						

OCM<2:0>	Mode	OCx Pin Initial State	OCx Interrupt Generation
000	Module Disabled	Controlled by GPIO register	—
001	Active-Low One-Shot	0	OCx Rising edge
010	Active-High One-Shot	1	OCx Falling edge
011	Toggle Mode	Current output is maintained	OCx Rising and Falling edge
100	Delayed One-Shot	0	OCx Falling edge
101	Continuous Pulse mode	0	OCx Falling edge
110	PWM mode without fault protection	0, if OCxR is zero 1, if OCxR is non-zero	No interrupt
111	PWM mode with fault protection	0, if OCxR is zero 1, if OCxR is non-zero	OCFA Falling edge for OC1 to OC4

FIGURE 14-2: OUTPUT COMPARE OPERATION

U-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
—	—	OCSIDL	—	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	R-0 HC	R/W-0	R/W-0	R/W-0	R/W-0
—	—	—	OCFLT	OCTSEL		OCM<2:0>	
bit 7		÷					bit 0
Legend:		HC = Cleared i	n Hardware	HS = Set in H	lardware		
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							

'0' = Bit is cleared

x = Bit is unknown

REGISTER 14-1: OCxCON: OUTPUT COMPARE x CONTROL REGISTER

'1' = Bit is set

bit 15-14	Unimplemented: Read as '0'
bit 13	OCSIDL: Stop Output Compare in Idle Mode Control bit 1 = Output Compare x will halt in CPU Idle mode 0 = Output Compare x will continue to operate in CPU Idle mode
bit 12-5	Unimplemented: Read as '0'
bit 4	OCFLT: PWM Fault Condition Status bit
	 1 = PWM Fault condition has occurred (cleared in hardware only) 0 = No PWM Fault condition has occurred (This bit is only used when OCM<2:0> = 111.)
bit 3	OCTSEL: Output Compare Timer Select bit
	1 = Timer3 is the clock source for Compare x0 = Timer2 is the clock source for Compare x
bit 2-0	OCM<2:0>: Output Compare Mode Select bits
	 111 = PWM mode on OCx, Fault pin enabled 110 = PWM mode on OCx, Fault pin disabled 101 = Initialize OCx pin low, generate continuous output pulses on OCx pin 100 = Initialize OCx pin low, generate single output pulse on OCx pin 011 = Compare event toggles OCx pin 010 = Initialize OCx pin high, compare event forces OCx pin low 001 = Initialize OCx pin low, compare event forces OCx pin high 000 = Output compare channel is disabled

-n = Value at POR

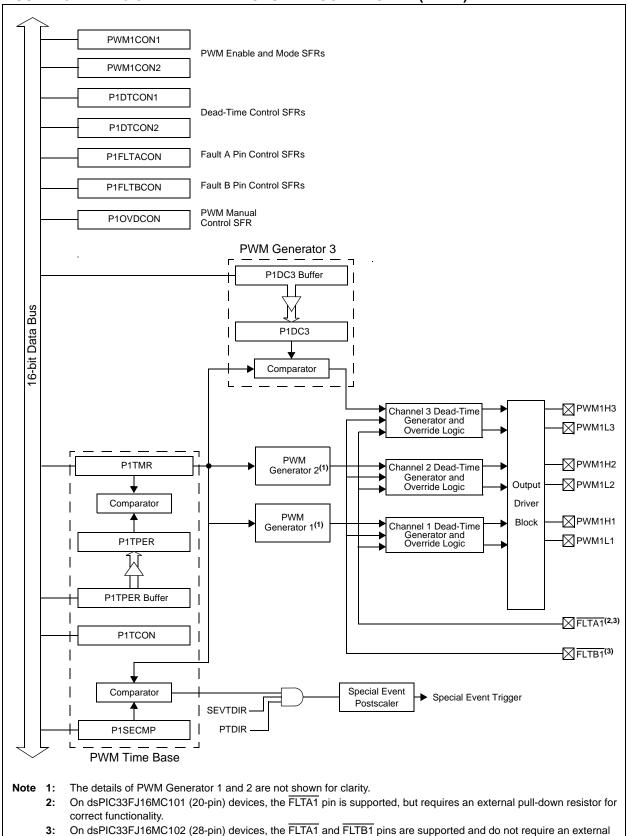
NOTES:

15.0 MOTOR CONTROL PWM MODULE

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 14. "Motor Control PWM" (DS70187), in the "dsPIC33F/ PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16MC10X devices have a 6-channel Pulse-Width Modulation (PWM) module.

The PWM module has the following features:


- Up to 16-bit resolution
- On-the-fly PWM frequency changes
- Edge-Aligned and Center-Aligned Output modes
- Single Pulse Generation mode
- Interrupt support for asymmetrical updates in Center-Aligned mode
- Output override control for Electrically Commutative Motor (ECM) operation or BLDC
- Special Event comparator for scheduling other peripheral events
- Fault pins to optionally drive each of the PWM output pins to a defined state
- Duty cycle updates configurable to be immediate or synchronized to the PWM time base

15.1 PWM1: 6-Channel PWM Module

This module simplifies the task of generating multiple synchronized PWM outputs. The following power and motion control applications are supported by the PWM module:

- 3-Phase AC Induction Motor
- Switched Reluctance (SR) Motor
- Brushless DC (BLDC) Motor
- Uninterruptible Power Supply (UPS)

This module contains three duty cycle generators, numbered 1 through 3. The module has six PWM output pins, numbered PWM1H1/PWM1L1 through PWM1H3/PWM1L3. The six I/O pins are grouped into high/low numbered pairs, denoted by the suffix H or L, respectively. For complementary loads, the low PWM pins are always the complement of the corresponding high I/O pin.

DS70652C-page 154

pull-down resistor.

15.2 PWM Faults

The Motor Control PWM module incorporates up to two fault inputs, FLTA1 and FLTB1. These fault inputs are implemented with Class B safety features. These features ensure that the PWM outputs enter a safe state when either of the fault inputs is asserted.

The FLTA and FLTB pins, when enabled and having ownership of a pin, also enable a soft internal pull-down resistor. The soft pull-down provides a safety feature by automatically asserting the fault should a break occur in the fault signal connection.

The implementation of internal pull-down resistors is dependent on the device variant. Table 15-1 describes which devices and pins implement the internal pull-down resistors.

TABLE 15-1: INTERNAL PULL-DOWN RESISTORS ON PWM FAULT PINS

Device	Fault Pin	Internal Pull- down Implemented?	
dsPIC33FJ16MC101	FLTA1	No	
dsPIC33FJ16MC102	FLTA1	Yes	
	FLTB1	Yes	

On devices without internal pull-downs on the Fault pin, it is recommended to connect an external pull-down resistor for Class B safety features.

15.2.1 PWM FAULTS AT RESET

During any reset event, the PWM module maintains ownership of both PWM Fault pins. At reset, both faults are enabled in latched mode to guarantee the fail-safe power-up of the application. The application software must clear both the PWM faults before enabling the Motor Control PWM module.

The Fault condition must be cleared by the external circuitry driving the fault input pin high and clearing the fault interrupt flag. After the fault pin condition has been cleared, the PWM module restores the PWM output signals on the next PWM period or half-period boundary. Refer to **Section 14. "Motor Control PWM"** (DS70187), in the "*dsPIC33F/PIC24H Family Reference Manual*" for more information on the PWM faults.

Note:	The number of PWM faults mapped to the device pins depend on the specific variant. Regardless of the variant, both faults will be enabled during any reset <u>event.</u> The <u>application</u> must clear both FLTA1 and FLTB1 before enabling the Motor Control PWM module. Refer to the
	specific device pin diagrams to see which fault pins are mapped to the device pins.

15.3 Write-protected Registers

On dsPIC33FJ16MC101/102 devices, write protection is implemented for the PWMxCON1, PxFLTACON and PxFLTBCON registers. The write protection feature prevents any inadvertent writes to these registers. The write protection feature can be controlled by the PWMLOCK configuration bit in the FOSCSEL configuration register. The default state of the write protection feature is enabled (PWMLOCK = 1). The write protection feature can be disabled by configuring PWMLOCK (FOSCSEL<6>) = 0.

The user application can gain access to these locked registers either by configuring the PWMLOCK (FOSC-SEL<6>) = 0, or by performing the unlock sequence. To perform the unlock sequence, the user application must write two consecutive values of (0xABCD and 0x4321) to the PWMxKEY register to perform the unlock operation. The write access to the PWMxCON1, PxFLTACON or PxFLTBCON registers must be the next SFR access following the unlock process. There can be no other SFR accesses during the unlock process and subsequent write access.

To write to all registers, the PWMxCON1, PxFLTACON and PxFLTBCON registers require three unlock operations.

The correct unlocking sequence is described in Example 15-1 and Example 15-2.

EXAMPLE 15-1: ASSEMBLY CODE EXAMPLE FOR WRITE-PROTECTED REGISTER UNLOCK AND FAULT CLEARING SEQUENCE

; FLTA1 pin must be pu	alled high externally in order to clear and disable the fault
; Writing to P1FLTBCON	N register requires unlock sequence
mov #0xabcd,w10	; Load first unlock key to w10 register
mov #0x4321,w11	; Load second unlock key to w11 register
mov #0x0000,w0	; Load desired value of P1FLTACON register in w0
mov w10, PWM1KEY	; Write first unlock key to PWM1KEY register
mov w11, PWM1KEY	; Write second unlock key to PWM1KEY register
mov w0,P1FLTACON	; Write desired value to P1FLTACON register
· ET ED 1 min must be m	llad birb subsumplies in suday be closed and direble the fault
	alled high externally in order to clear and disable the fault N register reguires unlock sequence
, writing to piflibeor	v register requires unlock sequence
mov #0xabcd,w10	; Load first unlock key to w10 register
mov #0x4321,w11	; Load second unlock key to w11 register
mov #0x0000,w0	; Load desired value of P1FLTBCON register in w0
mov w10, PWM1KEY	; Write first unlock key to PWM1KEY register
mov w11, PWM1KEY	; Write second unlock key to PWM1KEY register
mov w0,P1FLTBCON	; Write desired value to P1FLTBCON register
; Enable all PWMs usir	
; Writing to PWM1CON1	register requires unlock sequence
mov #0xabcd,w10	· Teach friends and a large be all an and about
mov #0x4321,w11	; Load first unlock key to w10 register ; Load second unlock key to w11 register
mov #0x4321,w11 mov #0x0077,w0	; Load desired value of PWM1CON1 register in w0
mov w10, PWM1KEY	; Write first unlock key to PWM1CONI register in wo
mov w10, PWMIKEY mov w11, PWM1KEY	; Write second unlock key to PWMIKEY register
mov w0,PWM1CON1	; Write desired value to PWM1CON1 register
MOV WO, PWMILCONI	, write desired value to PWMICONI register

EXAMPLE 15-2: C CODE EXAMPLE FOR WRITE-PROTECTED REGISTER UNLOCK AND FAULT CLEARING SEQUENCE

// FLTAl pin must be pulled high externally in order to clear and disable the fault // Writing to PlFLTACON register requires unlock sequence // Use builtin function to write 0x0000 to PlFLTACON register __builtin_write_PWMSFR(&PlFLTACON, 0x0000, &PWM1KEY); // FLTBl pin must be pulled high externally in order to clear and disable the fault // Writing to PlFLTBCON register requires unlock sequence // Use builtin function to write 0x0000 to PlFLTBCON register __builtin_write_PWMSFR(&PlFLTBCON, 0x0000, &PWM1KEY); // Enable all PWMs using PWM1CON1 register // Writing to PWM1CON1 register requires unlock sequence // Use builtin function to write 0x007 to PWM1CON1 register

__builtin_write_PWMSFR(&PWM1CON1, 0x0077, &PWM1KEY);

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0
PTEN	—	PTSIDL	—	_		—	—
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	PTOPS<3:0>			PTCK	PS<1:0>	PTMO	D<1:0>

REGISTER 15-1: PxTCON: PWM TIME BASE CONTROL REGISTER

Legend:							
R = Readab	le bit	W = Writable bit	U = Unimplemented bit,	read as '0'			
-n = Value a	t POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown			
bit 15		VM Time Base Timer Enable	e bit				
		time base is on					
		time base is off					
bit 14	•	nented: Read as '0'					
bit 13		PWM Time Base Stop in Idle					
	 1 = PWM time base halts in CPU Idle mode 0 = PWM time base runs in CPU Idle mode 						
bit 12-8	Unimpler	Unimplemented: Read as '0'					
bit 7-4	PTOPS<3:0>: PWM Time Base Output Postscale Select bits						
	1111 = 1:16 postscale						
	•						
	•						
	0001 = 1:	2 postscale					
	0000 = 1:	1 postscale					
bit 3-2	PTCKPS	<1:0>: PWM Time Base Inpu	ut Clock Prescale Select bits				
		A time base input clock perio					
		A time base input clock perio					
		A time base input clock period A time base input clock period	· · /				
bit 1-0		1:0>: PWM Time Base Mode					
	11 = PWN		ontinuous Up/Down Count mo	ode with interrupts for double			
		1	ontinuous Up/Down Count mo	ode			
		A time base operates in Sing					
	00 = PWN	A time base operates in a Fro	ee-Running mode				

bit 7

bit 0

R-0							
K-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
PTDIR				PTMR<14:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTM	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	oit	W = Writable	bit	U = Unimplen	nented bit, rea	ad as '0'	
-n = Value at POR '1' = Bit is set			'0' = Bit is cleared x		x = Bit is unkr	x = Bit is unknown	

REGISTER 15-2: PxTMR: PWM TIMER COUNT VALUE REGISTER

 0 = PWM time base is counting up

 bit 14-0

 PTMR <14:0>: PWM Time Base Register Count Value bits

REGISTER 15-3: PXTPER: PWM TIME BASE PERIOD REGISTER

U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—				PTPER<14:8	>		
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PTPE	R<7:0>			
bit 7							bit 0
Legend:							
R = Readable b	bit	W = Writable bi	t	U = Unimpler	nented bit, read	l as '0'	

'0' = Bit is cleared

bit 15 Unimplemented: Read as '0'

bit 14-0 **PTPER<14:0>:** PWM Time Base Period Value bits

'1' = Bit is set

-n = Value at POR

x = Bit is unknown

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
SEVTDIR ⁽¹⁾)		ç	SEVTCMP<14:8	_{3>} (2)					
bit 15	÷						bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			SEVTC	MP<7:0> ⁽²⁾						
bit 7							bit 0			
Legend:										
R = Readabl	e bit	W = Writable bit	t	U = Unimplemented bit, read as '0'						
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unki	nown			
bit 15	SEVTDIR: S	Special Event Trigg	jer Time Ba	ase Direction bit	(1)					
	1 = A Specia	al Event Trigger wi	ll occur wh	en the PWM tim	ne base is cou	•				
1	0 = A Special Event Trigger will occur when the PWM time base is counting up									

bit 14-0 SEVTCMP<14:0>: Special Event Compare Value bits⁽²⁾

Note 1: SEVTDIR is compared with PTDIR (PxTMR<15>) to generate the Special Event Trigger.

2: PxSECMP<14:0> is compared with PxTMR<14:0> to generate the Special Event Trigger.

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
_	_	—	_		PMOD3	PMOD2	PMOD1			
bit 15	·		•	•		•	bit 8			
	DAMA	DAMO	DAMO		DAMA	DANO	DAMO			
U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0			
	PEN3H	PEN2H	PEN1H		PEN3L	PEN2L	PEN1L			
bit 7							bit C			
Legend:										
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown				
bit 15-11	Unimplemen	ted: Read as '	0'							
bit 10-8	PMOD3:PMO	D1: PWM I/O	Pair Mode bit	s						
	1 - P M I O	pin pair is in th	•	nt PWM Output	mode					
		0 = PWM I/O pin pair is in the Complementary Output mode								
bit 7	0 = PWM I/O		•	ntary Output mo	ode					
	0 = PWM I/O Unimplemen	pin pair is in th t ed: Read as ' I H: PWMxH I/0	D'	ntary Output mo	ode					
bit 7 bit 6-4	0 = PWM I/O Unimplemen PEN3H:PEN1	ted: Read as ' H: PWMxH I/(0' D Enable bits		ode					
	0 = PWM I/O Unimplemen PEN3H:PEN1 1 = PWMxH p	ted: Read as ' H: PWMxH I/(in is enabled f	o' D Enable bits or PWM outp							
	0 = PWM I/O Unimplemen PEN3H:PEN1 1 = PWMxH p 0 = PWMxH p	ted: Read as ' H: PWMxH I/(in is enabled f	₀ ') Enable bits or PWM outp) pin become	ut						
bit 6-4 bit 3	0 = PWM I/O Unimplemen PEN3H:PEN1 1 = PWMxH p 0 = PWMxH p Unimplemen	ted: Read as ' H: PWMxH I/(hin is enabled f hin disabled, I/(0' O Enable bits or PWM outp O pin become 0'	ut						
bit 6-4	0 = PWM I/O Unimplemen PEN3H:PEN1 1 = PWMxH p 0 = PWMxH p Unimplemen PEN3L:PEN1 1 = PWMxL p	ted: Read as ' IH: PWMxH I/(in is enabled f in disabled, I/(ted: Read as ' L: PWMxL I/O in is enabled fo	D' D Enable bits or PWM outp D pin become D' Enable bits or PWM outpu	ut s general purpo	ose I/O					

REGISTER 15-5: PWMxCON1: PWM CONTROL REGISTER 1⁽¹⁾

Note 1: The PWMxCON1 register is a write-protected register. Refer to Section 15.3 "Write-protected Registers" for more information on the unlock sequence.

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	—	_	—		SEVO	PS<3:0>			
bit 15							bit 8		
U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0		
—				—	IUE	OSYNC	UDIS		
bit 7							bit C		
Legend:									
R = Readabl	le bit	W = Writable I	e bit $U = Unimplemented bit, read as '0'$						
-n = Value at	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkn	own		
	1111 = 1:16 p	ostscale							
bit 7-3	•	ted: Read as '()'						
bit 2	•	te Update Enal							
	1 = Updates t	o the active Px	DC registers		ed to the PWM	1 time base			
bit 1	1 = Output ov	 0 = Updates to the active PxDC registers are synchronized to the PWM time base OSYNC: Output Override Synchronization bit 1 = Output overrides via the PxOVDCON register are synchronized to the PWM time base 0 = Output overrides via the PxOVDCON register occur on next Tcy boundary 							
bit 0	UDIS: PWM U 1 = Updates f	 0 = Output overrides via the PxOVDCON register occur on next TcY boundary UDIS: PWM Update Disable bit 1 = Updates from Duty Cycle and Period Buffer registers are disabled 0 = Updates from Duty Cycle and Period Buffer registers are enabled 							

REGISTER 15-6: PWMxCON2: PWM CONTROL REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
DTB	PS<1:0>			DTE	8<5:0>				
bit 15		•					bit 8		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
	DTAPS<1:0> DTA<5:0>					11/00-0			
bit 7	1 3 1.02				<0.0>		bit 0		
2									
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimplemented bit, read as '0'					
-n = Value at	POR	'1' = Bit is set	1' = Bit is set		'0' = Bit is cleared		nown		
bit 15-14	11 = Clock 10 = Clock 01 = Clock	Dead-Time U beriod for Dead- beriod for Dead- beriod for Dead- beriod for Dead- beriod for Dead-	Time Unit B is Time Unit B is Time Unit B is	s 8 TCY s 4 TCY s 2 TCY					
bit 13-8	DTB<5:0>:	Unsigned 6-bit E	Dead-Time Va	alue for Dead-Ti	me Unit B bits				
bit 7-6	11 = Clock 10 = Clock 01 = Clock	>: Dead-Time U beriod for Dead- beriod for Dead- beriod for Dead- beriod for Dead- beriod for Dead-	Time Unit A is Time Unit A is Time Unit A is	s 8 TCY s 4 TCY s 2 TCY					
bit 5-0	DTA<5:0>:	Unsigned 6-bit E	ned 6-bit Dead-Time Value for Dead-Time Unit A bits						

REGISTER 15-7: PxDTCON1: DEAD-TIME CONTROL REGISTER 1

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—		—	—	—		_	_
oit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
—	—	DTS3A	DTS3I	DTS2A	DTS2I	DTS1A	DTS1I
bit 7							bit C
Legend:							
R = Readab		W = Writable		•	nented bit, rea		
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-6	Unimplement	ted: Dood oo (o'				
bit 5	•	nted: Read as '(a hit		
DIL D		d-Time Select for e provided from	•	nal Going Activ			
		e provided from					
bit 4		I-Time Select fo		al Going Inactiv	ve bit		
		e provided from					
		e provided from					
bit 3		d-Time Select for	•	nal Going Activ	e bit		
		e provided from					
h # 0		e provided from			in hit		
bit 2		I-Time Select fo e provided from	•	al Going Inactiv	ve bit		
		e provided from					
bit 1		d-Time Select for		nal Going Activ	e bit		
		e provided from	0				
		e provided from					
bit 0	DTS1I: Dead	I-Time Select fo	r PWM1 Sign	al Going Inactiv	ve bit		
		e provided from					
	0 = Dead tim	e provided from	n Unit A				

REGISTER 15-8: PxDTCON2: DEAD-TIME CONTROL REGISTER 2

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	FAOV3H	FAOV3L	FAOV2H	FAOV2L	FAOV1H	FAOV1L
bit 15			•				bit 8
R/W-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1
FLTAM		—		—	FAEN3	FAEN2	FAEN1
bit 7							bit
Legend:							
R = Readal	ole bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	at POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15-14	Unimpleme	n ted: Read as '	0'				
bit 13-8	FAOVxH<3:	1>:FAOVxL<3:	1>: Fault Inpu	t A PWM Over	ride Value bits		
	1 = The PWI	M output pin is o	driven active o	on an external F	ault input ever	nt	
	0 = The PWI	M output pin is o	driven inactive	on an external	l Fault input ev	ent	
bit 7	FLTAM: Fau	It A Mode bit					
		lt A input pin fur					
	0 = The Fau	lt A input pin lat	ches all contro	ol pins to the pr	ogrammed sta	tes in PxFLTAC	ON<13:8>
bit 6-3	Unimpleme	nted: Read as '	0'				
bit 2	FAEN3: Fau	lt Input A Enabl	e bit				
		3/PWMxL3 pin					
	0 = PWMxH3	3/PWMxL3 pin	pair is not con	trolled by Fault	Input A		
bit 1	FAEN2: Fau	lt Input A Enabl	e bit				
		2/PWMxL2 pin					
		2/PWMxL2 pin		trolled by Fault	Input A		
bit 0		It Input A Enabl					
		1/PWMxL1 pin					
	$0 = PWMxH^{2}$	1/PWMxL1 pin	pair is not con	trolled by Fault	Input A		
	Comparator outp modules for Fau dedicated FLTA1	lt g <u>enerati</u> on, th	e user must e				
2:	On dsPIC33FJ10 pull-down resisto			ly the FLTA1 p	oin is supporte	d, but it require	es an externa
3:	On dsPIC33FJ1 require an extern			oth the FLTA1	and FLTB1 pi	ns are supporte	ed and <i>do n</i>

REGISTER 15-9: PxFLTACON: FAULT A CONTROL REGISTER^(1,2,3,4,5)

- 4: The PxFLTACON register is a write-protected register. Refer to Section 15.3 "Write-protected Registers" for more information on the unlock sequence.
- 5: During any reset event, FLTA1 is enabled by default and must be cleared as described in Section 15.2 "PWM Faults".

U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
_		FBOV3H	FBOV3L	FBOV2H	FBOV2L	FBOV1H	FBOV1L			
bit 15		·	•			·	bit 8			
D 444 0					D 444 4	D 444 4	D 444 4			
R/W-0	U-0	U-0	U-0	U-0	R/W-1	R/W-1	R/W-1			
FLTBM	—	—	_	—	FBEN3	FBEN2	FBEN1			
bit 7							bit			
Legend:										
R = Reada	ble bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value	at POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15-14	Unimpleme	nted: Read as '	0'							
bit 13-8		:1>:FBOVxL<3:	-							
		Moutput pin is c								
bit 7		M output pin is c It B Mode bit	inven mactive	on an external	Fault input ev	ent				
		1 = The Fault B input pin functions in the Cycle-by-Cycle mode								
		It B input pin late				tes in PxFLTBC	ON<13:8>			
bit 6-3	Unimpleme	nted: Read as '	0'							
bit 2	FBEN3: Fau	ult Input B Enabl	e bit							
		3/PWMxL3 pin p 3/PWMxL3 pin p								
bit 1		It Input B Enabl		trolled by I aut	пригъ					
		2/PWMxL2 pin p		ed by Fault Inp	ut B					
		2/PWMxL2 pin p								
bit 0	FBEN1: Fau	ilt Input B Enabl	e bit							
		1/PWMxL1 pin p								
	0 = PWMxH	1/PWMxL1 pin p	pair is not cont	trolled by Fault	Input B					
Note 1:	Comparator outp modules for Fau dedicated FLTA1	llt generation, th	e user must e							
2:	On dsPIC33FJ1 pull-down resisto	6MC101 (20-pir) devices, on	ly the $\overline{FLTA1}$ p	oin is supporte	d, but it require	es an externa			
3:	On dsPIC33FJ1 require an extern			oth the FLTA1	and FLTB1 pir	ns are supporte	ed and <i>do n</i> e			
4:	The PxFLTAC Registers" for n	ON register is nore information			Refer to Se	ction 15.3 "Wr	ite-protecte			
5:	During any rese "PWM Faults".	t event, FLTB1 i	s enabled by	default and mu	ust be cleared	as described in	Section 15			

REGISTER 15-10: PxFLTBCON: FAULT B CONTROL REGISTER^(1,2,3,4,5)

U-0	U-0	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1	R/W-1				
	—	POVD3H	POVD3L	POVD2H	POVD2L	POVD1H	POVD1L				
bit 15							bit 8				
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
—	—	POUT3H	POUT3L	POUT2H	POUT2L	POUT1H	POUT1L				
bit 7							bit 0				
Legend:											
R = Readable	bit	W = Writable	bit	U = Unimplemented bit, read as '0'							
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-14	Unimplemen	ted: Read as '	0'								
bit 13-8	POVDxH<3:1	>:POVDxL<3:	1>: PWM Out	put Override b	its						
	1 = Output on PWMx I/O pin is controlled by the PWM generator										

REGISTER 15-11: PXOVDCON: OVERRIDE CONTROL REGISTER

bit 7-6 Unimplemented: Read as '0'

bit 5-0 POUTxH<3:1>:POUTxL<3:1>: PWM Manual Output bits

1 = PWMx I/O pin is driven active when the corresponding POVDxH:POVDxL bit is cleared

0 = PWMx I/O pin is driven inactive when the corresponding POVDxH:POVDxL bit is cleared

0 = Output on PWMx I/O pin is controlled by the value in the corresponding POUTxH:POUTxL bit

REGISTER 15-12: PxDC1: PWM DUTY CYCLE REGISTER 1

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	1<15:8>			
bit 15							bit 8
DAMA	D 444 0	D 444 o	D 444 0	D 444 o	D 444 o	5444.0	D 444 o
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	1<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0'							
-n = Value at POR $(1' = Bit is set)$ $(0' = Bit is cleared)$ x = Bit is unknown						nown	

bit 15-0 PDC1<15:0>: PWM Duty Cycle 1 Value bits

REGISTER 15-13: PxDC2: PWM DUTY CYCLE REGISTER 2

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	2<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	2<7:0>			
bit 7							bit 0
Legend:							
R = Readable	Readable bit W = Writable bit U = Unimplemented bit, read as '0'						
-n = Value at POR (1' = Bit is set				'0' = Bit is cle	ared	x = Bit is unkr	nown

bit 15-0 PDC2<15:0>: PWM Duty Cycle 2 Value bits

REGISTER 15-14: PxDC3: PWM DUTY CYCLE REGISTER 3

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	3<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PDC	3<7:0>			
bit 7							bit 0
Legend:							
R = Readable bit W = Write		W = Writable b	le bit U = Unimplemented bit, read as '0'				
-n = Value at POR '1' = B		'1' = Bit is set		'0' = Bit is cleared x = Bit is un			nown

bit 15-0 PDC3<15:0>: PWM Duty Cycle 3 Value bits

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			PWMKEY	/<15:8>			
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
R/W-U	R/W-0	R/W-U			R/W-0	R/W-U	R/W-U
			PWMKE	Y<7:0>			
bit 7							bit 0
1							
Legend:							
R = Readable bit		W = Writabl	W = Writable bit		emented, read	as '0'	
-n = Value at POR		'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown	

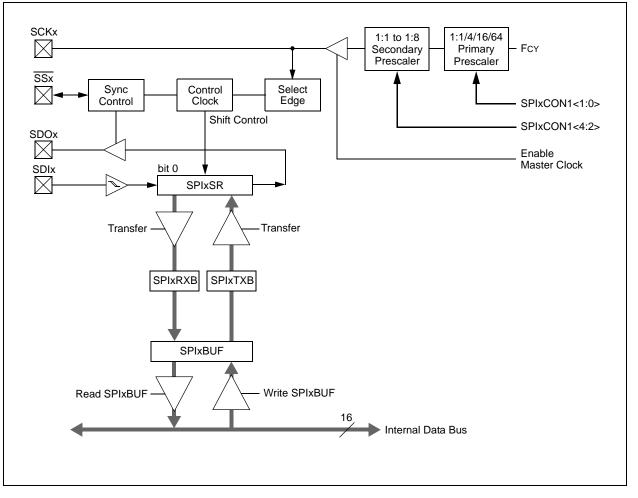
bit 15-0 PWMKEY<15:0>: PWM Unlock bits

If the PWMLOCK Configuration bit is asserted (PWMLOCK = 1), the PWMxCON1, PxFLTACON and PxFLTBCON registers are writable only after the proper sequence is written to the PWMxKEY register. If the PWMLOCK Configuration bit is deasserted (PWMLOCK = 0) the PWMxCON1, PxFLTACON and PxFLTBCON registers are writable at all times. Refer to **Section 14.** "Motor Control PWM" (DS70187) in the "*dsPIC33F/PIC24H Family Reference Manual*" for details on the unlock sequence.

16.0 SERIAL PERIPHERAL INTERFACE (SPI)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 18. "Serial Peripheral Interface (SPI)" (DS70206) the "dsPIC33F/PIC24H Family in Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Serial Peripheral Interface (SPI) module is a synchronous serial interface useful for communicating with other peripheral or microcontroller devices. These peripheral devices can be serial EEPROMs, shift registers, display drivers, analog-to-digital converters, etc. The SPI module is compatible with SPI and SIOP from Motorola[®].


Each SPI module consists of a 16-bit shift register, SPIxSR (where x = 1 or 2), used for shifting data in and out, and a buffer register, SPIxBUF. A control register, SPIxCON, configures the module. Additionally, a status register, SPIxSTAT, indicates status conditions.

The serial interface consists of four pins:

- SDIx (serial data input)
- SDOx (serial data output)
- SCKx (shift clock input or output)
- SSx (active low slave select).

In Master mode operation, SCK is a clock output. In Slave mode, it is a clock input.

FIGURE 16-1: SPI MODULE BLOCK DIAGRAM

R/W-0	U-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
SPIEN	_	SPISIDL	_	—		—				
bit 15							bit 8			
							D 0			
U-0	R/C-0 SPIROV	U-0	U-0	U-0	U-0	R-0 SPITBF	R-0 SPIRBF			
 bit 7	SPIROV			—	—	SPIIDF	bit			
Legend:		C = Clearable	bit							
R = Readab	le bit	W = Writable b	oit	U = Unimpler	nented bit, read	d as '0'				
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown			
bit 15	SPIEN: SPIX				1					
	1 = Enables r 0 = Disables	nodule and cont module	igures SCK	x, SDOx, SDIX a	and SSx as ser	ial port pins				
bit 14		ted: Read as '0	,							
bit 13	-	p in Idle Mode b								
	1 = Discontinue module operation when device enters Idle mode									
		module operation		ode						
bit 12-7	-	ted: Read as '0								
bit 6	SPIROV: Receive Overflow Flag bit									
	1 = A new byte/word is completely received and discarded. The user software has not read the previous data in the SPIxBUF register									
		ow has occurred								
bit 5-2	Unimplemen	ted: Read as '0	,							
bit 1		k Transmit Buffe								
	1 = Transmit not yet started, SPIxTXB is full									
		0 = Transmit started, SPIxTXB is empty Automatically set in hardware when CPU writes SPIxBUF location, loading SPIxTXB								
	Automatically cleared in hardware when SPIx module transfers data from SPIxTXB to SPIxSR									
	SPIRBF: SPI	PIRBF: SPIx Receive Buffer Full Status bit								
bit 0	1 = Receive complete, SPIxRXB is full									
bit 0										
bit 0	0 = Receive i	complete, SPIxR s not complete, set in hardware	SPIxRXB is							

REGISTER 16-1: SPIxSTAT: SPIx STATUS AND CONTROL REGISTER

U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
_	_	_	DISSCK	DISSDO	MODE16	SMP	CKE ⁽¹⁾		
bit 15							bit		
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0		
SSEN ⁽²⁾	CKP	MSTEN	10000	SPRE<2:0> ⁽³			<1:0> ⁽³⁾		
bit 7	CI	MISTEN		SI KE<2.02*			bit		
							Dit		
Legend:									
R = Readabl	e bit	W = Writable	bit	U = Unimpler	mented bit, read	l as '0'			
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15-13	-	nted: Read as							
bit 12	1 = Internal S	sable SCKx pin SPI clock is dis SPI clock is ena	abled, pin func	• /					
bit 11									
	DISSDO: Disable SDOx pin bit 1 = SDOx pin is not used by module; pin functions as I/O								
		n is controlled b							
bit 10	MODE16 : W	ord/Byte Comn	nunication Sel	ect bit					
		1 = Communication is word-wide (16 bits)							
	0 = Commur	nication is byte-	wide (8 bits)						
bit 9		Data Input Sam	ple Phase bit						
	Master mode	<u>e:</u> a sampled at e	nd of data out	out time					
		a sampled at e							
	Slave mode:								
	SMP must be	e cleared when	SPIx is used i	in Slave mode.					
bit 8		lock Edge Sele							
					clock state to Id				
		-	-		ock state to activ	/e clock state (s	see Dit 6)		
bit 7		e Select Enable	•	node)					
		used for Slave not used by mo		rolled by port fi	Inction				
bit 6	-	-							
		CKP: Clock Polarity Select bit = Idle state for clock is a high level; active state is a low level							
		for clock is a l							
bit 5	MSTEN: Ma	ster Mode Enal	ole bit						
	1 = Master m	node							
	0 = Slave mo	ode							
	ne CKE bit is no RMEN = 1).	t used in the Fr	amed SPI mo	des. Program t	his bit to '0' for	the Framed SP	'l modes		
	nis bit must be c	leared when Fl	RMEN = 1.						
a. D					-6.4.4				

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1

3: Do not set both Primary and Secondary prescalers to a value of 1:1.

REGISTER 16-2: SPIXCON1: SPIX CONTROL REGISTER 1 (CONTINUED)

- **Note 1:** The CKE bit is not used in the Framed SPI modes. Program this bit to '0' for the Framed SPI modes (FRMEN = 1).
 - 2: This bit must be cleared when FRMEN = 1.
 - 3: Do not set both Primary and Secondary prescalers to a value of 1:1.

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0	
FRMEN	SPIFSD	FRMPOL	—	—	—	—	—	
bit 15							bit 8	
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0	
—		—		—	—	FRMDLY	—	
bit 7							bit 0	
Legend:								
R = Readable	bit	W = Writable bit		U = Unimplemented bit, rea		d as '0'		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cleared		x = Bit is unknown		
bit 15 bit 14	FRMEN: Framed SPIx Support bit Framed SPIx support enabled (SSx pin used as frame sync pulse input/output) Framed SPIx support disabled SPIFSD: Frame Sync Pulse Direction Control bit Frame sync pulse input (slave) Frame sync pulse output (master) 							
bit 13	FRMPOL: Frame Sync Pulse Polarity bit 1 = Frame sync pulse is active-high 0 = Frame sync pulse is active-low							
bit 12-2	Unimplemen	ted: Read as '0	,					
bit 1 bit 0	 FRMDLY: Frame Sync Pulse Edge Select bit 1 = Frame sync pulse coincides with first bit clock 0 = Frame sync pulse precedes first bit clock Unimplemented: This bit must not be set to '1' by the user application. 							

REGISTER 16-3: SPIxCON2: SPIx CONTROL REGISTER 2

NOTES:

17.0 INTER-INTEGRATED CIRCUIT[™] (I²C[™])

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 19. "Inter-Integrated Circuit[™] (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual", which is available the Microchip web from site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Inter-Integrated CircuitTM (I²CTM) module provides complete hardware support for both Slave and Multi-Master modes of the I²C serial communication standard, with a 16-bit interface.

The I²C module has a 2-pin interface:

- The SCLx pin is clock
- The SDAx pin is data

The I²C module offers the following key features:

- I²C interface supporting both Master and Slave modes of operation.
- I²C Slave mode supports 7-bit and 10-bit addresses
- I²C Master mode supports 7-bit and 10-bit addresses
- I²C port allows bidirectional transfers between master and slaves
- Serial clock synchronization for I²C port can be used as a handshake mechanism to suspend and resume serial transfer (SCLREL control)
- I²C supports multi-master operation, detects bus collision and arbitrates accordingly

17.1 Operating Modes

The hardware fully implements all the master and slave functions of the I^2C Standard and Fast mode specifications, as well as 7-bit and 10-bit addressing.

The I²C module can operate either as a slave or a master on an I²C bus.

The following types of I^2C operation are supported:

- I²C slave operation with 7-bit address
- I²C slave operation with 10-bit address
- I²C master operation with 7-bit or 10-bit address

For details about the communication sequence in each of these modes, refer to the Microchip web site (www.microchip.com) for the latest *"dsPIC33F/PIC24H Family Reference Manual"* sections.

17.2 I²C Registers

I2CxCON and I2CxSTAT are control and status registers, respectively. The I2CxCON register is readable and writable. The lower six bits of I2CxSTAT are read-only. The remaining bits of the I2CSTAT are read/write:

- · I2CxRSR is the shift register used for shifting data
- I2CxRCV is the receive buffer and the register to which data bytes are written, or from which data bytes are read
- I2CxTRN is the transmit register to which bytes are written during a transmit operation
- I2CxADD register holds the slave address
- ADD10 status bit indicates 10-bit Address mode
- I2CxBRG acts as the Baud Rate Generator (BRG) reload value

In receive operations, I2CxRSR and I2CxRCV together form a double-buffered receiver. When I2CxRSR receives a complete byte, it is transferred to I2CxRCV, and an interrupt pulse is generated.

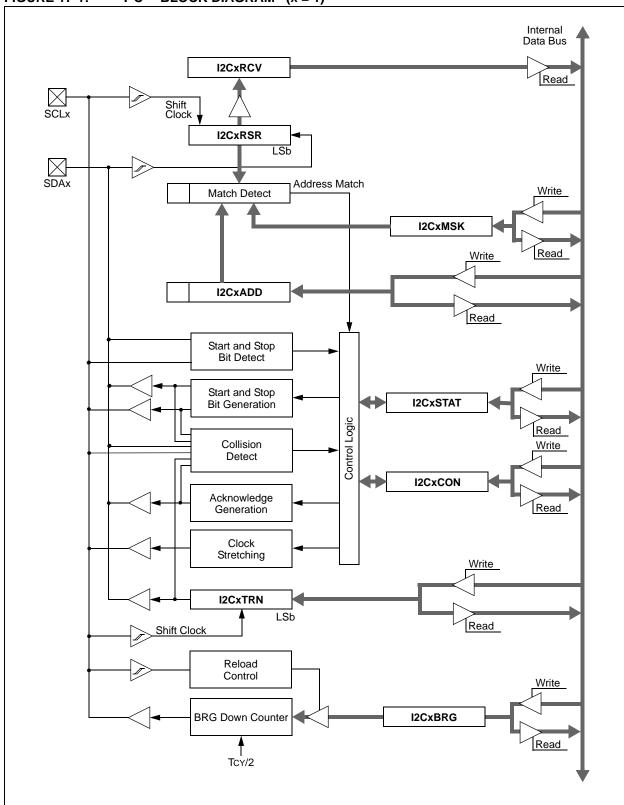


FIGURE 17-1: $I^2 C^{TM}$ BLOCK DIAGRAM (X = 1)

R/W-0	U-0	R/W-0	R/W-1 HC	R/W-0	R/W-0	R/W-0	R/W-0				
I2CEN		I2CSIDL	SCLREL	IPMIEN	A10M	DISSLW	SMEN				
bit 15			·	·		·	bit 8				
R/W-0	R/W-0	R/W-0	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC	R/W-0 HC				
GCEN	STREN	ACKDT	ACKEN	R/W-0 HC	PEN	R/W-0 HC	SEN				
bit 7	STREN	ACKDT	ACKEN	RGEN	PEN	RSEN	Dit 0				
Legend:		U = Unimple	mented bit, rea	d as '0'							
R = Readab	ole bit	W = Writable	bit	HS = Set in h	nardware	HC = Cleared	l in hardware				
-n = Value a	at POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	12CEN: 12Cx										
					and SCLx pins a I by port functio	as serial port piı ns	าร				
bit 14	Unimplemen	ted: Read as	ʻ0'								
bit 13	I2CSIDL: Sto	p in Idle Mode	bit								
			eration when de		n Idle mode						
bit 12			ontrol bit (wher		l ² C slave)						
		 Release SCLx clock Hold SCLx clock low (clock stretch) 									
		If STREN = 1:									
	Bit is R/W (i.e at beginning o	e., software can of every slave		mission. Hard	ware clear at er	elease clock). H Id every of slave					
	If STREN = 0		a every slave o	ala byle lever							
	Bit is R/S (i.e.	, software can). Hardware cle slave address b	ar at beginning yte reception.	of every slave				
bit 11	-			-	MI) Enable bit						
		le is enabled; a	all addresses A		,						
bit 10	A10M: 10-bit	Slave Address	s bit								
		is a 10-bit sla is a 7-bit slav									
bit 9	DISSLW: Dis	DISSLW: Disable Slew Rate Control bit									
		control disabl									
bit 8	SMEN: SMB	SMEN: SMBus Input Levels bit									
		1 = Enable I/O pin thresholds compliant with SMBus specification									
		MBus input th									
bit 7			e bit (when ope	-	-						
	(module is	terrupt when a s enabled for r call address dis	eception)	ddress is rece	ived in the I2C>	RSR					
bit 6			h Enable bit (w	hen operating	as I ² C slave)						
	Used in conju 1 = Enable so	Inction with SC		ching							

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER

0 = Disable software or receive clock stretching

REGISTER 17-1: I2CxCON: I2Cx CONTROL REGISTER (CONTINUED)

bit 5	ACKDT: Acknowledge Data bit (when operating as I ² C master, applicable during master receive)
	Value that will be transmitted when the software initiates an Acknowledge sequence. 1 = Send NACK during Acknowledge 0 = Send ACK during Acknowledge
bit 4	ACKEN: Acknowledge Sequence Enable bit (when operating as I ² C master, applicable during master receive)
	 1 = Initiate Acknowledge sequence on SDAx and SCLx pins and transmit ACKDT data bit. Hardware clear at end of master Acknowledge sequence 0 = Acknowledge sequence not in progress
bit 3	RCEN: Receive Enable bit (when operating as I^2C master)
	1 = Enables Receive mode for I^2C . Hardware clear at end of eighth bit of master receive data byte 0 = Receive sequence not in progress
bit 2	PEN: Stop Condition Enable bit (when operating as I ² C master)
	1 = Initiate Stop condition on SDAx and SCLx pins. Hardware clear at end of master Stop sequence 0 = Stop condition not in progress
bit 1	RSEN: Repeated Start Condition Enable bit (when operating as I ² C master)
	1 = Initiate Repeated Start condition on SDAx and SCLx pins. Hardware clear at end of master Repeated Start sequence
	0 = Repeated Start condition not in progress
bit 0	 SEN: Start Condition Enable bit (when operating as I²C master) 1 = Initiate Start condition on SDAx and SCLx pins. Hardware clear at end of master Start sequence 0 = Start condition not in progress

R-0 HSC	R-0 HSC	U-0	U-0	U-0	R/C-0 HS	R-0 HSC	R-0 HSC		
ACKSTAT	TRSTAT	—	—	_	BCL	GCSTAT	ADD10		
bit 15							bit 8		
		D 0 LICO			D 0 UCC	D 0 UCC	D 0 UCC		
R/C-0 HS	R/C-0 HS	R-0 HSC	R/C-0 HSC	R/C-0 HSC	R-0 HSC	R-0 HSC	R-0 HSC		
IWCOL bit 7	I2COV	D_A	Р	S	R_W	RBF	TBF bit 0		
							511 0		
Legend:		U = Unimpler	nented bit, rea	ad as '0'					
R = Readable	bit	W = Writable	bit	HS = Set in h	ardware	HSC = Hardw	are set/cleared		
-n = Value at F	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown		
bit 15	(when operati 1 = NACK rec 0 = ACK rece	cknowledge St ng as I ² C mas ceived from slav ived from slav or clear at end	ter, applicable ve e		nsmit operation)			
bit 14	1 = Master tra 0 = Master tra	ansmit is in pro ansmit is not in	gress (8 bits - progress	ACK)		to master trans			
bit 13-11	Unimplemen	ted: Read as '	0'						
bit 10	BCL: Master	Bus Collision I	Detect bit						
	 1 = A bus collision has been detected during a master operation 0 = No collision Hardware set at detection of bus collision. 								
bit 9	GCSTAT: Ger	neral Call Statu	ıs bit						
	0 = General c	all address wa all address wa when address	s not received		ss. Hardware c	lear at Stop det	ection.		
bit 8	ADD10: 10-bi	t Address Stat	us bit						
	0 = 10-bit add	lress was mate lress was not r at match of 2r	natched	ched 10-bit ad	dress. Hardwai	e clear at Stop	detection.		
bit 7		e Collision Dete							
	0 = No collisio	on	-		ause the I ² C mo usy (cleared by	-			
bit 6		ve Overflow F			, , , , , , , , , , , , , , , , , , ,	,			
	0 = No overflo	w		-	till holding the p	-			
bit 5		dress bit (whe		-					
	1 = Indicates 0 = Indicates	that the last by that the last by	rte received w rte received w	as data as device add	ress by reception of	slave byte.			
bit 4	P: Stop bit								
		that a Stop bit as not detecte		ected last					

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER

REGISTER 17-2: I2CxSTAT: I2Cx STATUS REGISTER (CONTINUED)

bit 3	S: Start bit
	 1 = Indicates that a Start (or Repeated Start) bit has been detected last 0 = Start bit was not detected last Hardware set or clear when Start, Repeated Start or Stop detected.
bit 2	R_W: Read/Write Information bit (when operating as I^2C slave)
	1 = Read – indicates data transfer is output from slave 0 = Write – indicates data transfer is input to slave Hardware set or clear after reception of I^2C device address byte.
bit 1	RBF: Receive Buffer Full Status bit 1 = Receive complete, I2CxRCV is full 0 = Receive not complete, I2CxRCV is empty Hardware set when I2CxRCV is written with received byte. Hardware clear when software reads I2CxRCV.
bit 0	TBF: Transmit Buffer Full Status bit 1 = Transmit in progress, I2CxTRN is full 0 = Transmit complete, I2CxTRN is empty Hardware set when software writes I2CxTRN. Hardware clear at completion of data transmission.

U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0
_	—	—	—	—		AMSK9	AMSK8
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
AMSK7	AMSK6	AMSK5	AMSK4	AMSK3	AMSK2	AMSK1	AMSK0
bit 7	•						bit 0
Legend:							

3			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	1 as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-10 Unimplemented: Read as '0'

bit 9-0

AMSKx: Mask for Address bit x Select bit

1 = Enable masking for bit x of incoming message address; bit match not required in this position

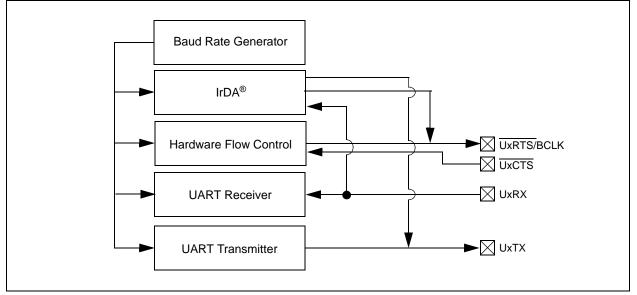
0 = Disable masking for bit x; bit match required in this position

NOTES:

18.0 UNIVERSAL ASYNCHRONOUS RECEIVER TRANSMITTER (UART)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 17. "UART" (DS70188) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The Universal Asynchronous Receiver Transmitter (UART) module is one of the serial I/O modules available in the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 device family. The UART is a full-duplex asynchronous system that can communicate with peripheral devices, such as personal computers, LIN 2.0, and RS-232, and RS-485 interfaces. The module also supports a hardware flow control option with the UxCTS and UxRTS pins and also includes an IrDA[®] encoder and decoder.


The primary features of the UART module are:

- Full-Duplex, 8-bit or 9-bit Data Transmission through the UxTX and UxRX pins
- Even, Odd, or No Parity Options (for 8-bit data)
- One or two stop bits
- Hardware flow control option with UxCTS and UxRTS pins
- Fully integrated Baud Rate Generator with 16-bit prescaler
- Baud rates ranging from 0.4 Mbps to 6 bps at 16x mode at 16 MIPS
- Baud rates ranging from 1.6 Mbps to 24.4 bps at 4x mode at 16 MIPS
- 4-deep First-In First-Out (FIFO) Transmit Data buffer
- 4-deep FIFO Receive Data buffer
- Parity, framing and buffer overrun error detection
- Support for 9-bit mode with Address Detect (9th bit = 1)
- Transmit and Receive interrupts
- A separate interrupt for all UART error conditions
- · Loopback mode for diagnostic support
- Support for sync and break characters
- · Support for automatic baud rate detection
- IrDA[®] encoder and decoder logic
- 16x baud clock output for IrDA[®] support

A simplified block diagram of the UART module is shown in Figure 18-1. The UART module consists of these key hardware elements:

- Baud Rate Generator
- Asynchronous Transmitter
- Asynchronous Receiver

FIGURE 18-1: UART SIMPLIFIED BLOCK DIAGRAM

© 2011 Microchip Technology Inc.

	B-1: UxMO	DE: UARIXI		SIER			
R/W-0	U-0	R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0
UARTEN ⁽¹⁾	—	USIDL	IREN ⁽²⁾	RTSMD	_	UEN	<1:0>
bit 15							bit
R/W-0 HC	R/W-0	R/W-0 HC	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
WAKE	LPBACK	ABAUD	URXINV	BRGH	PDSE	L<1:0>	STSEL
bit 7							bit
Legend:		HC = Hardwa	re cleared				
R = Readable b	oit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	nown
bit 15	1 = UARTx is		JARTx pins are			fined by UEN<1 UARTx power co	
bit 14	Unimplemen	ted: Read as '	0'				
bit 13		in Idle Mode bi					
	1 = Discontin		eration when d	levice enters Ic de	lle mode		
bit 12	1 = IrDA enc	Encoder and D oder and deco oder and deco	der enabled	e bit ⁽²⁾			
bit 11	1 = UxRTS p	le Selection for in in Simplex n in in Flow Con	node	it			
bit 10	Unimplemen	ted: Read as '	0'				
bit 9-8	11 = UxTX, U 10 = UxTX, U 01 = UxTX, U	IxRX, <u>UxCTS</u> a IxRX and UxR ⁻ nd UxRX pins a	K pi <u>ns are ena</u> and UxRTS pir TS pins are en	ns are enabled abled and use	an <u>d used</u> d; UxCTS pin	ontrolled by port controlled by po BCLK pins cont	rt latches
bit 7	•		t Detect Durine	g Sleep Mode I	Enable bit		
	1 = UARTx w	vill continue to are on following	sample the Ux			on falling edge; l	oit cleared
bit 6	1 = Enable L	NRTx Loopback	•	bit			
hit E	-	k mode is disal p-Baud Enable					
bit 5	1 = Enable b	D-Daud Enable			or roquiros i	acontion of a S	<i></i>

REGISTER 18-1: UxMODE: UARTx MODE REGISTER

2: This feature is only available for the $16x BRG \mod (BRGH = 0)$.

REGISTER 18-1: UxMODE: UARTx MODE REGISTER (CONTINUED)

bit 4	URXINV: Receive Polarity Inversion bit
	1 = UxRX Idle state is '0' 0 = UxRX Idle state is '1'
bit 3	BRGH: High Baud Rate Enable bit
	 1 = BRG generates 4 clocks per bit period (4x baud clock, High-Speed mode) 0 = BRG generates 16 clocks per bit period (16x baud clock, Standard mode)
bit 2-1	PDSEL<1:0>: Parity and Data Selection bits
	 11 = 9-bit data, no parity 10 = 8-bit data, odd parity 01 = 8-bit data, even parity 00 = 8-bit data, no parity
bit 0	STSEL: Stop Bit Selection bit
	1 = Two Stop bits 0 = One Stop bit

- **Note 1:** Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for receive or transmit operation.
 - **2:** This feature is only available for the 16x BRG mode (BRGH = 0).

R/W-0	R/W-0	R/W-0	U-0	R/W-0 HC	R/W-0	R-0	R-1
UTXISEL1	UTXINV	UTXISEL0		UTXBRK	UTXEN ⁽¹⁾	UTXBF	TRMT
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R-1	R-0	R-0	R/C-0	R-0
URXIS	EL<1:0>	ADDEN	RIDLE	PERR	FERR	OERR	URXDA
bit 7							bit
Legend:		HC = Hardwar	e cleared		C = Clea	rable bit	
R = Readable	e bit	W = Writable b	oit	U = Unimplen	nented bit, read		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	iown
bit 15,13	11 = Reserve 10 = Interrupi transmit 01 = Interrupi operatio 00 = Interrupi	d; do not use when a charac buffer becomes when the last on ns are complete	ter is transfe s empty character is s ed ter is transfe	shifted out of the erred to the Tran	bits Insmit Shift Regis Pe Transmit Shift Insmit Shift Regis	Register; all tra	ansmit
bit 14	$\frac{\text{If IREN = 0:}}{1 = \text{UxTX IdI}}$ $0 = \text{UxTX IdI}$ $\frac{\text{If IREN = 1:}}{1 = \text{IrDA enc}}$		state is '1'				
bit 12	Unimplemen	ted: Read as '0	,				
bit 11	-	ansmit Break bit					
	cleared b 0 = Sync Bre	y hardware upo ak transmissior	on completio disabled or	n	lowed by twelve	'0' bits, follow	ed by Stop bi
bit 10	1 = Transmit	smit Enable bit enabled, UxTX disabled, any p	pin controlle		rted and buffer i	s reset. UxTX	pin controlle
bit 9	1 = Transmit				er can be writter	1	
bit 8	TRMT: Transi 1 = Transmit	mit Shift Registe Shift Register is	er Empty bit empty and t	(read-only) ransmit buffer is	empty (the last is in progress of	transmission h	as completed
bit 7-6		0>: Receive Inte				1	
	11 = Interrupt 10 = Interrupt	is set on UxRS is set on UxRS	R transfer m R transfer m	naking the recein naking the recein	ve buffer full (i.e ve buffer 3/4 full I transferred fro	(i.e., has 3 da	ta characters

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

REGISTER 18-2: UxSTA: UARTx STATUS AND CONTROL REGISTER (CONTINUED)

bit 5	ADDEN: Address Character Detect bit (bit 8 of received data = 1)
	 1 = Address Detect mode enabled. If 9-bit mode is not selected, this does not take effect 0 = Address Detect mode disabled
bit 4	RIDLE: Receiver Idle bit (read-only)
	1 = Receiver is Idle
	0 = Receiver is active
bit 3	PERR: Parity Error Status bit (read-only)
	 1 = Parity error has been detected for the current character (character at the top of the receive FIFO) 0 = Parity error has not been detected
bit 2	FERR: Framing Error Status bit (read-only)
	1 = Framing error has been detected for the current character (character at the top of the receive FIFO)
	0 = Framing error has not been detected
bit 1	OERR: Receive Buffer Overrun Error Status bit (read-only/clear-only)
	 1 = Receive buffer has overflowed 0 = Receive buffer has not overflowed. Clearing a previously set OERR bit (1 → 0 transition) will reset the receiver buffer and the UxRSR to the empty state
bit 0	URXDA: Receive Buffer Data Available bit (read-only)
	1 = Receive buffer has data, at least one more character can be read
	0 = Receive buffer is empty

Note 1: Refer to **Section 17. "UART"** (DS70188) in the *"dsPIC33F/PIC24H Family Reference Manual"* for information on enabling the UART module for transmit operation.

NOTES:

19.0 10-BIT ANALOG-TO-DIGITAL CONVERTER (ADC)

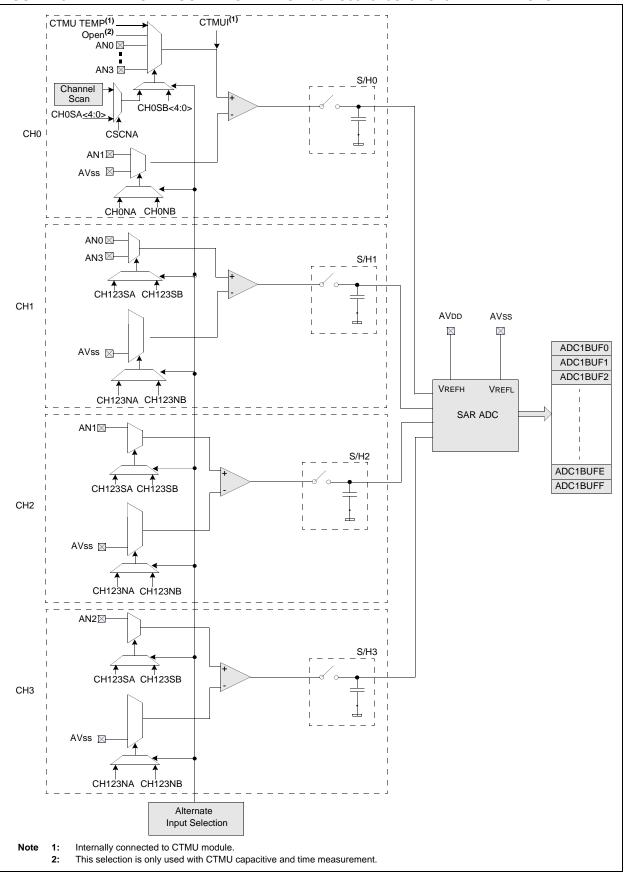
- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 16. "Analog-to-Digital Converter (ADC)" (DS70183) in the "dsPIC33F/PIC24H Family Reference Manual", which is available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

The dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices have up to six ADC module input channels.

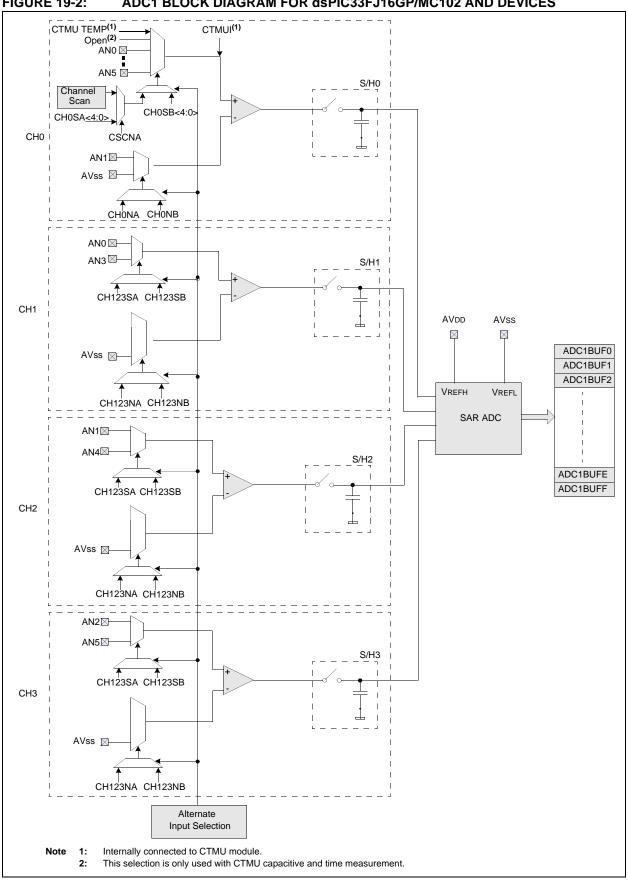
19.1 Key Features

The 10-bit ADC configuration has the following key features:

- Successive Approximation (SAR) conversion
- Conversion speeds of up to 1.1 Msps
- Up to six analog input pins
- Four Sample and Hold circuits for simultaneous sampling of up to four analog input pins
- Automatic Channel Scan mode
- Selectable conversion trigger source
- Selectable Buffer Fill modes
- Four result alignment options (signed/unsigned, fractional/integer)
- Operation during CPU Sleep and Idle modes
- 16-word conversion result buffer

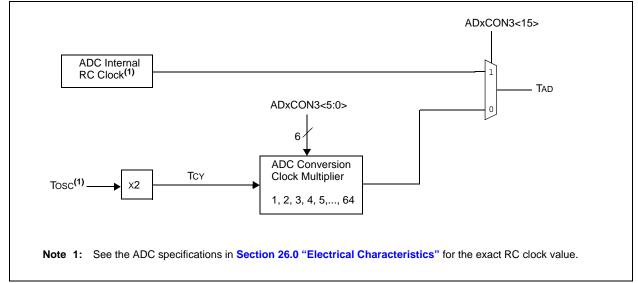

Depending on the particular device pinout, the ADC can have up to six analog input pins, designated AN0 through AN5.

Block diagrams of the ADC module are shown in Figure 19-1 and Figure 19-2.


19.2 ADC Initialization

To configure the ADC module:

- 1. Select port pins as analog inputs (ADxPCFGH<15:0> or ADxPCFGL<15:0>).
- 2. Select voltage reference source to match expected range on analog inputs (ADxCON2<15:13>).
- Select the analog conversion clock to match the desired data rate with the processor clock (ADxCON3<7:0>).
- 4. Determine how many sample-and-hold channels will be used (ADxCON2<9:8> and ADxPCFGH<15:0> or ADxPCFGL<15:0>).
- 5. Select the appropriate sample/conversion sequence (ADxCON1<7:5> and ADxCON3<12:8>).
- 6. Select the way conversion results are presented in the buffer (ADxCON1<9:8>).
- 7. Turn on the ADC module (ADxCON1<15>).
- 8. Configure ADC interrupt (if required):
 - a) Clear the ADxIF bit.
 - b) Select the ADC interrupt priority.



R/W-0	U-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0
ADON	_	ADSIDL		—	—	FORM	1<1:0>
bit 15							bit a
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0 HC,HS	R/C-0 HC, HS
	SSRC<2:0>			SIMSAM	ASAM	SAMP	DONE
bit 7				1			bit (
Legend:		HC = Cleared	by hardware	HS = Set by I	nardware C = C	Clearable bit	
R = Readabl	e bit	W = Writable I	-	-	nented bit, rea		
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15		Operating Mode					
bit 14	Unimplemen	ted: Read as 'd)'				
bit 13		o in Idle Mode b					
		ue module ope module operat			e mode		
bit 12-10	Unimplemen	ted: Read as 'o)'				
bit 9-8	FORM<1:0>:	Data Output Fo	ormat bits				
	10 = Fractiona 01 = Signed in	ractional (Dout al (Dout = ddd nteger (Dout = Dout = 0000	d dddd dd0 ssss sssd	0 0000) dddd dddd, w			
bit 7-5		Sample Clock S		-			
	110 = CTMU 101 = Reserv 100 = Reserv 011 = Motor (010 = GP tim 001 = Active t		nterval ends sa nds sampling T0 pin ends s	ampling and sta and starts conv ampling and sta	irts conversion version arts conversion	(1)	
bit 4	Unimplemen	ted: Read as 'o)'				
bit 3	1 = Samples Samples	nultaneous San CH0, CH1, CH CH0 and CH1 multiple chann	2, CH3 simult simultaneousl	aneously (wher y (when CHPS	n CHPS<1:0> :	<1:0> = 01 or 1 = 1x); or	.x)
bit 2	1 = Sampling	Sample Auto-S g begins immed j begins when S	liately after las		SAMP bit is aut	o-set	
bit 1	SAMP: ADC S 1 = ADC sam 0 = ADC sam If ASAM = 0, s If SSRC = 00	Sample Enable nple-and-hold a nple-and-hold a software can w	bit mplifiers are s mplifiers are h rite '1' to begin write '0' to er	ampling holding n sampling. Aut hd sampling and	d start convers	by hardware if ion. If SSRC ≠	

Note 1: Available only on dsPIC33FJ16MC101/102 devices.

REGISTER 19-1: AD1CON1: ADC1 CONTROL REGISTER 1 (CONTINUED)

- bit 0 **DONE:** ADC Conversion Status bit 1 = ADC conversion cycle is completed 0 = ADC conversion not started or in progress Automatically set by hardware when ADC conversion is complete. Software can write '0' to clear DONE status (software not allowed to write '1'). Clearing this bit will NOT affect any operation in progress. Automatically cleared by hardware at start of a new conversion.
- **Note 1:** Available only on dsPIC33FJ16MC101/102 devices.

R/W-0	R/W-0	R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0				
	VCFG<2:0>		_	—	CSCNA	CHPS	<1:0>				
bit 15							bit				
_											
R-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
BUFS			SM	PI<3:0>		BUFM	ALTS				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplei	mented bit, rea	d as '0'					
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15-13	VCFG<2:0>	: Converter Vol	tage Referenc	e Configuration	bits						
		ADREF+	ADREF-								
	XXX	AVdd	AVss								
bit 12-11	Unimpleme	nted: Read as	ʻ0'								
bit 10	CSCNA: Sc	an Input Selecti	ons for CH0+	during Sample	A bit						
	1 = Scan in	puts									
	0 = Do not	scan inputs									
bit 9-8	CHPS<1:0>: Select Channels Utilized bits										
	1x =Converts CH0, CH1, CH2 and CH3 01 =Converts CH0 and CH1										
	01 =Conver 00 =Conver		1								
bit 7	BUFS: Buffer Fill Status bit (valid only when $BUFM = 1$)										
	 1 = ADC is currently filling second half of buffer, user should access data in the first half 0 = ADC is currently filling first half of buffer, user application should access data in the second half 										
				fer, user applica	ation should acc	cess data in the	second half				
bit 6	Unimpleme	nted: Read as	'0'								
bit 5-2	SMPI<3:0>: Sample/Convert Sequences Per Interrupt Selection bits										
	1111 =Interrupts at the completion of conversion for each 16th sample/convert sequence 1110 =Interrupts at the completion of conversion for each 15th sample/convert sequence										
	•										
	•										
	•										
				version for each version for each			e				
bit 1	BUFM: Buff	er Fill Mode Sel	ect bit								
		lling first half of starts filling buf		interrupt and the	e second half o	f buffer on next	interrupt				
bit 0	-	nate Input Sam									
NIL U		in put outing									
	1 = 11 ses ct	nannel innut sel	ects for Sampl	e A on first sam	ole and Samol	e B on next sar	nole				

REGISTER 19-2: AD1CON2: ADC1 CONTROL REGISTER 2

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
ADRC	_	_			SAMC<4:0>(1)	
bit 15							bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
			ADCS<	:7:0> ⁽²⁾			
bit 7							bit (
Legend:							
R = Readable	e bit	W = Writable b	bit	U = Unimpler	mented bit, rea	ad as '0'	
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown
bit 15	1 = ADC inter	Conversion Clo mal RC clock ived from syste					
bit 14-13	Unimplemen	ted: Read as '0	,				
bit 12-8	11111 = 31 T • • • • • • • • • • • • • • • • • • •	D D					
bit 7-0	ADCS<7:0>: 11111111 = • •	ADC Conversic Reserved					
	• •	Reserved TcY · (ADCS<7 TcY · (ADCS<7					
Note 1: Tr	0000001 =	Tcy · (ADCS<7 Tcy · (ADCS<7	2:0> + 1) = 2 · 2:0> + 1) = 1 ·	TCY = TAD TCY = TAD			

REGISTER 19-3: AD1CON3: ADC1 CONTROL REGISTER 3

bit 15 U-0 U-0 U-0 U-0 R/W-0 R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
U-0 U-0 U-0 U-0 R/W-0 R/W-0 - - - - CH123NA<1:0> 10 bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' - O' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' O' = Bit is cleared x = Bit is unknow bit 10-9 CH123NB CH123NB - - - 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input select for Sample B bits 11 = Reserved 0x = CH1, CH2, CH3 negative input select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AV3s bit 2-1	CH123SB	23NB<1:0>	CH123N	—	_	—	—	_			
- - - CH123NA<1:0> bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 8 bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 bit 2-1 CH123NA<1:>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 02 = CH1, CH2, CH3 negative input is AVss bit 0	bit 8						·	bit 15			
bit 7 Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits 11 = Reserved 10 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP101 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected	R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	U-0	U-0			
Legend: R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' bit 15-11 Unimplemented: Read as '0' bit 10-9 CH123NB CH123NB : Channel 1, 2, 3 Negative Input Select for Sample B bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss Edit of Sample B bit bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPlC33FJ16GP101 and dsPlC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN3, CH2 and CH3 positive input is AN2 dsPlC33FJ16GP102 and dsPlC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVS bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved	CH123SA	23NA<1:0>	CH123N	_	_			_			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' bit 10-9 CH123NB CH123NB x = Ch1 0 = Reserved 0 Reserved 0 x = CH1, CH2, CH3 negative input is AVss bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bits 11 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bits 11 = Reserved 0x = CH1, CH2, CH3 negative input is AVss	bit (bit 7			
R = Readable bit W = Writable bit U = Unimplemented bit, read as '0' -n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknow bit 15-11 Unimplemented: Read as '0' bit 10-9 CH123NB CH123NB x = Ch1 0 = Reserved 0 Reserved 0 x = CH1, CH2, CH3 negative input is AVss bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bits 11 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bits 11 = Reserved 0x = CH1, CH2, CH3 negative input is AVss								Leaend:			
-n = Value at POR '1' = Bit is set '0' = Bit is cleared x = Bit is unknown bit 15-11 Unimplemented: Read as '0' bit 10-9 CH123NB CH123NB 10 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss Et is unknown bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA 1 = Reserved 10 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bits 11 = Reserved 0x = CH1, CH2, CH3 negative input select for Sample A bit 10 = Reserved <		ead as '0'	nented bit, read	U = Unimpler	it	W = Writable b	bit	•			
bit 15-11 Unimplemented: Read as '0' bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected	wn					'1' = Bit is set	OR	-n = Value at			
bit 10-9 CH123NB<1:0>: Channel 1, 2, 3 Negative Input Select for Sample B bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected											
 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 					,	ted: Read as '0'	Unimplement	bit 15-11			
10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN5 0 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected		bits	or Sample B bits	Input Select fo	2, 3 Negative	0>: Channel 1, 2	CH123NB<1:	bit 10-9			
0x = CH1, CH2, CH3 negative input is AVss bit 8 CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected						d	11 = Reserve				
bit 8CH123SB: Channel 1, 2, 3 Positive Input Select for Sample B bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2bit 7-3Unimplemented: Read as '0'bit 2-1CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 0x = CH1, CH2, CH3 negative input is AVssbit 0CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected											
dsPlC33FJ16GP101 and dsPlC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2dsPlC33FJ16GP102 and dsPlC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2bit 7-3Unimplemented: Read as '0'bit 2-1CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVssbit 0CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPlC33FJ16GP101 and dsPlC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected											
 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 											
 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only: 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 1 = Reserved	· · · · · · · · · · · · · · · · · · ·										
 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 											
 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected 			only:	102 devices	PIC33FJ16M0	GP102 and dsl	dsPIC33FJ16				
bit 7-3 Unimplemented: Read as '0' bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected			CH3 positive in	input is AN4,	, CH2 positive	ive input is AN3	1 = CH1 posit				
bit 2-1 CH123NA<1:0>: Channel 1, 2, 3 Negative Input Select for Sample A bits 11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected		e input is AN2	CH3 positive in	input is AN1,	•	•	•				
11 = Reserved 10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected					3	ted: Read as '0'	Unimplement	bit 7-3			
10 = Reserved 0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected		bits	or Sample A bits	Input Select fo	2, 3 Negative	0>: Channel 1, 2	CH123NA<1:	bit 2-1			
0x = CH1, CH2, CH3 negative input is AVss bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected											
bit 0 CH123SA: Channel 1, 2, 3 Positive Input Select for Sample A bit dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected				_	a input ia AV/a						
dsPIC33FJ16GP101 and dsPIC33FJ16MC101 devices only: 1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected					•	. 0		hit O			
1 = CH1 positive input is AN3, CH2 and CH3 positive inputs are not connected											
dsPIC33FJ16GP102 and dsPIC33FJ16MC102 devices only:											
 1 = CH1 positive input is AN3, CH2 positive input is AN4, CH3 positive input is AN5 0 = CH1 positive input is AN0, CH2 positive input is AN1, CH3 positive input is AN2 											

REGISTER 19-4: AD1CHS123: ADC1 INPUT CHANNEL 1, 2, 3 SELECT REGISTER

R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CHONB	_	_			CH0SB<4:0>(1		
bit 15							bit
R/W-0	U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
CH0NA	_	—			CH0SA<4:0>(1)	
bit 7							bit
Legend:							
R = Readabl	le bit	W = Writable	bit	U = Unimple	emented bit, rea	d as '0'	
-n = Value at	t POR	'1' = Bit is set	t	'0' = Bit is cl	eared	x = Bit is unki	nown
bit 15	CH0NB: Chai 1 = Channel (0 = Channel () negative inpu	ut is AN1	for Sample B I	bit		
bit 14-13	Unimplemen	ted: Read as	0'				
bit 12-8	dsPIC33FJ16 01110 = No c 01101 = Cha 00011 = Cha 00001 = Cha 00000 = Cha 00000 = Cha 01101 = Cha 00101 = Cha 00101 = Cha 00101 = Cha 00010 = Cha 00001 = Cha 00001 = Cha 00001 = Cha 00000 = Cha 00000 = Cha 00000 = Channel (0 = Channel (GP101 and d channels conn- nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 positive GP102 and d channels conn- nnel 0 positive nnel 0 positive	sPIC33FJ16M ected, all input input is conne- input is AN3 input is AN2 input is AN1 input is AN1 sPIC33FJ16M ected, all input is AN3 input is AN3 input is AN3 input is AN3 input is AN1 input is AN1 input is AN1 is AN1 ut is AVss	IC102 devices	s only: d for CTMU) J temperature se s only: d for CTMU) J temperature se		
bit 4-0	dsPIC33FJ16 01110 = No c 01101 = Cha 00011 = Cha 00001 = Cha 00000 = Cha dsPIC33FJ16 01110 = No c	Channel 0 Period GP101 and d Channels conn- nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 positive GP102 and d Channels conn- nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 positive nnel 0 positive	spitive Input S spiC33FJ16N ected, all input input is conne input is AN3 input is AN2 input is AN1 input is AN0 spiC33FJ16N ected, all input input is AN5 input is AN3 input is AN3 input is AN3 input is AN3	IC102 devices	s only: d for CTMU) l temperature se s only:		

Note 1: All other values than those listed are Reserved.

REGISTER 19-6:	AD1CSSL: ADC1 INPUT SCAN SELECT REGISTER LOW ^(1,2,3)

Legend: R = Readable I	oit	W = Writable b	.it		mented bit, read	1 as '0'	
bit 7							bit 0
	_	CSS5	CSS4	CSS3	CSS2	CSS1	CSS0
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
bit 15							bit 8
	—	—		—	_	—	—
0-0	0-0	0-0	0-0	0-0	0-0	0-0	0-0
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0

'0' = Bit is cleared

x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

-n = Value at POR

bit 5-0 CSS<5:0>: ADC Input Scan Selection bits

'1' = Bit is set

1 = Select ANx for input scan

0 = Skip ANx for input scan

- **Note 1:** On devices without 6 analog inputs, all AD1CSSL bits can be selected by user application. However, inputs selected for scan without a corresponding input on device converts VREFL.
 - **2:** CSSx = ANx, where x = 0 through 5.
 - **3:** CTMU temperature sensor input cannot be scanned.

REGISTER 19-7:	AD1PCFGL: ADC1 PORT CONFIGURATION REGISTER LOW ^(1,2,3)
----------------	---

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	_
bit 15							bit 8
U-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	—	PCFG5 ⁽⁴⁾	PCFG4 ⁽⁴⁾	PCFG3 ⁽⁴⁾	PCFG2 ⁽⁴⁾	PCFG1 ⁽⁴⁾	PCFG0 ⁽⁴⁾

bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-6 Unimplemented: Read as '0'

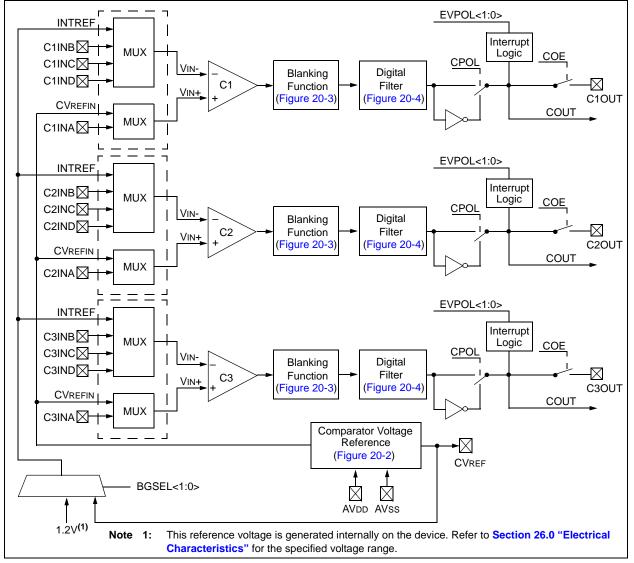
bit 5-0

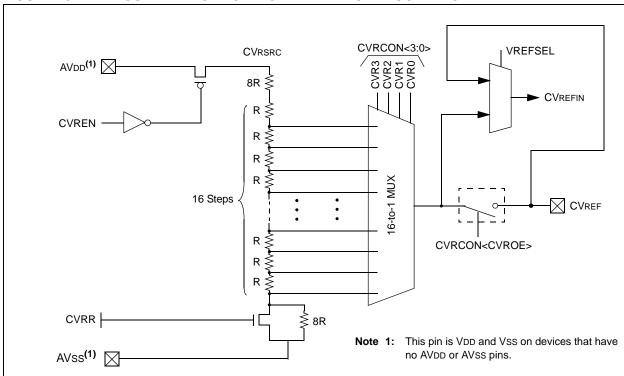
bit 7

- PCFG<5:0>: ADC Port Configuration Control bits⁽⁴⁾
 - 1 = Port pin in Digital mode, port read input enabled, ADC input multiplexer connected to AVss0 = Port pin in Analog mode, port read input disabled, ADC samples pin voltage
- **Note 1:** On devices without 6 analog inputs, all PCFG bits are R/W by user. However, PCFG bits are ignored on ports without a corresponding input on device.
 - **2:** PCFGx = ANx, where x = 0 through 5.
 - **3:** PCFGx bits have no effect if the ADC module is disabled by setting ADxMD bit in the PMDx register. When the bit is set, all port pins that have been multiplexed with ANx will be in Digital mode.
 - **4:** Pins shared with analog functions (i.e., ANx), are analog by default and therefore, must be set by the user to enable any digital function on that pin. Reading any port pin with the analog function enabled will return a '0', regardless of the signal input level.

20.0 COMPARATOR MODULE

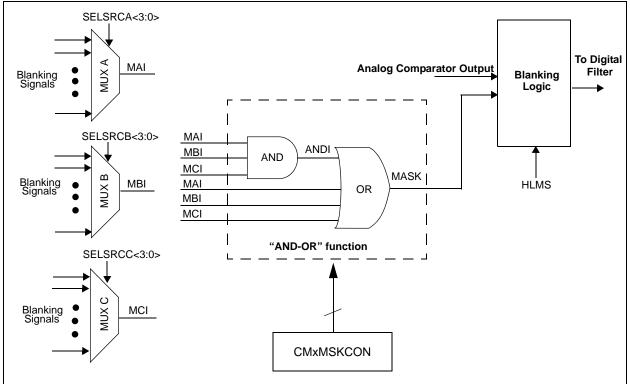
- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 families of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 54. "Comparator with Blanking" (DS70647) of the "dsPIC33F/PIC24H Family Reference Manual', which is available from the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Comparator module provides three comparators that can be configured in different ways. As shown in Figure 20-1, individual comparator options are specified by the Comparator module's Special Function Register (SFR) control bits.


These options allow users to:

- Select the edge for trigger and interrupt generation
- Select low-power control
- Configure the comparator voltage reference and band gap
- · Configure output blanking and masking

The comparator operating mode is determined by the input selections (i.e., whether the input voltage is compared to a second input voltage, to an internal voltage reference.



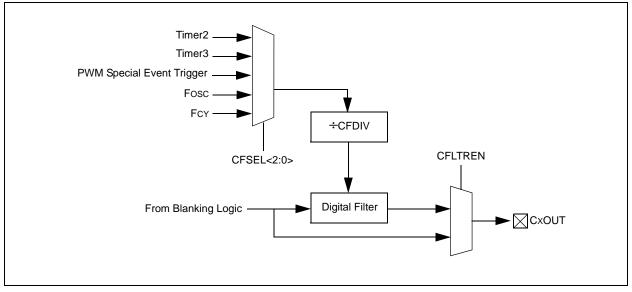


FIGURE 20-2: COMPARATOR VOLTAGE REFERENCE BLOCK DIAGRAM

FIGURE 20-4: DIGITAL FILTER INTERCONNECT BLOCK DIAGRAM

R/W-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0		
CMSIDL	—	_		_	C3EVT	C2EVT	C1EVT		
bit 15							bit a		
U-0	U-0	U-0	U-0	U-0	R-0	R-0	R-0		
_	_	_	_	_	C3OUT	C2OUT	C10UT		
bit 7							bit		
Legend:									
R = Readable	e bit	W = Writable	bit	U = Unimple	mented bit, read	d as '0'			
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cl	eared	x = Bit is unkr	nown		
bit 15	CMSIDL: Sto	op in Idle Mode	bit						
		nue operation of a			ce enters Idle m	ode			
bit 14-11		nted: Read as	-						
bit 10	-	parator 3 Ever							
		ator event occu							
	•	ator event did r							
bit 9	C2EVT: Com	parator 2 Ever	nt Status bit						
		ator event occu							
	0 = Compara	ator event did r	ot occur						
bit 8	-	parator 1 Ever							
		1 = Comparator event occurred							
	-	ator event did r							
bit 7-3	-	nted: Read as							
bit 2	-	nparator 3 Out							
	When CPOL	-							
	1 = VIN + > VI								
	0 = VIN+ < VI								
	When CPOL	= 1:							
	1 = VIN+ < VI	IN-							
	0 = VIN+ > VI	IN-							
bit 1	C2OUT: Con	nparator 2 Out	out Status bit						
	When CPOL	= 0:							
	1 = VIN+ > VI	IN-							
	0 = VIN + < VI	IN-							
	When CPOL								
	1 = VIN+ < VI								
	0 = VIN + > VI								
bit 0		nparator 1 Out	out Status bit						
	When CPOL								
	1 = VIN+ > VI								
	0 = VIN + < VI	IN-							
	When CPOL	= 1:							
	When CPOL 1 = VIN+ < VI								

REGISTER 20-1: CMSTAT: COMPARATOR STATUS REGISTER

R/W-0	R/W-0	R/W-0	U-0	U-0	U-0	R/W-0	R/W-0			
CON	COE	CPOL	0-0			CEVT	COUT			
bit 15	002	OF OL				OLVI	bit 8			
R/W-0	R/W-0	U-0	R/W-0	U-0	U-0	R/W-0	R/W-0			
EVP	OL<1:0>		CREF	_	_	CCH	<1:0>			
bit 7							bit			
Legend:										
R = Readab	e bit	W = Writable	bit	U = Unimplen	nented bit, read	d as '0'				
-n = Value a	POR	'1' = Bit is se	t	'0' = Bit is clea	ared	x = Bit is unkr	nown			
bit 15		arator Enable b	oit							
	•	ator is enabled								
bit 14	-	ator is disabled arator Output E	nabla bit							
DIL 14	•	•	esent on the C							
		ator output is pl								
bit 13			Polarity Select	bit						
		ator output is in ator output is no								
bit 12-10	Unimpleme	nted: Read as	ʻ0'							
bit 9	CEVT: Comp	CEVT: Comparator Event bit								
	•		-	_<1:0> settings	s occurred; dis	ables future trig	gers and			
	•	s until the bit is ator event did n								
bit 8	-	parator Output								
bit 0	-	. = 0 (non-inver								
	1 = VIN+ > V	IN-								
		INI_								
	0 = VIN + < V									
	When CPOL	. = 1 (inverted p	olarity):							
	When CPOL 1 = VIN+ < V	<u>= 1 (inverted p</u> N-	oolarity):							
bit 7-6	When CPOL 1 = VIN+ < VI 0 = VIN+ > VI	<u>= 1 (inverted p</u> IN- IN-		rity Select bits						
bit 7-6	When CPOL 1 = VIN+ < VI 0 = VIN+ > VI EVPOL<1:0:	<u>= 1 (inverted p</u> IN- IN- >: Trigger/Ever	t/Interrupt Pola	-		or output (while	CEVT = 0)			
bit 7-6	When CPOL 1 = VIN+ < VI	<u>= 1 (inverted p</u> IN- IN- >: Trigger/Ever /Event/Interrup /Event/Interrup	t/Interrupt Pola generated on generated onl	any change of	the comparate	or output (while the polarity-sele				
bit 7-6	When CPOL 1 = VIN+ < VI	<u>= 1 (inverted p</u> IN- IN- Trigger/Ever /Event/Interrup /Event/Interrup rator output (wh	t/Interrupt Pola generated on generated onl ile CEVT = 0)	any change of	the comparate					
bit 7-6	When CPOL 1 = VIN+ < VI	<u>= 1 (inverted p</u> IN- IN- >: Trigger/Ever /Event/Interrup /Event/Interrup rator output (wh L = 1 (inverted	t/Interrupt Pola generated on generated onl ile CEVT = 0) polarity):	any change of y on high to lo	the comparate					
bit 7-6	When CPOL 1 = VIN+ < VI	$\frac{1}{100} = 1 \text{ (inverted p)}$ $\frac{100}{100}$ $\frac{100}{100} = 1 \text{ (inverted)}$	t/Interrupt Pola generated on generated onl ile CEVT = 0) polarity): of the compara	any change of y on high to lo	the comparate					
bit 7-6	When CPOL 1 = VIN+ < VI	$\frac{1}{1} = 1 \text{ (inverted p)}$ $\frac{1}{1}$ 1	t/Interrupt Pola generated on generated only ile CEVT = 0) <u>polarity):</u> of the compara <u>rted polarity):</u>	any change of y on high to lov ator output	the comparate					
bit 7-6	When CPOL 1 = VIN+ < VI	$\frac{1}{2} = 1 (inverted p)$ $\frac{1}{10} = 1$ $\frac{1}{10} = 1$ $\frac{1}{10} = 1 (inverted)$ $\frac{1}{10} = 1 (inverted)$ $\frac{1}{10} = 1 (inverted)$ $\frac{1}{10} = 0 (non-inve)$	t/Interrupt Pola generated on generated onl ile CEVT = 0) <u>polarity):</u> of the compara <u>rted polarity):</u> of the compara	any change of y on high to lov ator output tor output	the comparato w transition of t		ected			
bit 7-6	When CPOL 1 = VIN+ < VI	$\frac{1}{100} = 1 \text{ (inverted p)}$ $\frac{100}{100} = 1 \text{ (inverted p)}$ $\frac{100}{100} = 1 \text{ (inverted p)}$ $\frac{1}{100} = 1 \text{ (inverted p)}$ $\frac{1}{100} = 0 \text{ (non-inverted p)}$	t/Interrupt Pola generated on generated on ile CEVT = 0) <u>polarity):</u> of the compara <u>rted polarity):</u> of the compara generated onl ile CEVT = 0)	any change of y on high to lov ator output tor output	the comparato w transition of t	the polarity-sele	ected			
bit 7-6	When CPOL 1 = VIN+ < VI	$\frac{1}{1} = 1 \text{ (inverted p)}$ $\frac{1}{1} = 1 \text{ (inverted p)}$ $\frac{1}{1} = 1 \text{ (inverted p)}$ $\frac{1}{2} = 1 \text{ (inverted p)}$ $\frac{1}{2} = 1 \text{ (inverted p)}$ $\frac{1}{2} = 0 \text{ (non-inverted p)}$ $\frac{1}{2} = 1 \text{ (inverted p)}$	t/Interrupt Pola generated on generated onl ile CEVT = 0) polarity): of the compara of the compara generated onl ile CEVT = 0) polarity):	any change of y on high to low ator output tor output y on low to hig	the comparato w transition of t	the polarity-sele	ected			
bit 7-6	When CPOL 1 = VIN+ < VI	$\frac{1}{1} = 1 \text{ (inverted p)}$ $\frac{1}{1} = 1 \text{ (inverted p)}$ $\frac{1}{1} = 1 \text{ (inverted)}$ $\frac{1}{1} = 1 \text{ (inverted)}$ $\frac{1}{1} = 0 \text{ (non-inve)}$ $\frac{1}{1} = 1 \text{ (inverted)}$ $\frac{1}{1} = 1 \text{ (inverted)}$ $\frac{1}{1} = 1 \text{ (inverted)}$	t/Interrupt Pola generated on generated on ile CEVT = 0) polarity): of the compara rted polarity): of the compara generated on ile CEVT = 0) polarity): of the compara	any change of y on high to low ator output tor output y on low to hig	the comparato w transition of t	the polarity-sele	ected			
bit 7-6	When CPOL 1 = VIN+ < VI 0 = VIN+ > VI EVPOL<1:0: 11 = Trigger/ 10 = Trigger/ compar If CPOI High-to 01 = Trigger/ compar If CPOI High-to If CPOI	$\frac{1}{1} = 1 \text{ (inverted p)}$ $\frac{1}{1} = 1 \text{ (inverted p)}$ $\frac{1}{1} = 1 \text{ (inverted p)}$ $\frac{1}{2} = 1 \text{ (inverted p)}$ $\frac{1}{2} = 0 \text{ (non-inverted p)}$ $\frac{1}{2} = 0 \text{ (non-inverted p)}$ $\frac{1}{2} = 0 \text{ (non-inverted p)}$ $\frac{1}{2} = 1 \text{ (inverted p)}$ $\frac{1}{2} = 1 \text{ (inverted p)}$ $\frac{1}{2} = 0 \text{ (non-inverted p)}$ $\frac{1}{2} = 0 \text{ (non-inverted p)}$	t/Interrupt Pola generated on generated on ile CEVT = 0) <u>polarity):</u> of the compara rted polarity): of the compara generated onl ile CEVT = 0) <u>polarity):</u> of the compara rted polarity):	any change of y on high to low ator output tor output y on low to hig tor output	the comparato w transition of t	the polarity-sele	ected			
bit 7-6	When CPOL 1 = VIN+ < VI	$\frac{1}{1} = 1 \text{ (inverted p)}$ $\frac{1}{1} = 1 \text{ (inverted p)}$ $\frac{1}{1} = 1 \text{ (inverted)}$ $\frac{1}{2} = 1 \text{ (inverted)}$ $\frac{1}{2} = 0 \text{ (non-inve)}$ $\frac{1}{2} = 0 \text{ (non-inve)}$ $\frac{1}{2} = 1 \text{ (inverted)}$ $\frac{1}{2} = 0 \text{ (non-inve)}$	t/Interrupt Pola generated on generated on ile CEVT = 0) polarity): of the compara rted polarity): of the compara generated on ile CEVT = 0) polarity): of the compara	any change of y on high to low ator output tor output y on low to hig tor output	the comparato w transition of t	the polarity-sele	ected			

REGISTER 20-2: CMxCON: COMPARATOR CONTROL REGISTER (CONTINUED)

- bit 5 **Unimplemented:** Read as '0'
- bit 4 CREF: Comparator Reference Select bit (VIN+ input)
 - 1 = VIN+ input connects to internal CVREFIN voltage
 - 0 = VIN+ input connects to CxINA pin
- bit 3-2 Unimplemented: Read as '0'
- bit 1-0 **CCH<1:0>:** Comparator Channel Select bits
 - 11 = VIN- input of comparator connects to INTREF
 - 10 = VIN- input of comparator connects to CXIND pin
 - $\texttt{Ol}=\mathsf{VIN}\text{-}$ input of comparator connects to CXINC pin
 - 00 = VIN- input of comparator connects to CXINB pin

U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0	RW-0
			—		SELSR	CC<3:0>	
bit 15				·			bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
	SELSF	RCB<3:0>			SELSR	CA<3:0>	
bit 7							bit 0
Legend:							
R = Readab	le bit	W = Writable	bit	U = Unimplen	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkr	nown
bit 15-12	Unimpleme	ented: Read as	ʻ0'				
bit 11-8	-	<3:0>: Mask C Ir		ts			
	1111 = Re s						
	1110 = Res	served					
	1101 = Re s	served					
	1100 = Re s	served					
	1011 = Re s						
	1010 = Res						
	1001 = Res						
	1000 = Res						
	0111 = Res 0110 = Res						
	0110 = Rec. 0101 = PW						
	0100 = PW						
	0011 = PW						
	0010 = PW	/M1L2					
	0001 = PW	/M1H1					
	0000 = PW	/M1L1					
bit 7-4		<3:0>: Mask B Ir	put Select bit	ts			
	1111 = Re s						
	1110 = Re s						
	1101 = Res						
	1100 = Res						
	1011 = Res 1010 = Res						
	1010 = Res						
	1000 = Res						
	0111 = Res						
	0110 = Res						
	0101 = PW						
	0100 = PW	/M1L3					
	0011 = PW	/M1H2					
	0010 = PW						
	0001 = PW	///1111					
	0000 = PW						

REGISTER 20-3: CMxMSKSRC: COMPARATOR MASK SOURCE SELECT CONTROL REGISTER

REGISTER 20-3: CMxMSKSRC: COMPARATOR MASK SOURCE SELECT CONTROL REGISTER

- bit 3-0 SELSRCA<3:0>: Mask A Input Select bits 1111 = Reserved 1110 = Reserved 1101 = Reserved 1100 = Reserved 1011 = Reserved 1010 = Reserved 1001 = Reserved 1000 = Reserved 0111 = Reserved 0110 = Reserved 0101 = PWM1H3 0100 = PWM1L3 0011 = PWM1H2 0010 = PWM1L2 0001 = PWM1H1
 - 0000 = PWM1L1

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
HLMS		OCEN	OCNEN	OBEN	OBNEN	OAEN	OANEN
bit 15				•	·	•	bit 8
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
NAGS	PAGS	ACEN	ACNEN	ABEN	ABNEN	AAEN	AANEN
bit 7	PAGS	ACEN	ACINEIN	ADEN	Adinein	AAEN	bit 0
Legend:							
R = Readable		W = Writable	e bit	U = Unimple	mented bit, read	as '0'	
-n = Value at	POR	'1' = Bit is se	t	'0' = Bit is cle	eared	x = Bit is unk	nown
bit 15		or Low Lovel	Masking Select	hite			
DIC 15	-		-		erted ('0') compa	rator signal fro	m nronanati
					erted ('1') compa		
bit 14	Unimplemer	nted: Read as	'0'				
bit 13	OCEN: OR O	Gate C Input Ir	verted Enable	bit			
		onnected to Of					
		ot connected to	•	1.14			
bit 12		=	Inverted Enable				
			ted to OR gate nected to OR g				
bit 11			verted Enable				
		onnected to OF	•				
		ot connected to	-				
bit 10		•	Inverted Enable	e bit			
			ted to OR gate nected to OR g	ate			
bit 9		Gate A Input E					
		onnected to OF					
	0 = MAI is no	ot connected to	OR gate				
bit 8			Inverted Enable	e bit			
			ted to OR gate nected to OR g	ate			
bit 7			e Output Select				
			cted to OR gat				
hit C			nnected to OR	gate			
bit 6		ive AND Gate connected to C					
		not connected	•				
bit 5	ACEN: AND	Gate A1 C Inp	out Inverted Ena	able bit			
		onnected to AN ot connected to	•				
bit 4			nput Inverted E	nahle hit			
~			ted to AND gat				
	0 = inverted	MCI is not con		guio			
bit 3			out Inverted Ena	-			
bit 3	ABEN: AND 1 = MBI is co		out Inverted Ena ID gate	-			

REGISTER 20-4: CMxMSKCON: COMPARATOR MASK GATING CONTROL REGISTER

REGISTER 20-4: CMxMSKCON: COMPARATOR MASK GATING CONTROL REGISTER

bit 2	ABNEN: AND Gate A1 B Input Inverted Enable bit
	1 = Inverted MBI is connected to AND gate0 = Inverted MBI is not connected to AND gate
bit 1	AAEN: AND Gate A1 A Input Enable bit
	1 = MAI is connected to AND gate0 = MAI is not connected to AND gate
bit 0	C C
	AANEN: AND Gate A1 A Input Inverted Enable bit
	1 = Inverted MAI is connected to AND gate0 = Inverted MAI is not connected to AND gate

11.0							1.0				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	I-0				
	—	—		—	—	—					
bit 15							bit 8				
	DAM 0	DAMO			DAM 0		DAMA				
U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
		CFSEL<2:0>		CFLTREN		CFDIV<2:0>	h:4 0				
bit 7							bit 0				
Legend:											
R = Readable	e bit	W = Writable I	oit	U = Unimpler	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown				
bit 15-7	Unimplemen	ted: Read as '	o'								
bit 6-4	CFSEL<2:0>	: Comparator F	ilter Input Clo	ock Select bits							
		111 = Reserved									
	110 = Reserved										
	101 = Timer3										
		100 = Timer2									
		011 = Reserved									
	010 = PWM Special Event Trigger										
	001 = Fosc 000 = Fcy										
bit 3		omparator Filte	r Enable bit								
bit 0	1 = Digital filt	-									
	0 = Digital filt										
bit 2-0	CFDIV<2:0>:	Comparator Fi	ilter Clock Div	ride Select bits							
	111 = Clock I	111 = Clock Divide 1:128									
	110 = Clock Divide 1:64										
	101 = Clock I	Divide 1:32									
	100 = Clock I										
	011 = Clock I										
	010 = Clock I										
	001 = Clock I										
	000 = Clock I										

REGISTER 20-5: CMxFLTR: COMPARATOR FILTER CONTROL REGISTER

U-0	U-0	U-0	U-0	U-0	R/W-0	R/W-0	R/W-0			
—	_	—	—	_	VREFSEL	BGSE	L<1:0>			
bit 15	÷	•	•	-			bit			
R/W-0	R/W-0	R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0			
CVREN	CVROE ⁽¹⁾									
bit 7							bi			
Legend:										
R = Readabl	e bit	W = Writable	bit	U = Unimple	mented bit, read	as '0'				
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle		x = Bit is unkr	nown			
bit 15-11	Unimplemen	ted: Read as '	0'							
bit 10	VREFSEL: Ve	oltage Referen	ce Select bit							
	1 = CVREFIN =									
		s generated by								
bit 9-8	BGSEL<1:0>: Band Gap Reference Source Select bits									
	11 = INTREF = CVREF pin 10 = INTREF = 1.2V (nominal) ⁽²⁾									
	0x = Reserve	•	aij							
bit 7	CVREN: Corr	parator Voltag	e Reference	Enable bit						
		tor voltage refe								
	0 = Comparat	tor voltage refe	rence circuit	powered down						
bit 6	CVROE: Com	nparator Voltag	e Reference	Output Enable	bit ⁽¹⁾					
		vel is output o								
	•	vel is disconne		•						
bit 5	•	•	Reference R	ange Selection	ı bit					
	1 = CVRSRC/2									
bit 4	0 = CVRSRC/3	•	o'							
	-	ted: Read as '								
bit 3-0	CVR<3:0>: Comparator Voltage Reference Value Selection $0 \le CVR<3:0> \le 15$ bits									
	$\frac{\text{When CVRR}}{\text{CVRFFIN}} = (C)$	<u>= ⊥.</u> VR<3:0>/24) ●	(CVRSRC)							
	• · · · · · · · · · · · · · · · · · · ·		(2							
	When CVRR	= 0:								

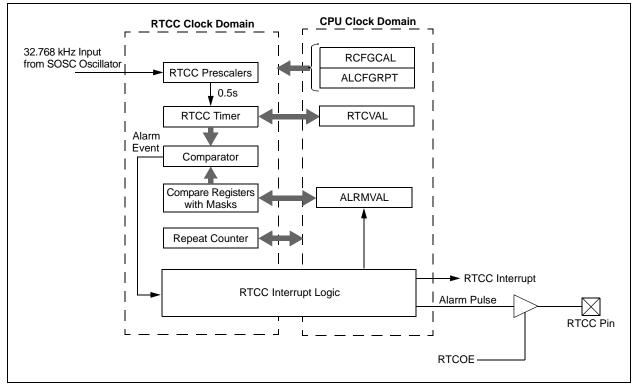
REGISTER 20-6: CVRCON: COMPARATOR VOLTAGE REFERENCE CONTROL REGISTER

- Note 1: CVROE overrides the TRIS bit setting.
 - 2: This reference voltage is generated internally on the device. Refer to Section 26.0 "Electrical Characteristics" for the specified voltage range.

21.0 REAL-TIME CLOCK AND CALENDAR (RTCC)

- **Note 1:** This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 37. "Real-Time Clock and Calendar (RTCC)" (DS70310) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

This chapter discusses the Real-Time Clock and Calendar (RTCC) module, available on dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices, and its operation.


Some of the key features of the RTCC module are:

- · Time: hours, minutes, and seconds
- 24-hour format (military time)
- · Calendar: weekday, date, month and year
- Alarm configurable
- Year range: 2000 to 2099
- · Leap year correction
- BCD format for compact firmware
- · Optimized for low-power operation
- · User calibration with auto-adjust
- Calibration range: ±2.64 seconds error per month
- Requirements: External 32.768 kHz clock crystal
- Alarm pulse or seconds clock output on RTCC pin

The RTCC module is intended for applications where accurate time must be maintained for extended periods of time with minimum to no intervention from the CPU. The RTCC module is optimized for low-power usage to provide extended battery lifetime while keeping track of time.

The RTCC module is a 100-year clock and calendar with automatic leap year detection. The range of the clock is from 00:00:00 (midnight) on January 1, 2000 to 23:59:59 on December 31, 2099.

The hours are available in 24-hour (military time) format. The clock provides a granularity of one second with half-second visibility to the user.

FIGURE 21-1: RTCC BLOCK DIAGRAM

21.1 RTCC Module Registers

The RTCC module registers are organized into three categories:

- RTCC Control Registers
- RTCC Value Registers
- Alarm Value Registers

21.1.1 REGISTER MAPPING

To limit the register interface, the RTCC Timer and Alarm Time registers are accessed through corresponding register pointers. The RTCC Value register window (RTCVALH and RTCVALL) uses the RTCPTR bits (RCFGCAL<9:8>) to select the desired timer register pair (see Table 21-1).

By writing the RTCVALH byte, the RTCC Pointer value, RTCPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the MINUTES and SECONDS value will be accessible through RTCVALH and RTCVALL until the pointer value is manually changed.

TABLE 21-1: RTCVAL REGISTER MAPPING

RTCPTR <1:0>	RTCC Value Register Window			
	RTCVAL<15:8>	RTCVAL<7:0>		
00	MINUTES	SECONDS		
01	WEEKDAY	HOURS		
10	MONTH	DAY		
11		YEAR		

The Alarm Value register window (ALRMVALH and ALRMVALL) uses the ALRMPTR bits (ALCFGRPT<9:8>) to select the desired Alarm register pair (see Table 21-2).

By writing the ALRMVALH byte, the Alarm Pointer value, ALRMPTR<1:0> bits, decrement by one until they reach '00'. Once they reach '00', the ALRMMIN and ALRMSEC value will be accessible through ALRMVALH and ALRMVALL until the pointer value is manually changed.

TABLE 21-2:	ALRMVAL REGISTER
	MAPPING

ALRMPTR	Alarm Value Register Window			
<1:0>	ALRMVAL<15:8>	ALRMVAL<7:0>		
00	ALRMMIN	ALRMSEC		
01	ALRMWD	ALRMHR		
10	ALRMMNTH	ALRMDAY		
11	_	_		

Considering that the 16-bit core does not distinguish between 8-bit and 16-bit read operations, the user must be aware that when reading either the ALRMVALH or ALRMVALL bytes will decrement the ALRMPTR<1:0> value. The same applies to the RTCVALH or RTCVALL bytes with the RTCPTR<1:0> being decremented.

Note:	This only applies to read operations and				
	not write operations.				

21.1.2 WRITE LOCK

In order to perform a write to any of the RTCC Timer registers, the RTCWREN bit (RCFGCAL<13>) must be set (refer to Example 21-1).

Note: To avoid accidental writes to the timer, it is recommended that the RTCWREN bit (RCFGCAL<13>) is kept clear at any other time. For the RTCWREN bit to be set, there is only 1 instruction cycle time window allowed between the 55h/AA sequence and the setting of RTCWREN; therefore, it is recommended that code follow the procedure in Example 21-1.

EXAMPLE 21-1: SETTING THE RTCWREN BIT

MOV	#NVMKEY, W1	;move the address of NVMKEY into W1
MOV	#0x55, W2	
MOV	#0xAA, W3	
MOV	W2, [W1]	;start 55/AA sequence
MOV	W3, [W1]	
BSET	RCFGCAL, #13	;set the RTCWREN bit

	U-0	R/W-0	R-0	R-0	R/W-0	R/W-0	R/W-0			
RTCEN ⁽²⁾		RTCWREN	RTCSYNC	HALFSEC ⁽³⁾	RTCOE	RTCPT	R<1:0>			
bit 15	·			· ·		·	bit			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
			CAL	<7:0>						
bit 7							bit			
Legend:										
R = Readable bit		W = Writable bit		U = Unimpleme	ented bit, read	l as '0'				
-n = Value at P	OR	'1' = Bit is set		'0' = Bit is clear	ed	x = Bit is unkn	own			
		(0)								
bit 15		CC Enable bit ⁽²⁾								
		odule is enable odule is disable								
bit 14		nted: Read as '								
bit 13	•	RTCC Value Re		Enable bit						
bit 15			•		v the user					
	 1 = RTCVALH and RTCVALL registers can be written to by the user 0 = RTCVALH and RTCVALL registers are locked out from being written to by the user 									
bit 12	RTCSYNC: F	RTCC Value Re	gisters Read	Synchronization	bit	-				
	RTCSYNC: RTCC Value Registers Read Synchronization bit 1 = RTCVALH, RTCVALL and ALCFGRPT registers can change while reading due to a rollover ripple									
	resulting in an invalid data read. If the register is read twice and results in the same data, the dat									
		ISSUMED TO BE V		registers can be	read without	concern over a	rollover ripr			
bit 11		Half-Second Sta								
		half period of a								
		f period of a sec								
bit 10	RTCOE: RTC	CC Output Enab	ole bit	RTCOE: RTCC Output Enable bit						
	1 = RTCC output enabled									
		utput enabled								
	0 = RTCC or	utput enabled utput disabled								
bit 9-8	RTCPTR<1:0	utput disabled 0>: RTCC Value	-	ndow Pointer bits						
bit 9-8	RTCPTR<1:0 Points to the	utput disabled 0>: RTCC Value corresponding	RTCC Value I	ndow Pointer bits registers when re every read or writ	eading RTCV					
bit 9-8	RTCPTR<1:0 Points to the the RTCPTR RTCVAL<15:	 abled abled brick RTCC Value corresponding <1:0> value dec 8>: 	RTCC Value I	registers when re	eading RTCV					
bit 9-8	RTCPTR<1:0 Points to the the RTCPTR <u>RTCVAL<15:</u> 00 = MINUTE	op: RTCC Value corresponding <1:0> value dec 8>: ES	RTCC Value I	registers when re	eading RTCV					
bit 9-8	RTCPTR<1:0 Points to the the RTCPTR RTCVAL<15:	utput disabled D>: RTCC Value corresponding <1:0> value dec <u>8>:</u> ES DAY	RTCC Value I	registers when re	eading RTCV					
bit 9-8	RTCPTR<1:0 Points to the the RTCPTR <u>RTCVAL<15:</u> 00 = MINUTE 01 = WEEKE 10 = MONTH 11 = Reserve	 abled b: RTCC Value corresponding 1:0> value ded 8>: ES DAY ed 	RTCC Value I	registers when re	eading RTCV					
bit 9-8	RTCPTR<1:0 Points to the the RTCPTR <u>RTCVAL<15:</u> 00 = MINUTE 01 = WEEKE 10 = MONTE 11 = Reserve <u>RTCVAL<7:0</u>	Arrive disabled D>: RTCC Value corresponding <1:0> value dec <u>8>:</u> ES DAY 1 ed <u>>:</u>	RTCC Value I	registers when re	eading RTCV					
bit 9-8	RTCPTR<1:0 Points to the the RTCPTR <u>RTCVAL<15:</u> 00 = MINUTE 01 = WEEKE 10 = MONTH 11 = Reserve <u>RTCVAL<7:0</u> 00 = SECON	Arrowski state without disabled D>: RTCC Value corresponding <1:0> value dec 8>: ES DAY 1 ed b:: IDS	RTCC Value I	registers when re	eading RTCV					
bit 9-8	RTCPTR<1:0 Points to the the RTCPTR <u>RTCVAL<15:</u> 00 = MINUTE 01 = WEEKE 10 = MONTE 11 = Reserve <u>RTCVAL<7:0</u>	Arrowski state without disabled D>: RTCC Value corresponding <1:0> value dec 8>: ES DAY 1 ed b:: IDS	RTCC Value I	registers when re	eading RTCV					

RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ REGISTER 21-1:

- 2: A write to the RTCEN bit is only allowed when RTCWREN = 1.
- 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

REGISTER 21-1: RCFGCAL: RTCC CALIBRATION AND CONFIGURATION REGISTER⁽¹⁾ (CONTINUED)

- **Note 1:** The RCFGCAL register is only affected by a POR.
 - **2:** A write to the RTCEN bit is only allowed when RTCWREN = 1.
 - 3: This bit is read-only. It is cleared to '0' on a write to the lower half of the MINSEC register.

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	—	—	—	_	—	—	—
bit 15							bit 8
U-0	U-0	U-0	U-0	U-0	U-0	R/W-0	U-0
—	—	—	—			RTSECSEL ⁽¹⁾	_
bit 7							bit 0
Legend:							

REGISTER 21-2: PADCFG1: PAD CONFIGURATION CONTROL REGISTER

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-2 Unimplemented: Read as '0'

bit 1

RTSECSEL: RTCC Seconds Clock Output Select bit⁽¹⁾

1 = RTCC seconds clock is selected for the RTCC pin

0 = RTCC alarm pulse is selected for the RTCC pin

bit 0 Unimplemented: Read as '0'

Note 1: To enable the actual RTCC output, the RTCOE (RCFGCAL) bit needs to be set.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
ALRMEN	CHIME		AMA	SK<3:0>		ALRMP	TR<1:0>				
bit 15							bit 8				
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
			ARP	T<7:0>							
bit 7							bit (
Legend:											
R = Readable	e bit	W = Writable	bit	U = Unimplen	nented bit, read	l as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	ared	x = Bit is unkr	nown				
bit 15	ALRMEN:	Alarm Enable bit									
	1 = Alarm i	s enabled (clear	ed automatic	ally after an ala	rm event when	ever ARPT<7:0)> = 0x00 and				
	CHIME	,		-							
	0 = Alarm i	s disabled									
bit 14		ime Enable bit									
	1 = Chime is enabled; ARPT<7:0> bits are allowed to roll over from 0x00 to 0xFF										
		is disabled; ARF			each 0x00						
bit 13-10		0>: Alarm Mask	Configuration	n bits							
	0000 = Every half second 0001 = Every second										
		0001 = Every 10 seconds									
		0011 = Every minute									
	0100 = Every 10 minutes										
	0101 = Every hour										
	0110 = Once a day 0111 = Once a week										
	0111 = Ono1000 = Ono										
		ce a year (excep	t when config	ured for Februa	rv 29th, once e	verv 4 vears)					
		served – do not u	-		.,,						
	11xx = Res	served – do not ι	ise								
bit 9-8		<1:0>: Alarm Val	ue Register \	Vindow Pointer	bits						
	Points to the corresponding Alarm Value registers when reading ALRMVALH and ALRMVALL registers the ALRMPTR<1:0> value decrements on every read or write of ALRMVALH until it reaches '00'.										
	ALRMVAL<15:8>:										
	00 = ALRM										
	01 = ALRM										
	10 = ALRM										
	11 = Unimp										
	ALRMVAL<										
	01 = ALRM										
	10 = ALRM										
	11 = Unimp	lemented									
bit 7-0	ARPT<7:0>	Alarm Repeat	Counter Valu	e bits							
	11111111	= Alarm will repe	at 255 more	times							
	•										
	•										
	00000000	= Alarm will not i	epeat								
		r decrements on		ent. The counte	r is prevented	rom rollina ove	r from 0x00 t				

REGISTER 21-3: ALCFGRPT: ALARM CONFIGURATION REGISTER

REGISTER 21-4: RTCVAL (WHEN RTCPTR<1:0> = 11): YEAR VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
—	_	_	_	_	—	—	—
bit 15							bit 8

R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
	YRTEN<3:0>			YRONE<3:0>				
bit 7							bit 0	

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	t, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-8	Unimplemented: Read as '0'
bit 7-4	YRTEN<3:0>: Binary Coded Decimal Value of Year's Tens Digit; contains a value from 0 to 9
bit 3-0	YRONE<3:0>: Binary Coded Decimal Value of Year's Ones Digit; contains a value from 0 to 9

Note 1: A write to the YEAR register is only allowed when RTCWREN = 1.

REGISTER 21-5: RTCVAL (WHEN RTCPTR<1:0> = 10): MONTH AND DAY VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	R-x	R-x	R-x	R-x	R-x
—	—	—	MTHTEN0	MTHONE<3:0>			
bit 15							bit 8

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	DAYTEN<1:0>		DAYONE<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-6: RTCVAL (WHEN RTCPTR<1:0> = 01): WKDYHR: WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	
—		_	—	—		WDAY<2:0>		
bit 15							bit 8	
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	

U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	—	HRTEN	N<1:0>		HRON	Ξ<3:0>	
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	d as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-7: RTCVAL (WHEN RTCPTR<1:0> = 00): MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—		MINTEN<2:0>			MINON	E<3:0>	
bit 15							bit 8

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
—	SECTEN<2:0>			SECONE<3:0>			
bit 7							bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit,	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15	Unimplemented: Read as '0'
bit 14-12	MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5
bit 11-8	MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9
bit 7	Unimplemented: Read as '0'
bit 6-4	SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5
bit 3-0	SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

	REGIS	IER''					
U-0	U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
	—	—	MTHTEN0		MTHON	NE<3:0>	
bit 15							bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		DAYTE	N<1:0>	DAYONE<3:0>			

REGISTER 21-8: ALRMVAL (WHEN ALRMPTR<1:0> = 10): ALARM MONTH AND DAY VALUE REGISTER⁽¹⁾

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-13	Unimplemented: Read as '0'
bit 12	MTHTEN0: Binary Coded Decimal Value of Month's Tens Digit; contains a value of 0 or 1
bit 11-8	MTHONE<3:0>: Binary Coded Decimal Value of Month's Ones Digit; contains a value from 0 to 9
bit 7-6	Unimplemented: Read as '0'
bit 5-4	DAYTEN<1:0>: Binary Coded Decimal Value of Day's Tens Digit; contains a value from 0 to 3
bit 3-0	DAYONE<3:0>: Binary Coded Decimal Value of Day's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

REGISTER 21-9: ALRMVAL (WHEN ALRMPTR<1:0> = 01): ALARM WEEKDAY AND HOURS VALUE REGISTER⁽¹⁾

U-0	U-0	U-0	U-0	U-0	R/W-x	R/W-x	R/W-x
—	_	—	_	—	WDAY2	WDAY1	WDAY0
bit 15	•						bit 8
U-0	U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x
		HRTE	N<1:0>		HRON	E<3:0>	
bit 7	•			•			bit 0

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit	, read as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15-11	Unimplemented: Read as '0'
bit 10-8	WDAY<2:0>: Binary Coded Decimal Value of Weekday Digit; contains a value from 0 to 6
bit 7-6	Unimplemented: Read as '0'
bit 5-4	HRTEN<1:0>: Binary Coded Decimal Value of Hour's Tens Digit; contains a value from 0 to 2
bit 3-0	HRONE<3:0>: Binary Coded Decimal Value of Hour's Ones Digit; contains a value from 0 to 9

Note 1: A write to this register is only allowed when RTCWREN = 1.

© 2011 Microchip Technology Inc.

bit 7

bit 0

REGISTER 21-10: ALRMVAL (WHEN ALRMPTR<1:0> = 00): ALARM MINUTES AND SECONDS VALUE REGISTER

U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
—		MINTEN<2:0>			MINON	E<3:0>		
bit 15							bit 8	
U-0	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	R/W-x	
_		SECTEN<2:0>		SECONE<3:0>				

Legend:			
R = Readable bit	W = Writable bit	U = Unimplemented bit, read	l as '0'
-n = Value at POR	'1' = Bit is set	'0' = Bit is cleared	x = Bit is unknown

bit 15 Unimplemented: Read as '0'

bit 14-12 MINTEN<2:0>: Binary Coded Decimal Value of Minute's Tens Digit; contains a value from 0 to 5

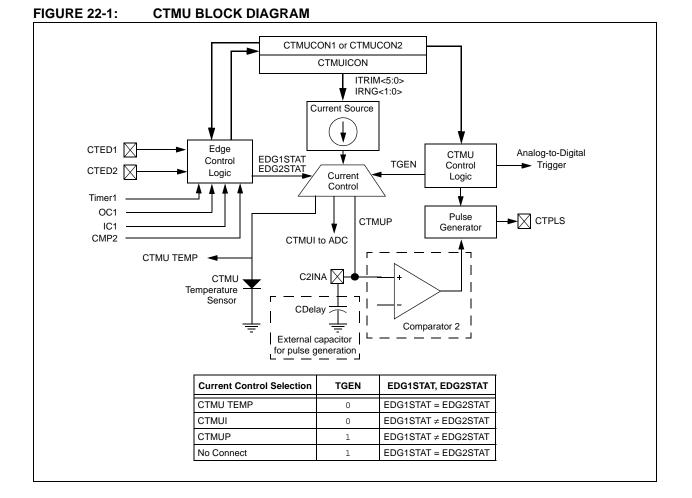
bit 11-8MINONE<3:0>: Binary Coded Decimal Value of Minute's Ones Digit; contains a value from 0 to 9bit 7Unimplemented: Read as '0'

bit 6-4 SECTEN<2:0>: Binary Coded Decimal Value of Second's Tens Digit; contains a value from 0 to 5

bit 3-0 SECONE<3:0>: Binary Coded Decimal Value of Second's Ones Digit; contains a value from 0 to 9

22.0 CHARGE TIME MEASUREMENT UNIT (CTMU)

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family of devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 55. "Charge Time Measurement Unit (CTMU)" (DS70635) in the "dsPIC33F/PIC24H Family Reference Manual", which is available on the Microchip web site (www.microchip.com).
 - 2: Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.


The Charge Time Measurement Unit (CTMU) is a flexible analog module that provides accurate differential time measurement between pulse sources, as well as asynchronous pulse generation. Its key features include:

- · Four edge input trigger sources
- · Polarity control for each edge source
- Control of edge sequence
- · Control of response to edges
- · Precise time measurement resolution of 200 ps
- Accurate current source suitable for capacitive measurement
- On-chip temperature measurement using a built-in diode

Together with other on-chip analog modules, the CTMU can be used to precisely measure time, measure capacitance, measure relative changes in capacitance or generate output pulses that are independent of the system clock.

The CTMU module is ideal for interfacing with capacitive-based sensors. The CTMU is controlled through three registers: CTMUCON1, CTMUCON2 and CTMUICON. CTMUCON1 enables the module, the Edge delay generation, sequencing of edges and controls the current source and the output trigger. CTMUCON2 controls the edge source selection, edge source polarity selection and edge sampling mode. The CTMUICON register controls the selection and trim of the current source.

Figure 22-1 shows the CTMU block diagram.

R/W-0	U-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0				
CTMUEN	—	CTMUSIDL	TGEN ⁽¹⁾	EDGEN	EDGSEQEN	IDISSEN ⁽²⁾	CTTRIG				
bit 15							bit				
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0				
	—	—	_	_	—	—	—				
bit 7							bit				
Legend:											
R = Readable	e bit	W = Writable b	bit	U = Unimple	mented bit, read	as '0'					
-n = Value at	POR	'1' = Bit is set		'0' = Bit is cle	eared	x = Bit is unkno	own				
bit 15	CTMUEN: CT	MU Enable bit									
	1 = Module is										
	0 = Module is	disabled									
bit 14	Unimplemen	ted: Read as 'o	,								
bit 13	CTMUSIDL: Stop in Idle Mode bit										
		ue module ope module operat			lle mode						
bit 12	TGEN: Time Generation Enable bit ⁽¹⁾										
		edge delay gen edge delay ger									
bit 11	EDGEN: Edg	EDGEN: Edge Enable bit									
	1 = Edges ar 0 = Edges ar										
bit 10	•	Edge Sequenc	e Enchle hit								
bit 10	1 = Edge 1 e	vent must occu	r before Edge	2 event can o	ccur						
	•	sequence is ne		. (2)							
bit 9		alog Current So									
		urrent source of urrent source of									
bit 8	CTTRIG: Trig	ger Control bit									
bit 8	1 = Trigger o	utput is enabled									
bit 8 bit 7-0	1 = Trigger o 0 = Trigger o	-	d								

REGISTER 22-1: CTMUCON1: CTMU CONTROL REGISTER 1

Note 1: If TGEN = 1, the peripheral inputs and outputs must be configured to an available RPn pin. For more information, see Section 10.4 "Peripheral Pin Select".

2: The ADC module Sample and Hold capacitor is not automatically discharged between sample/conversion cycles. Software using the ADC as part of a capacitance measurement, must discharge the ADC capacitor before conducting the measurement. The IDISSEN bit, when set to '1', performs this function. The ADC must be sampling while the IDISSEN bit is active to connect the discharge sink to the capacitor array.

R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0			
EDG1MOD	EDG1POL		EDG1S	SEL<3:0>		EDG2STAT	EDG1STAT			
bit 15							bit 8			
R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	U-0	U-0			
EDG2MOD	EDG2POL		EDG2S	SEL<3:0>			—			
bit 7							bit 0			
Legend:										
R = Readable	e bit	W = Writable b	oit	U = Unimplem	ented bit. rea	d as '0'				
-n = Value at		'1' = Bit is set		'0' = Bit is clea		x = Bit is unkr	lown			
n – valuo at										
bit 15	EDG1MOD: E	Edge 1 Edge Sa	mpling Select	tion bit						
		s edge sensitive								
	0 = Edge 1 is	s level sensitive								
bit 14		dge 1 Polarity S								
		rogrammed for								
	•	rogrammed for	•	•						
bit 13-10	1xxx = Rese	: 0>: Edge 1 Sou	Ince Select bit	S						
	01xx = Reserved									
	0011 = CTED1 pin									
	0010 = CTED2 pin									
	0001 = OC1 module 0000 = Timer1 module									
bit 9		Edge 2 Status b	it							
	Indicates the status of Edge 2 and can be written to control the edge source.									
	1 = Edge 2 has occurred									
	•	as not occurred								
bit 8		Edge 1 Status b								
	Indicates the status of Edge 1 and can be written to control the edge source. 1 = Edge 1 has occurred									
	-	as not occurred								
bit 7	-	Edge 2 Edge Sa		tion bit						
		s edge sensitive								
		s level sensitive								
bit 6	EDG2POL: E	dge 2 Polarity S	Select bit							
		rogrammed for rogrammed for								
bit 5-2	EDG2SEL<3:0>: Edge 2 Source Select bits									
	1xxx = Rese									
	01xx = Rese 0011 = CTEE									
	0011 = CTEL 0010 = CTEL	-								
	0001 = Comp	parator 2 module	e							
	0000 = IC1 m	nodule								
		ted: Read as '0								

REGISTER 22-2: CTMUCON2: CTMU CONTROL REGISTER 2

	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0	R/W-0
		ITRIM	<5:0>			IRNG	<1:0>
bit 15							bit
U-0	U-0	U-0	U-0	U-0	U-0	U-0	U-0
	—	—	_	—	_	—	—
bit 7							bit
Legend:							
R = Readab	le bit	W = Writable I	bit	U = Unimplem	nented bit, rea	d as '0'	
-n = Value a	t POR	'1' = Bit is set		'0' = Bit is clea	ared	x = Bit is unkn	own
	000000 = N	ominal current o		d by IRNG<1:0>	• + 2%		
	• •	ominal current o		by IRNG<1:0>			
bit 9-8	• • 100010 = N 100001 = N IRNG<1:0>: 11 = 100 × 10 = 10 × B	ominal current o ominal current o ominal current o Current Source Base Current ⁽¹⁾ ase Current urrent level (0.55	utput specified utput specified utput specified Range Select	by IRNG<1:0> by IRNG<1:0> by IRNG<1:0> by IRNG<1:0>	2% 62%		

REGISTER 22-3: CTMUICON: CTMU CURRENT CONTROL REGISTER

Note 1: This setting must be used for the CTMU temperature sensor.

23.0 SPECIAL FEATURES

- Note 1: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices. It is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to Section 24. "Programming and Diagnostics" (DS70207) and Section 25. "Device Configuration" (DS70194) in the "dsPIC33F/PIC24H Family Reference Manual", which are available from the Microchip web site (www.microchip.com).
 - Some registers and associated bits described in this section may not be available on all devices. Refer to Section 4.0 "Memory Organization" in this data sheet for device-specific register and bit information.

dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/ 102 devices include several features intended to maximize application flexibility and reliability, and minimize cost through elimination of external components. These are:

- Flexible configuration
- Watchdog Timer (WDT)
- Code Protection
- In-Circuit Serial Programming[™] (ICSP[™])
- In-Circuit emulation

23.1 Configuration Bits

The Configuration Shadow register bits can be configured (read as '0'), or left unprogrammed (read as '1'), to select various device configurations. These readonly bits are mapped starting at program memory location 0xF80000. A detailed explanation of the various bit functions is provided in Table 23-3.

Note that address 0xF80000 is beyond the user program memory space and belongs to the configuration memory space (0x800000-0xFFFFF) which can only be accessed using table reads. In dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/ 102 devices, the configuration bytes are implemented as volatile memory. This means that configuration data must be programmed each time the device is powered up. Configuration data is stored in the two words at the top of the on-chip program memory space, known as the Flash Configuration Words. Their specific locations are shown in Table 23-2. These are packed representations of the actual device Configuration bits, whose actual locations are distributed among several locations in configuration space. The configuration data is automatically loaded from the Flash Configuration Words to the proper Configuration registers during device Resets.

Note:	Configuration data is reloaded on all types
	of device Resets.

When creating applications for these devices, users should always specifically allocate the location of the Flash Configuration Word for configuration data. This is to make certain that program code is not stored in this address when the code is compiled.

The upper byte of all Flash Configuration Words in program memory should always be '1111 1111'. This makes them appear to be NOP instructions in the remote event that their locations are ever executed by accident. Since Configuration bits are not implemented in the corresponding locations, writing '1's to these locations has no effect on device operation.

Note: Performing a page erase operation on the last page of program memory clears the Flash Configuration Words, enabling code protection as a result. Therefore, users should avoid performing page erase operations on the last page of program memory.

TABLE 23-1: CONFIGURATION SHADOW REGISTER MAP

Address	Name	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
F80004	FGS	_	_	—	—	—	—	GCP	GWRP	
F80006	FOSCSEL	IESO	PWMLOCK ⁽¹⁾	_	WDTW	IN<1:0>	FNOSC<2:0>			
F80008	FOSC	FCKSM	<i>I</i> <1:0>	IOL1WAY	—	—	OSCIOFNC	POSCM	1D<1:0>	
F8000A	FWDT	FWDTEN	WINDIS	PLLKEN	WDTPRE		WDTPO	ST<3:0>		
F8000C	FPOR	PWMPIN ⁽¹⁾	HPOL ⁽¹⁾	LPOL ⁽¹⁾	ALTI2C1	—	—	—	—	
F8000E	FICD	Reserved ⁽²⁾	—	Reserved ⁽³⁾	Reserved ⁽³⁾	—	—	ICS<	<1:0>	

Legend: — = unimplemented, read as '1'.

Note 1: These bits are only available on dsPIC33FJ16MC101/102 devices.

2: This bit is reserved for use by development tools.

3: This bit is reserved; program as '0'.

The Configuration Flash Words map is shown in Table 23-2.

TABLE 23-2: CONFIGURATION FLASH WORDS

File Name	Addr.	Bits 23-16	Bit 15	Bit 14	Bit 13	Bit 12	Bit 11	Bit 10	Bit 9	Bit 8	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG2	002BFC	_	IESO	PWMLOCK(2)	PWMPIN ⁽²⁾	WDT	WIN<1:0>	FNO	FNOSC<2:0>		FCKSM	l<1:0>	OSCIOFNC	IOL1WAY	LPOL ⁽²⁾	ALTI2C1	POSCM	ID<1:0>
CONFIG1	002BFE	_	Reserved ⁽³⁾	Reserved ⁽³⁾	GCP	GWRP	Reserved ⁽⁴⁾	HPOL ⁽²⁾	ICS<	1:0>	FWDTEN	WINDIS	PLLKEN	WDTPRE		WDTPOS	T<3:0>	

Legend: — = unimplemented, read as '1'.

Note 1: During a Power-on Reset (POR), the contents of these Flash locations are transferred to the Configuration Shadow registers.

2: This bit is reserved on dsPIC33FJ16GP101/102 devices and reads as '1'.

3: This bit is reserved; program as '0'.

4: This bit is reserved for use by development tools and must be programmed as '1'.

TABLE 23-3:	dsPIC33F CONF	IGURATION BITS DESCRIPTION
Bit Field	RTSP Effect	Description
GCP	Immediate	General Segment Code-Protect bit 1 = User program memory is not code-protected 0 = Code protection is enabled for the entire program memory space
GWRP	Immediate	General Segment Write-Protect bit 1 = User program memory is not write-protected 0 = User program memory is write-protected
IESO	Immediate	 Two-speed Oscillator Start-up Enable bit 1 = Start-up device with FRC, then automatically switch to the user-selected oscillator source when ready 0 = Start-up device with user-selected oscillator source
PWMLOCK	Immediate	PWM Lock Enable bit 1 = Certain PWM registers may only be written after key sequence 0 = PWM registers may be written without key
WDTWIN<1:0>	Immediate	Watchdog Window Select bits 11 = WDT Window is 24% of WDT period 10 = WDT Window is 37.5% of WDT period 01 = WDT Window is 50% of WDT period 00 = WDT Window is 75% of WDT period
FNOSC<2:0>	If clock switch is enabled, RTSP effect is on any device Reset; otherwise, Immediate	Oscillator Selection bits 111 = Fast RC Oscillator with divide-by-N (FRCDIVN) 110 = Reserved; do not use 101 = Low-Power RC Oscillator (LPRC) 100 = Secondary Oscillator (Sosc) 011 = Primary Oscillator with PLL module (MS + PLL, EC + PLL) 010 = Primary Oscillator (MS, HS, EC) 001 = Fast RC Oscillator with divide-by-N with PLL module (FRCDIVN + PLL) 000 = Fast RC Oscillator (FRC)
FCKSM<1:0>	Immediate	Clock Switching Mode bits 1x = Clock switching is disabled, Fail-Safe Clock Monitor is disabled 01 = Clock switching is enabled, Fail-Safe Clock Monitor is disabled 00 = Clock switching is enabled, Fail-Safe Clock Monitor is enabled
IOL1WAY	Immediate	Peripheral pin select configuration 1 = Allow only one reconfiguration 0 = Allow multiple reconfigurations
OSCIOFNC	Immediate	OSC2 Pin Function bit (except in MS and HS modes) 1 = OSC2 is clock output 0 = OSC2 is general purpose digital I/O pin
POSCMD<1:0>	Immediate	Primary Oscillator Mode Select bits 11 = Primary oscillator disabled 10 = HS Crystal Oscillator mode (10 MHz - 32 MHz) 01 = MS Crystal Oscillator mode (3 MHz - 10 MHz) 00 = EC (External Clock) mode (DC - 32 MHz)
FWDTEN	Immediate	 Watchdog Timer Enable bit 1 = Watchdog Timer always enabled (LPRC oscillator cannot be disabled. Clearing the SWDTEN bit in the RCON register will have no effect.) 0 = Watchdog Timer enabled/disabled by user software (LPRC can be disabled by clearing the SWDTEN bit in the RCON register)
WINDIS	Immediate	Watchdog Timer Window Enable bit 1 = Watchdog Timer in Non-Window mode 0 = Watchdog Timer in Window mode
WDTPRE	Immediate	Watchdog Timer Prescaler bit 1 = 1:128 0 = 1:32

TABLE 23-3: dsPIC33F CONFIGURATION BITS DESCRIPTION

Bit Field	RTSP Effect	Description
WDTPOST<3:0>	Immediate	Watchdog Timer Postscaler bits 1111 = 1:32,768 1110 = 1:16,384 • • • • • • • • • • • • •
PLLKEN	Immediate	PLL Lock Enable bit 1 = Clock switch to PLL will wait until the PLL lock signal is valid 0 = Clock switch will not wait for the PLL lock signal
ALTI2C	Immediate	Alternate I^2C^{TM} pins 1 = I^2C mapped to SDA1/SCL1 pins 0 = I^2C mapped to ASDA1/ASCL1 pins
ICS<1:0>	Immediate	ICD Communication Channel Select bits 11 = Communicate on PGEC1 and PGED1 10 = Communicate on PGEC2 and PGED2 01 = Communicate on PGEC3 and PGED3 00 = Reserved, do not use
PWMPIN	Immediate	 Motor Control PWM Module Pin Mode bit 1 = PWM module pins controlled by PORT register at device Reset (tri-stated) 0 = PWM module pins controlled by PWM module at device Reset (configured as output pins)
HPOL	Immediate	Motor Control PWM High Side Polarity bit 1 = PWM module high side output pins have active-high output polarity 0 = PWM module high side output pins have active-low output polarity
LPOL	Immediate	Motor Control PWM Low Side Polarity bit 1 = PWM module low side output pins have active-high output polarity 0 = PWM module low side output pins have active-low output polarity

TABLE 23-3: dsPIC33F CONFIGURATION BITS DESCRIPTION (CONTINUED)

REGISTER 23-1: DEVID: DEVICE ID REGISTER

R	R	R	R	R	R	R	R
			DEVID	<23:16>			
bit 23							bit 16
R	R	R	R	R	R	R	R
			DEVID	<15:8>			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVID	0<7:0>			
bit 7							bit 0
Legend:	R = Read-Only bit			U = Unimplen	nented bit		

bit 23-0 **DEIDV<23:0>:** Device Identifier bits⁽¹⁾

Note 1: Refer to the *"Flash Programming Specification for dsPIC33F Families with Volatile Configuration Bits"* (DS70659) for the list of device ID values.

REGISTER 23-2: DEVREV: DEVICE REVISION REGISTER

R	R	R	R	R	R	R	R
			DEVREV	/<23:16>			
bit 23							bit 16
	P						
R	R	R	R	R	R	R	R
			DEVRE	√<15:8>			
bit 15							bit 8
R	R	R	R	R	R	R	R
			DEVRE	V<7:0>			
bit 7							bit 0
Legend:	R = Read-only bit	U = Unimplemented bit					

bit 23-0 **DEVREV<23:0>:** Device Revision bits⁽¹⁾

Note 1: Refer to the *"Flash Programming Specification for dsPIC33F Families with Volatile Configuration Bits"* (DS70659) for the list of device revision values.

23.2 On-Chip Voltage Regulator

All of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices power their core digital logic at a nominal 2.5V. This can create a conflict for designs that are required to operate at a higher typical voltage, such as 3.3V. To simplify system design, all devices in the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family incorporate an onchip regulator that allows the device to run its core logic from VDD.

The regulator provides power to the core from the other VDD pins. When the regulator is enabled, a low-ESR (less than 5 ohms) capacitor (such as tantalum or ceramic) must be connected to the VCAP pin (Figure 23-1). This helps to maintain the stability of the regulator. The recommended value for the filter capacitor is provided in Table 26-14 located in Section 26.1 "DC Characteristics".

Note:	It is important for low-ESR capacitors to
	be placed as close as possible to the VCAP
	pin.

On a POR, it takes approximately 20 µs for the on-chip voltage regulator to generate an output voltage. During this time, designated as TSTARTUP, code execution is disabled. TSTARTUP is applied every time the device resumes operation after any power-down.

FIGURE 23-1: CONNECTIONS FOR THE ON-CHIP VOLTAGE REGULATOR⁽¹⁾

23.3 BOR: Brown-Out Reset

The Brown-out Reset (BOR) module is based on an internal voltage reference circuit that monitors the regulated supply voltage VCAP. The main purpose of the BOR module is to generate a device Reset when a brown-out condition occurs. Brown-out conditions are generally caused by glitches on the AC mains (for example, missing portions of the AC cycle waveform due to bad power transmission lines, or voltage sags due to excessive current draw when a large inductive load is turned on).

A BOR generates a Reset pulse, which resets the device. The BOR selects the clock source, based on the device Configuration bit values (FNOSC<2:0> and POSCMD<1:0>).

If an oscillator mode is selected, the BOR activates the Oscillator Start-up Timer (OST). The system clock is held until OST expires. If the PLL is used, the clock is held until the LOCK bit (OSCCON<5>) is '1'.

Concurrently, the PWRT time-out (TPWRT) is applied before the internal Reset is released. If TPWRT = 0 and a crystal oscillator is being used, then a nominal delay of TFSCM = 100 is applied. The total delay in this case is TFSCM.

The BOR Status bit (RCON<1>) is set to indicate that a BOR has occurred. The BOR circuit continues to operate while in Sleep or Idle modes and resets the device should VDD fall below the BOR threshold voltage.

23.4 Watchdog Timer (WDT)

For dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices, the WDT is driven by the LPRC oscillator. When the WDT is enabled, the clock source is also enabled.

23.4.1 PRESCALER/POSTSCALER

The nominal WDT clock source from LPRC is 32 kHz. This feeds a prescaler than can be configured for either 5-bit (divide-by-32) or 7-bit (divide-by-128) operation. The prescaler is set by the WDTPRE Configuration bit. With a 32 kHz input, the prescaler yields a nominal WDT time-out period (TWDT) of 1 ms in 5-bit mode, or 4 ms in 7-bit mode.

A variable postscaler divides down the WDT prescaler output and allows for a wide range of time-out periods. The postscaler is controlled by the WDTPOST<3:0> Configuration bits (FWDT<3:0>), which allow the selection of 16 settings, from 1:1 to 1:32,768. Using the prescaler and postscaler, time-out periods ranging from 1 ms to 131 seconds can be achieved.

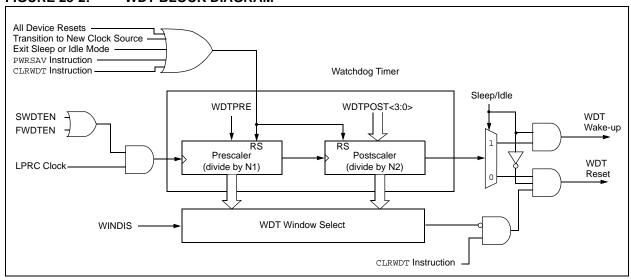
The WDT, prescaler, and postscaler are reset:

- · On any device Reset
- On the completion of a clock switch, whether invoked by software (i.e., setting the OSWEN bit after changing the NOSC bits) or by hardware (i.e., Fail-Safe Clock Monitor)
- When a PWRSAV instruction is executed (i.e., Sleep or Idle mode is entered)
- When the device exits Sleep or Idle mode to resume normal operation
- By a CLRWDT instruction during normal execution

Note: The CLRWDT and PWRSAV instructions clear the prescaler and postscaler counts when executed.

23.4.2 SLEEP AND IDLE MODES

If the WDT is enabled, it will continue to run during Sleep or Idle modes. When the WDT time-out occurs, the device will wake the device and code execution will continue from where the PWRSAV instruction was executed. The corresponding SLEEP or IDLE bits (RCON<3> and RCON<2>, respectively) will need to be cleared in software after the device wakes up.


23.4.3 ENABLING WDT

The WDT is enabled or disabled by the FWDTEN Configuration bit in the FWDT Configuration register. When the FWDTEN Configuration bit is set, the WDT is always enabled.

The WDT can be optionally controlled in software when the FWDTEN Configuration bit has been programmed to '0'. The WDT is enabled in software by setting the SWDTEN control bit (RCON<5>). The SWDTEN control bit is cleared on any device Reset. The software WDT option allows the user application to enable the WDT for critical code segments and disable the WDT during non-critical segments for maximum power savings.

Note: If the WINDIS bit (FWDT<6>) is cleared, the CLRWDT instruction should be executed by the application software only during the last 1/4 of the WDT period. This CLRWDT window can be determined by using a timer. If a CLRWDT instruction is executed before this window, a WDT Reset occurs.

The WDT flag bit, WDTO (RCON<4>), is not automatically cleared following a WDT time-out. To detect subsequent WDT events, the flag must be cleared in software.

FIGURE 23-2: WDT BLOCK DIAGRAM

23.5 In-Circuit Serial Programming

Devices can be serially programmed while in the end application circuit. This is done with two lines for clock and data and three other lines for power, ground and the programming sequence. Serial programming allows customers to manufacture boards with unprogrammed devices and then program the digital signal controller just before shipping the product. Serial programming also allows the most recent firmware or a custom firmware to be programmed. Refer to the *"Flash Programming Specification for dsPIC33F Families with Volatile Configuration Bits"* (DS70659) for details about In-Circuit Serial Programming (ICSP).

Any of the three pairs of programming clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

23.6 In-Circuit Debugger

When MPLAB[®] ICD 2 is selected as a debugger, the incircuit debugging functionality is enabled. This function allows simple debugging functions when used with MPLAB IDE. Debugging functionality is controlled through the PGECx (Emulation/Debug Clock) and PGEDx (Emulation/Debug Data) pin functions.

Any of the three pairs of debugging clock/data pins can be used:

- PGEC1 and PGED1
- PGEC2 and PGED2
- PGEC3 and PGED3

To use the in-circuit debugger function of the device, the design must implement ICSP connections to MCLR, VDD, VSS, and the PGECx/PGEDx pin pair. In addition, when the feature is enabled, some of the resources are not available for general use. These resources include the first 80 bytes of data RAM and two I/O pins.

24.0 INSTRUCTION SET SUMMARY

Note: This data sheet summarizes the features of the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 devices However, it is not intended to be a comprehensive reference source. To complement the information in this data sheet, refer to the latest family reference sections of the "dsPIC33F/PIC24H Family Reference Manual", which are available from the Microchip web site (www.microchip.com).

The dsPIC33F instruction set is identical to that of the dsPIC30F.

Most instructions are a single program memory word (24 bits). Only three instructions require two program memory locations.

Each single-word instruction is a 24-bit word, divided into an 8-bit opcode, which specifies the instruction type and one or more operands, which further specify the operation of the instruction.

The instruction set is highly orthogonal and is grouped into five basic categories:

- Word or byte-oriented operations
- · Bit-oriented operations
- · Literal operations
- DSP operations
- Control operations

Table 24-1 shows the general symbols used in describing the instructions.

The dsPIC33F instruction set summary in Table 24-2 lists all the instructions, along with the status flags affected by each instruction.

Most word or byte-oriented W register instructions (including barrel shift instructions) have three operands:

- The first source operand, which is typically a register 'Wb' without any address modifier
- The second source operand, which is typically a register 'Ws' with or without an address modifier
- The destination of the result, which is typically a register 'Wd' with or without an address modifier

However, word or byte-oriented file register instructions have two operands:

- The file register specified by the value 'f'
- The destination, which could be either the file register 'f' or the W0 register, which is denoted as 'WREG'

Most bit-oriented instructions (including simple rotate/ shift instructions) have two operands:

- The W register (with or without an address modifier) or file register (specified by the value of 'Ws' or 'f')
- The bit in the W register or file register (specified by a literal value or indirectly by the contents of register 'Wb')

The literal instructions that involve data movement can use some of the following operands:

- A literal value to be loaded into a W register or file register (specified by 'k')
- The W register or file register where the literal value is to be loaded (specified by 'Wb' or 'f')

However, literal instructions that involve arithmetic or logical operations use some of the following operands:

- The first source operand, which is a register 'Wb' without any address modifier
- The second source operand, which is a literal value
- The destination of the result (only if not the same as the first source operand), which is typically a register 'Wd' with or without an address modifier

The MAC class of DSP instructions can use some of the following operands:

- The accumulator (A or B) to be used (required operand)
- The W registers to be used as the two operands
- The X and Y address space prefetch operations
- The X and Y address space prefetch destinations
- The accumulator write back destination

The other DSP instructions do not involve any multiplication and can include:

- The accumulator to be used (required)
- The source or destination operand (designated as Wso or Wdo, respectively) with or without an address modifier
- The amount of shift specified by a W register 'Wn' or a literal value

The control instructions can use some of the following operands:

- A program memory address
- The mode of the table read and table write instructions

Most instructions are a single word. Certain doubleword instructions are designed to provide all the required information in these 48 bits. In the second word, the 8 MSbs are '0's. If this second word is executed as an instruction (by itself), it will execute as a NOP.

The double-word instructions execute in two instruction cycles.

Most single-word instructions are executed in a single instruction cycle, unless a conditional test is true, or the program counter is changed as a result of the instruction. In these cases, the execution takes two instruction cycles with the additional instruction cycle(s) executed as a NOP. Notable exceptions are the BRA (unconditional/computed branch), indirect CALL/GOTO, all table reads and writes and RETURN/RETFIE instructions, which are single-word instructions but take two or three cycles. Certain instructions that involve skipping over the subsequent instruction require either two or three cycles if the skip is performed, depending on whether the instruction being skipped is a single-word or two-word instruction. Moreover, double-word moves require two cycles.

Note: For more details on the instruction set, refer to the *"16-bit MCU and DSC Programmer's Reference Manual* (DS70157).

Field	Description			
#text	Means literal defined by "text"			
(text)	Means "content of text"			
[text]	Means "the location addressed by text"			
{ }	Optional field or operation			
<n:m></n:m>	Register bit field			
.b	Byte mode selection			
.d	Double-Word mode selection			
.S	Shadow register select			
.w	Word mode selection (default)			
Acc	One of two accumulators {A, B}			
AWB	Accumulator write back destination address register ∈ {W13, [W13]+ = 2}			
bit4	4-bit bit selection field (used in word addressed instructions) $\in \{015\}$			
C, DC, N, OV, Z	MCU Status bits: Carry, Digit Carry, Negative, Overflow, Sticky Zero			
Expr	Absolute address, label or expression (resolved by the linker)			
f	File register address ∈ {0x00000x1FFF}			
lit1	1-bit unsigned literal ∈ {0,1}			
lit4	4-bit unsigned literal ∈ {015}			
lit5	5-bit unsigned literal ∈ {031}			
lit8	8-bit unsigned literal ∈ {0255}			
lit10	10-bit unsigned literal ∈ {0255} for Byte mode, {0:1023} for Word mode			
lit14	14-bit unsigned literal ∈ {016384}			
lit16	16-bit unsigned literal ∈ {065535}			
lit23	23-bit unsigned literal ∈ {08388608}; LSb must be '0'			
None	Field does not require an entry, can be blank			
OA, OB, SA, SB	DSP Status bits: ACCA Overflow, ACCB Overflow, ACCA Saturate, ACCB Saturate			
PC	Program Counter			
Slit10	10-bit signed literal ∈ {-512511}			
Slit16	16-bit signed literal ∈ {-3276832767}			
Slit6	6-bit signed literal ∈ {-1616}			
Wb	Base W register ∈ {W0W15}			
Wd	Destination W register ∈ { Wd, [Wd], [Wd++], [Wd], [++Wd], [Wd] }			
Wdo	Destination W register ∈ { Wnd, [Wnd], [Wnd++], [Wnd], [++Wnd], [Wnd], [Wnd+Wb] }			
Wm,Wn	Dividend, Divisor working register pair (direct addressing)			

Field	Description
Wm*Wm	Multiplicand and Multiplier working register pair for Square instructions ∈ {W4 * W4,W5 * W5,W6 * W6,W7 * W7}
Wm*Wn	Multiplicand and Multiplier working register pair for DSP instructions ∈ {W4 * W5,W4 * W6,W4 * W7,W5 * W6,W5 * W7,W6 * W7}
Wn	One of 16 working registers ∈ {W0W15}
Wnd	One of 16 destination working registers ∈ {W0W15}
Wns	One of 16 source working registers ∈ {W0W15}
WREG	W0 (working register used in file register instructions)
Ws	Source W register ∈ { Ws, [Ws], [Ws++], [Ws], [++Ws], [Ws] }
Wso	Source W register ∈ { Wns, [Wns], [Wns++], [Wns], [++Wns], [Wns], [Wns+Wb] }
Wx	X data space prefetch address register for DSP instructions ∈ {[W8] + = 6, [W8] + = 4, [W8] + = 2, [W8], [W8] - = 6, [W8] - = 4, [W8] - = 2, [W9] + = 6, [W9] + = 4, [W9] + = 2, [W9], [W9] - = 6, [W9] - = 4, [W9] - = 2, [W9 + W12], none}
Wxd	X data space prefetch destination register for DSP instructions ∈ {W4W7}
Wy	Y data space prefetch address register for DSP instructions ∈ {[W10] + = 6, [W10] + = 4, [W10] + = 2, [W10], [W10] - = 6, [W10] - = 4, [W10] - = 2, [W11] + = 6, [W11] + = 4, [W11] + = 2, [W11], [W11] - = 6, [W11] - = 4, [W11] - = 2, [W11 + W12], none}
Wyd	Y data space prefetch destination register for DSP instructions ∈ {W4W7}

TABLE 24-1: SYMBOLS USED IN OPCODE DESCRIPTIONS (CONTINUED)

Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
1	ADD	ADD	Acc	Add Accumulators	1	1	OA,OB,SA,SE
		ADD	f	f = f + WREG	1	1	C,DC,N,OV,Z
		ADD	f,WREG	WREG = f + WREG	1	1	C,DC,N,OV,Z
		ADD	#lit10,Wn	Wd = lit10 + Wd	1	1	C,DC,N,OV,Z
		ADD	Wb,Ws,Wd	Wd = Wb + Ws	1	1	C,DC,N,OV,Z
		ADD	Wb,#lit5,Wd	Wd = Wb + lit5	1	1	C,DC,N,OV,Z
		ADD	Wso,#Slit4,Acc	16-bit Signed Add to Accumulator	1	1	OA,OB,SA,SI
2	ADDC	ADDC	f	f = f + WREG + (C)	1	1	C,DC,N,OV,Z
		ADDC	f,WREG	WREG = $f + WREG + (C)$	1	1	C,DC,N,OV,
		ADDC	#lit10,Wn	Wd = lit10 + Wd + (C)	1	1	C,DC,N,OV,
		ADDC	Wb,Ws,Wd	Wd = Wb + Ws + (C)	1	1	C,DC,N,OV,
		ADDC	Wb,#lit5,Wd	Wd = Wb + lit5 + (C)	1	1	C,DC,N,OV,2
3	AND	AND	f	f = f .AND. WREG	1	1	N,Z
		AND	f,WREG	WREG = f .AND. WREG	1	1	N,Z
		AND	#lit10,Wn	Wd = lit10 .AND. Wd	1	1	N,Z
		AND	Wb,Ws,Wd	Wd = Wb .AND. Ws	1	1	N,Z
		AND	Wb,#lit5,Wd	Wd = Wb .AND. lit5	1	1	N,Z
4	ASR	ASR	f	f = Arithmetic Right Shift f	1	1	C,N,OV,Z
	non	ASR	f,WREG	WREG = Arithmetic Right Shift f	1	1	C,N,OV,Z
		ASR	Ws,Wd	Wd = Arithmetic Right Shift Ws	1	1	C,N,OV,Z
		ASR	Wb,Wns,Wnd	Wnd = Arithmetic Right Shift Wb by Wns	1	1	N,Z
		ASR	Wb,#lit5,Wnd	Wnd = Arithmetic Right Shift Wb by lit5	1	1	N,Z
5	BCLR	BCLR	f,#bit4	Bit Clear f	1	1	None
5	BCHK	BCLR	Ws,#bit4	Bit Clear Ws	1	1	None
6	BRA	BRA		Branch if Carry	1	1 (2)	None
5	DIA	BRA	C, Expr	Branch if greater than or equal	1	1 (2)	None
		BRA	GE, Expr	Branch if unsigned greater than or equal	1	1 (2)	None
		BRA	GEU, Expr	Branch if greater than	1	1 (2)	None
		BRA	GT, Expr	Branch if unsigned greater than	1	1 (2)	None
		BRA	GTU, Expr	Branch if less than or equal	1		None
			LE, Expr		-	1 (2)	
		BRA	LEU, Expr	Branch if unsigned less than or equal Branch if less than	1	1 (2)	None
		BRA	LT, Expr		1	1 (2)	None
		BRA	LTU,Expr	Branch if unsigned less than	1	1 (2)	None
		BRA	N,Expr	Branch if Negative	1	1 (2)	None
		BRA	NC, Expr	Branch if Not Carry	1	1 (2)	None
		BRA	NN, Expr	Branch if Not Negative	1	1 (2)	None
		BRA	NOV,Expr	Branch if Not Overflow	1	1 (2)	None
		BRA	NZ,Expr	Branch if Not Zero	1	1 (2)	None
		BRA	OA,Expr	Branch if Accumulator A overflow	1	1 (2)	None
		BRA	OB,Expr	Branch if Accumulator B overflow	1	1 (2)	None
		BRA	OV,Expr	Branch if Overflow	1	1 (2)	None
		BRA	SA,Expr	Branch if Accumulator A saturated	1	1 (2)	None
		BRA	SB,Expr	Branch if Accumulator B saturated	1	1 (2)	None
		BRA	Expr	Branch Unconditionally	1	2	None
		BRA	Z,Expr	Branch if Zero	1	1 (2)	None
		BRA	Wn	Computed Branch	1	2	None
7	BSET	BSET	f,#bit4	Bit Set f	1	1	None
		BSET	Ws,#bit4	Bit Set Ws	1	1	None
В	BSW	BSW.C	Ws,Wb	Write C bit to Ws <wb></wb>	1	1	None
		BSW.Z	Ws,Wb	Write Z bit to Ws <wb></wb>	1	1	None
9	BTG	BTG	f,#bit4	Bit Toggle f	1	1	None
	1	DEC	TT = Hlai + A	Rit Togglo W/c	4	1	Nono

BTG

Ws,#bit4

Bit Toggle Ws

None

1

1

Base	.E 24-2:		JCTION SET OVERVIE				
Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected
10	BTSC	BTSC	f,#bit4	Bit Test f, Skip if Clear	1	1 (2 or 3)	None
		BTSC	Ws,#bit4	Bit Test Ws, Skip if Clear	1	1 (2 or 3)	None
11	BTSS	BTSS	f,#bit4	Bit Test f, Skip if Set	1	1 (2 or 3)	None
		BTSS	Ws,#bit4	Bit Test Ws, Skip if Set	1	1 (2 or 3)	None
12	BTST	BTST	f,#bit4	Bit Test f	1	1	Z
		BTST.C	Ws,#bit4	Bit Test Ws to C	1	1	С
		BTST.Z	Ws,#bit4	Bit Test Ws to Z	1	1	Z
		BTST.C	Ws,Wb	Bit Test Ws <wb> to C</wb>	1	1	С
		BTST.Z	Ws,Wb	Bit Test Ws <wb> to Z</wb>	1	1	Z
13	BTSTS	BTSTS	f,#bit4	Bit Test then Set f	1	1	Z
		BTSTS.C	Ws,#bit4	Bit Test Ws to C, then Set	1	1	С
		BTSTS.Z	Ws,#bit4	Bit Test Ws to Z, then Set	1	1	Z
14	CALL	CALL	lit23	Call subroutine	2	2	None
		CALL	Wn	Call indirect subroutine	1	2	None
15	CLR	CLR	f	f = 0x0000	1	1	None
		CLR	WREG	WREG = 0x0000	1	1	None
		CLR	Ws	Ws = 0x0000	1	1	None
		CLR	Acc, Wx, Wxd, Wy, Wyd, AWB	Clear Accumulator	1	1	OA,OB,SA,SB
16	CLRWDT	CLRWDT		Clear Watchdog Timer	1	1	WDTO,Sleep
17	COM	СОМ	f	$f = \overline{f}$	1	1	N,Z
17	COM	СОМ	f,WREG	WREG = f	1	1	N,Z
				WREG = 1 $Wd = \overline{Ws}$		1	
10	d D	COM	Ws,Wd		1		N,Z
18	CP	CP	f	Compare f with WREG	1	1	C,DC,N,OV,Z
		CP	Wb,#lit5	Compare Wb with lit5	1	1	C,DC,N,OV,Z
		CP	Wb,Ws	Compare Wb with Ws (Wb – Ws)	1	1	C,DC,N,OV,Z
19	CP0	CP0	f	Compare f with 0x0000	1	1	C,DC,N,OV,Z
		CP0	Ws	Compare Ws with 0x0000	1	1	C,DC,N,OV,Z
20	CPB	CPB	f	Compare f with WREG, with Borrow	1	1	C,DC,N,OV,Z
		CPB CPB	Wb,#lit5 Wb,Ws	Compare Wb with lit5, with Borrow Compare Wb with Ws, with Borrow	1	1 1	C,DC,N,OV,Z C,DC,N,OV,Z
21	CPSEQ	CPSEQ	Wb, Wn	(Wb – Ws – C) Compare Wb with Wn, skip if =	1	1	None
22	CPSGT	CPSGT	Wb, Wn	Compare Wb with Wn, skip if >	1	(2 or 3) 1 (2 or 3)	None
23	CPSLT	CPSLT	Wb, Wn	Compare Wb with Wn, skip if <	1	(2 or 3) 1 (2 or 3)	None
24	CPSNE	CPSNE	Wb, Wn	Compare Wb with Wn, skip if ≠	1	(2 or 3)	None
25	DAW	DAW	Wn	Wn = decimal adjust Wn	1	1	С
26	DEC	DEC	f	f = f - 1	1	1	C,DC,N,OV,Z
		DEC	f,WREG	WREG = $f - 1$	1	1	C,DC,N,OV,Z
		DEC	Ws,Wd	W(LO = 1 = 1 Wd = Ws - 1	1	1	C,DC,N,OV,Z
27	DEC2	DEC2	f	f = f - 2	1	1	C,DC,N,OV,Z C,DC,N,OV,Z
~1	DECZ	DEC2	f,WREG	WREG = f - 2	1	1	C,DC,N,OV,Z C,DC,N,OV,Z
				WREG = 1 - 2 Wd = Ws - 2	1	1	C,DC,N,OV,Z C,DC,N,OV,Z
	1	DEC2	Ws,Wd	vvu = vvS - 2			0,00,IN,0V,Z

TABLE 24-2:		INSTRUCTION SET OVERVIEW (CONTINUED)								
Base Instr #	Assembly Mnemonic		Assembly Syntax	Assembly Syntax Description V		# of Cycles	Status Flags Affected			
29	DIV	DIV.S	Wm, Wn	Signed 16/16-bit Integer Divide	1	18	N,Z,C,OV			
		DIV.SD	Wm, Wn	Signed 32/16-bit Integer Divide	1	18	N,Z,C,OV			
		DIV.U	Wm,Wn	Unsigned 16/16-bit Integer Divide	1	18	N,Z,C,OV			
		DIV.UD	Wm, Wn	Unsigned 32/16-bit Integer Divide	1	18	N,Z,C,OV			
30	DIVF	DIVF	Wm,Wn	Signed 16/16-bit Fractional Divide	1	18	N,Z,C,OV			
31	DO	DO	#lit14,Expr	Do code to PC + Expr, lit14 + 1 times	2	2	None			
		DO	Wn,Expr	Do code to PC + Expr, (Wn) + 1 times	2	2	None			
32	ED	ED Wm*Wm,Acc,Wx,Wy,Wxd		Euclidean Distance (no accumulate)	1	1	OA,OB,OAB, SA,SB,SAB			
33	EDAC	EDAC Wm*Wm, Acc, Wx, Wy, Wxd		Euclidean Distance	1	1	OA,OB,OAB, SA,SB,SAB			
34	EXCH	EXCH	Wns,Wnd	Swap Wns with Wnd	1	1	None			
35	FBCL	FBCL	Ws,Wnd	Find Bit Change from Left (MSb) Side	1	1	С			
36	FF1L			Find First One from Left (MSb) Side	1	1	С			
37	FF1R	FF1R	Ws,Wnd	Find First One from Right (LSb) Side	1	1	С			
38	GOTO	GOTO	Expr	Go to address	2	2	None			
		GOTO	Wn	Go to indirect	1	2	None			
39	INC	INC	f	f = f + 1	1	1	C,DC,N,OV,Z			
		INC	f,WREG	WREG = f + 1	1	1	C,DC,N,OV,Z			
		INC	Ws,Wd	Wd = Ws + 1	1	1	C,DC,N,OV,Z			
40	INC2	INC2	f	f = f + 2	1	1	C,DC,N,OV,Z			
		INC2	f,WREG	WREG = f + 2	1	1	C,DC,N,OV,Z			
		INC2	Ws,Wd	Wd = Ws + 2	1	1	C,DC,N,OV,Z			
41	IOR	IOR	f	f = f .IOR. WREG	1	1	N,Z			
		IOR	f,WREG	WREG = f .IOR. WREG	1	1	N,Z			
		IOR	#lit10,Wn	Wd = lit10 .IOR. Wd	1	1	N,Z			
		IOR	Wb,Ws,Wd	Wd = Wb .IOR. Ws	1	1	N,Z			
		IOR	Wb,#lit5,Wd	Wd = Wb .IOR. lit5	1	1	N,Z			
42	LAC	LAC	Wso,#Slit4,Acc	Load Accumulator		1	OA,OB,OAB, SA,SB,SAB			
43	LNK	LNK	#lit14	Link Frame Pointer	1	1	None			
44	LSR	LSR	f	f = Logical Right Shift f	1	1	C,N,OV,Z			
		LSR	f,WREG	WREG = Logical Right Shift f	1	1	C,N,OV,Z			
		LSR	Ws,Wd	Wd = Logical Right Shift Ws	1	1	C,N,OV,Z			
		LSR	Wb,Wns,Wnd	Wnd = Logical Right Shift Wb by Wns	1	1	N,Z			
		LSR	Wb,#lit5,Wnd	Wnd = Logical Right Shift Wb by lit5	1	1	N,Z			
45	MAC	MAC	Wm*Wn,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB			
		MAC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd	Square and Accumulate	1	1	OA,OB,OAB, SA,SB,SAB			
46	MOV	MOV	f,Wn	Move f to Wn	1	1	None			
		MOV	f	Move f to f	1	1	N,Z			
		MOV	f,WREG	Move f to WREG	1	1	None			
		MOV	#lit16,Wn	Move 16-bit literal to Wn	1	1	None			
		MOV.b	#lit8,Wn	Move 8-bit literal to Wn	1	1	None			
		MOV	Wn,f	Move Wn to f	1	1	None			
		MOV	Wso,Wdo	Move Ws to Wd	1	1	None			
		MOV	WREG, f	Move WREG to f	1	1	None			
		MOV.D	Wns,Wd	Move Double from W(ns):W(ns + 1) to Wd	1	2	None			
		MOV.D	Ws, Wnd	Move Double from Ws to W(nd + 1):W(nd)	1	2	None			
47	MOVSAC	MOVSAC	Acc,Wx,Wxd,Wy,Wyd,AWB	Prefetch and store accumulator	1	1	None			

Base Instr #	Assembly Mnemonic	Assembly Syntax		Description	# of Words	# of Cycles	Status Flags Affected
48 MPY		MPY Wm*Wn,Acc,Wx,Wxd,Wy,Wyd		Multiply Wm by Wn to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		MPY Wm*Wm,Ac	cc,Wx,Wxd,Wy,Wyd	Square Wm to Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
49	MPY.N	MPY.N Wm*Wn,Ac	cc,Wx,Wxd,Wy,Wyd	(Multiply Wm by Wn) to Accumulator	1	1	None
50	MSC	MSC	Wm*Wm,Acc,Wx,Wxd,Wy,Wyd , AWB	Multiply and Subtract from Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
51	MUL	MUL.SS	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * signed(Ws)	1	1	None
		MUL.SU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(Ws)	1	1	None
		MUL.US	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * signed(Ws)	1	1	None
		MUL.UU	Wb,Ws,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(Ws)	1	1	None
		MUL.SU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = signed(Wb) * unsigned(lit5)	1	1	None
		MUL.UU	Wb,#lit5,Wnd	{Wnd + 1, Wnd} = unsigned(Wb) * unsigned(lit5)	1	1	None
		MUL	f	W3:W2 = f * WREG	1	1	None
52	NEG	NEG	Acc	Negate Accumulator	1	1	OA,OB,OAB, SA,SB,SAB
		NEG	f	$f = \overline{f} + 1$	1	1	C,DC,N,OV,Z
		NEG	f,WREG	WREG = \overline{f} + 1	1	1	C,DC,N,OV,Z
		NEG	Ws,Wd	$Wd = \overline{Ws} + 1$	1	1	C,DC,N,OV,Z
53	NOP	NOP		No Operation	1	1	None
		NOPR		No Operation	1	1	None
54	POP	POP	f	Pop f from Top-of-Stack (TOS)	1	1	None
		POP	Wdo	Pop from Top-of-Stack (TOS) to Wdo	1	1	None
		POP.D	Wnd	Pop from Top-of-Stack (TOS) to W(nd):W(nd + 1)	1	2	None
		POP.S		Pop Shadow Registers	1	1	All
55	PUSH	PUSH	f	Push f to Top-of-Stack (TOS)	1	1	None
		PUSH	Wso	Push Wso to Top-of-Stack (TOS)	1	1	None
		PUSH.D	Wns	Push W(ns):W(ns + 1) to Top-of-Stack (TOS)	1	2	None
		PUSH.S		Push Shadow Registers	1	1	None
56	PWRSAV	PWRSAV	#lit1	Go into Sleep or Idle mode	1	1	WDTO,Sleep
57	RCALL	RCALL	Expr	Relative Call	1	2	None
		RCALL	Wn	Computed Call	1	2	None
58	REPEAT	REPEAT	#lit14	Repeat Next Instruction lit14 + 1 times	1	1	None
		REPEAT	Wn	Repeat Next Instruction (Wn) + 1 times	1	1	None
59	RESET	RESET		Software device Reset	1	1	None
60	RETFIE	RETFIE		Return from interrupt	1	3 (2)	None
61	RETLW	RETLW	#lit10,Wn	Return with literal in Wn	1	3 (2)	None
62	RETURN	RETURN	6	Return from Subroutine	1	3 (2)	None
63	RLC	RLC	f	f = Rotate Left through Carry f	1	1	C,N,Z
		RLC	f,WREG	WREG = Rotate Left through Carry Ma	1	1	C,N,Z
64	DING	RLC	Ws,Wd	Wd = Rotate Left through Carry Ws	1	1	C,N,Z
64	RLNC	RLNC	f f wppg	f = Rotate Left (No Carry) f	1	1	N,Z
		RLNC	f,WREG	WREG = Rotate Left (No Carry) f	1	1	N,Z N,Z
65	PDC	RLNC	Ws,Wd	Wd = Rotate Left (No Carry) Ws f = Rotate Right through Carry f	1	1	N,Z C,N,Z
00	RRC	RRC		WREG = Rotate Right through Carry f	1	1	C,N,Z C,N,Z
		RRC RRC	f,WREG Ws,Wd	WREG = Rotate Right through Carry Ws	1	1	C,N,Z C,N,Z

TABL	E 24-2:	INSTRU	INSTRUCTION SET OVERVIEW (CONTINUED)								
Base Instr #	Assembly Mnemonic		Assembly Syntax	Description	# of Words	# of Cycles	Status Flags Affected				
66	RRNC	RRNC	f	f = Rotate Right (No Carry) f	1	1	N,Z				
		RRNC	f,WREG	WREG = Rotate Right (No Carry) f	1	1	N,Z				
		RRNC	Ws,Wd	Wd = Rotate Right (No Carry) Ws	1	1	N,Z				
67	SAC	SAC	Acc,#Slit4,Wdo	Store Accumulator	1	1	None				
		SAC.R	Acc,#Slit4,Wdo	Store Rounded Accumulator	1	1	None				
68	SE	SE	Ws,Wnd	Wnd = sign-extended Ws	1	1	C,N,Z				
69	SETM	SETM	f	f = 0xFFFF	1	1	None				
		SETM	WREG	WREG = 0xFFFF	1	1	None				
		SETM	Ws	Ws = 0xFFFF	1	1	None				
70	SFTAC	SFTAC	Acc,Wn	Arithmetic Shift Accumulator by (Wn)	1	1	OA,OB,OAB, SA,SB,SAB				
		SFTAC	Acc,#Slit6	Arithmetic Shift Accumulator by Slit6	1	1	OA,OB,OAB, SA,SB,SAB				
71	SL	SL	f	f = Left Shift f	1	1	C,N,OV,Z				
		SL	f,WREG	WREG = Left Shift f	1	1	C,N,OV,Z				
		SL	Ws,Wd	Wd = Left Shift Ws	1	1	C,N,OV,Z				
		SL	Wb,Wns,Wnd	Wnd = Left Shift Wb by Wns	1	1	N,Z				
		SL	Wb,#lit5,Wnd	Wnd = Left Shift Wb by lit5	1	1	N,Z				
72	SUB	SUB	Acc	Subtract Accumulators	1	1	OA,OB,OAB, SA,SB,SAB				
		SUB	f	f = f - WREG	1	1	C,DC,N,OV,Z				
		SUB	f,WREG	WREG = f – WREG	1	1	C,DC,N,OV,Z				
		SUB	#lit10,Wn	Wn = Wn - Iit10	1	1	C,DC,N,OV,Z				
		SUB	Wb,Ws,Wd	Wd = Wb - Ws	1	1	C,DC,N,OV,Z				
		SUB	Wb,#lit5,Wd	Wd = Wb - Iit5	1	1	C,DC,N,OV,Z				
73	SUBB	SUBB	f	$f = f - WREG - (\overline{C})$	1	1	C,DC,N,OV,Z				
		SUBB	f,WREG	WREG = f – WREG – (\overline{C})	1	1	C,DC,N,OV,Z				
		SUBB	#lit10,Wn	$Wn = Wn - lit10 - (\overline{C})$	1	1	C,DC,N,OV,Z				
		SUBB	Wb,Ws,Wd	$Wd = Wb - Ws - (\overline{C})$	1	1	C,DC,N,OV,Z				
		SUBB	Wb,#lit5,Wd	$Wd = Wb - lit5 - (\overline{C})$	1	1	C,DC,N,OV,Z				
74	SUBR	SUBR	f	f = WREG – f	1	1	C,DC,N,OV,Z				
		SUBR	f,WREG	WREG = WREG – f	1	1	C,DC,N,OV,Z				
		SUBR	Wb,Ws,Wd	Wd = Ws – Wb	1	1	C,DC,N,OV,Z				
		SUBR	Wb,#lit5,Wd	Wd = lit5 – Wb	1	1	C,DC,N,OV,Z				
75	SUBBR	SUBBR	f	$f = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z				
		SUBBR	f,WREG	$WREG = WREG - f - (\overline{C})$	1	1	C,DC,N,OV,Z				
		SUBBR	Wb,Ws,Wd	$Wd = Ws - Wb - (\overline{C})$	1	1	C,DC,N,OV,Z				
				$Wd = Wd = Wb - (\overline{C})$		1					
76	SWAP	SUBBR	Wb,#lit5,Wd	Wn = nibble swap Wn	1	1	C,DC,N,OV,Z None				
70	SWAP	SWAP.b SWAP	Wn	Wn = byte swap Wn	1	1	None				
77	TBLRDH	TBLRDH	Wn Ws,Wd	Read Prog<23:16> to Wd<7:0>	1	2	None				
78	TBLRDL	TBLRDL	Ws,Wd	Read Prog<15:0> to Wd	1	2	None				
79	TBLWTH	TBLWTH	Ws,Wd	Write Ws<7:0> to Prog<23:16>	1	2	None				
80	TBLWIN	TBLWIN	Ws,Wd	Write Ws to Prog<15:0>	1	2	None				
81	ULNK	ULNK		Unlink Frame Pointer	1	1	None				
82	XOR	XOR	f	f = f.XOR. WREG	1	1	None N,Z				
<u>.</u>	1010	XOR	f,WREG	WREG = f .XOR. WREG	1	1	N,Z				
		XOR	#lit10,Wn	Wd = lit10 .XOR. Wd	1	1	N,Z				
		XOR	Wb,Ws,Wd	Wd = Wb .XOR. Ws	1	1	N,Z				
		XOR	WD,WS,Wa Wb,#lit5,Wd	Wd = Wb .XOR. lit5	1	1	N,Z				
83	ZE	ZE	Ws,Wnd	Wnd = Zero-extend Ws	1	1	C,Z,N				

25.0 DEVELOPMENT SUPPORT

The PIC[®] microcontrollers and dsPIC[®] digital signal controllers are supported with a full range of software and hardware development tools:

- Integrated Development Environment
- MPLAB[®] IDE Software
- Compilers/Assemblers/Linkers
 - MPLAB C Compiler for Various Device Families
 - HI-TECH C for Various Device Families
 - MPASM[™] Assembler
 - MPLINK[™] Object Linker/ MPLIB[™] Object Librarian
 - MPLAB Assembler/Linker/Librarian for Various Device Families
- Simulators
 - MPLAB SIM Software Simulator
- Emulators
 - MPLAB REAL ICE™ In-Circuit Emulator
- In-Circuit Debuggers
 - MPLAB ICD 3
 - PICkit[™] 3 Debug Express
- Device Programmers
 - PICkit[™] 2 Programmer
 - MPLAB PM3 Device Programmer
- Low-Cost Demonstration/Development Boards, Evaluation Kits, and Starter Kits

25.1 MPLAB Integrated Development Environment Software

The MPLAB IDE software brings an ease of software development previously unseen in the 8/16/32-bit microcontroller market. The MPLAB IDE is a Windows[®] operating system-based application that contains:

- A single graphical interface to all debugging tools
 - Simulator
 - Programmer (sold separately)
 - In-Circuit Emulator (sold separately)
 - In-Circuit Debugger (sold separately)
- · A full-featured editor with color-coded context
- A multiple project manager
- Customizable data windows with direct edit of contents
- High-level source code debugging
- Mouse over variable inspection
- Drag and drop variables from source to watch windows
- Extensive on-line help
- Integration of select third party tools, such as IAR C Compilers

The MPLAB IDE allows you to:

- Edit your source files (either C or assembly)
- One-touch compile or assemble, and download to emulator and simulator tools (automatically updates all project information)
- Debug using:
 - Source files (C or assembly)
 - Mixed C and assembly
 - Machine code

MPLAB IDE supports multiple debugging tools in a single development paradigm, from the cost-effective simulators, through low-cost in-circuit debuggers, to full-featured emulators. This eliminates the learning curve when upgrading to tools with increased flexibility and power.

25.2 MPLAB C Compilers for Various Device Families

The MPLAB C Compiler code development systems are complete ANSI C compilers for Microchip's PIC18, PIC24 and PIC32 families of microcontrollers and the dsPIC30 and dsPIC33 families of digital signal controllers. These compilers provide powerful integration capabilities, superior code optimization and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

25.3 HI-TECH C for Various Device Families

The HI-TECH C Compiler code development systems are complete ANSI C compilers for Microchip's PIC family of microcontrollers and the dsPIC family of digital signal controllers. These compilers provide powerful integration capabilities, omniscient code generation and ease of use.

For easy source level debugging, the compilers provide symbol information that is optimized to the MPLAB IDE debugger.

The compilers include a macro assembler, linker, preprocessor, and one-step driver, and can run on multiple platforms.

25.4 MPASM Assembler

The MPASM Assembler is a full-featured, universal macro assembler for PIC10/12/16/18 MCUs.

The MPASM Assembler generates relocatable object files for the MPLINK Object Linker, Intel[®] standard HEX files, MAP files to detail memory usage and symbol reference, absolute LST files that contain source lines and generated machine code and COFF files for debugging.

The MPASM Assembler features include:

- Integration into MPLAB IDE projects
- User-defined macros to streamline assembly code
- Conditional assembly for multi-purpose source files
- Directives that allow complete control over the assembly process

25.5 MPLINK Object Linker/ MPLIB Object Librarian

The MPLINK Object Linker combines relocatable objects created by the MPASM Assembler and the MPLAB C18 C Compiler. It can link relocatable objects from precompiled libraries, using directives from a linker script.

The MPLIB Object Librarian manages the creation and modification of library files of precompiled code. When a routine from a library is called from a source file, only the modules that contain that routine will be linked in with the application. This allows large libraries to be used efficiently in many different applications.

The object linker/library features include:

- Efficient linking of single libraries instead of many smaller files
- Enhanced code maintainability by grouping related modules together
- Flexible creation of libraries with easy module listing, replacement, deletion and extraction

25.6 MPLAB Assembler, Linker and Librarian for Various Device Families

MPLAB Assembler produces relocatable machine code from symbolic assembly language for PIC24, PIC32 and dsPIC devices. MPLAB C Compiler uses the assembler to produce its object file. The assembler generates relocatable object files that can then be archived or linked with other relocatable object files and archives to create an executable file. Notable features of the assembler include:

- · Support for the entire device instruction set
- · Support for fixed-point and floating-point data
- Command line interface
- · Rich directive set
- Flexible macro language
- MPLAB IDE compatibility

25.7 MPLAB SIM Software Simulator

The MPLAB SIM Software Simulator allows code development in a PC-hosted environment by simulating the PIC MCUs and dsPIC[®] DSCs on an instruction level. On any given instruction, the data areas can be examined or modified and stimuli can be applied from a comprehensive stimulus controller. Registers can be logged to files for further run-time analysis. The trace buffer and logic analyzer display extend the power of the simulator to record and track program execution, actions on I/O, most peripherals and internal registers.

The MPLAB SIM Software Simulator fully supports symbolic debugging using the MPLAB C Compilers, and the MPASM and MPLAB Assemblers. The software simulator offers the flexibility to develop and debug code outside of the hardware laboratory environment, making it an excellent, economical software development tool.

25.8 MPLAB REAL ICE In-Circuit Emulator System

MPLAB REAL ICE In-Circuit Emulator System is Microchip's next generation high-speed emulator for Microchip Flash DSC and MCU devices. It debugs and programs PIC[®] Flash MCUs and dsPIC[®] Flash DSCs with the easy-to-use, powerful graphical user interface of the MPLAB Integrated Development Environment (IDE), included with each kit.

The emulator is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with either a connector compatible with incircuit debugger systems (RJ11) or with the new high-speed, noise tolerant, Low-Voltage Differential Signal (LVDS) interconnection (CAT5).

The emulator is field upgradable through future firmware downloads in MPLAB IDE. In upcoming releases of MPLAB IDE, new devices will be supported, and new features will be added. MPLAB REAL ICE offers significant advantages over competitive emulators including low-cost, full-speed emulation, run-time variable watches, trace analysis, complex breakpoints, a ruggedized probe interface and long (up to three meters) interconnection cables.

25.9 MPLAB ICD 3 In-Circuit Debugger System

MPLAB ICD 3 In-Circuit Debugger System is Microchip's most cost effective high-speed hardware debugger/programmer for Microchip Flash Digital Signal Controller (DSC) and microcontroller (MCU) devices. It debugs and programs PIC[®] Flash microcontrollers and dsPIC[®] DSCs with the powerful, yet easyto-use graphical user interface of MPLAB Integrated Development Environment (IDE).

The MPLAB ICD 3 In-Circuit Debugger probe is connected to the design engineer's PC using a high-speed USB 2.0 interface and is connected to the target with a connector compatible with the MPLAB ICD 2 or MPLAB REAL ICE systems (RJ-11). MPLAB ICD 3 supports all MPLAB ICD 2 headers.

25.10 PICkit 3 In-Circuit Debugger/ Programmer and PICkit 3 Debug Express

The MPLAB PICkit 3 allows debugging and programming of PIC[®] and dsPIC[®] Flash microcontrollers at a most affordable price point using the powerful graphical user interface of the MPLAB Integrated Development Environment (IDE). The MPLAB PICkit 3 is connected to the design engineer's PC using a full speed USB interface and can be connected to the target via an Microchip debug (RJ-11) connector (compatible with MPLAB ICD 3 and MPLAB REAL ICE). The connector uses two device I/O pins and the reset line to implement in-circuit debugging and In-Circuit Serial Programming[™].

The PICkit 3 Debug Express include the PICkit 3, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

25.11 PICkit 2 Development Programmer/Debugger and PICkit 2 Debug Express

The PICkit[™] 2 Development Programmer/Debugger is a low-cost development tool with an easy to use interface for programming and debugging Microchip's Flash families of microcontrollers. The full featured Windows[®] programming interface supports baseline (PIC10F, PIC12F5xx, PIC16F5xx), midrange (PIC12F6xx, PIC16F), PIC18F, PIC24, dsPIC30, dsPIC33, and PIC32 families of 8-bit, 16-bit, and 32-bit microcontrollers, and many Microchip Serial EEPROM products. With Microchip's powerful MPLAB Integrated Development Environment (IDE) the PICkit[™] 2 enables in-circuit debugging on most PIC[®] microcontrollers. In-Circuit-Debugging runs, halts and single steps the program while the PIC microcontroller is embedded in the application. When halted at a breakpoint, the file registers can be examined and modified.

The PICkit 2 Debug Express include the PICkit 2, demo board and microcontroller, hookup cables and CDROM with user's guide, lessons, tutorial, compiler and MPLAB IDE software.

25.12 MPLAB PM3 Device Programmer

The MPLAB PM3 Device Programmer is a universal, CE compliant device programmer with programmable voltage verification at VDDMIN and VDDMAX for maximum reliability. It features a large LCD display (128 x 64) for menus and error messages and a modular, detachable socket assembly to support various package types. The ICSP™ cable assembly is included as a standard item. In Stand-Alone mode, the MPLAB PM3 Device Programmer can read, verify and program PIC devices without a PC connection. It can also set code protection in this mode. The MPLAB PM3 connects to the host PC via an RS-232 or USB cable. The MPLAB PM3 has high-speed communications and optimized algorithms for quick programming of large memory devices and incorporates an MMC card for file storage and data applications.

25.13 Demonstration/Development Boards, Evaluation Kits, and Starter Kits

A wide variety of demonstration, development and evaluation boards for various PIC MCUs and dsPIC DSCs allows quick application development on fully functional systems. Most boards include prototyping areas for adding custom circuitry and provide application firmware and source code for examination and modification.

The boards support a variety of features, including LEDs, temperature sensors, switches, speakers, RS-232 interfaces, LCD displays, potentiometers and additional EEPROM memory.

The demonstration and development boards can be used in teaching environments, for prototyping custom circuits and for learning about various microcontroller applications.

In addition to the PICDEM[™] and dsPICDEM[™] demonstration/development board series of circuits, Microchip has a line of evaluation kits and demonstration software for analog filter design, KEELOQ[®] security ICs, CAN, IrDA[®], PowerSmart battery management, SEEVAL[®] evaluation system, Sigma-Delta ADC, flow rate sensing, plus many more.

Also available are starter kits that contain everything needed to experience the specified device. This usually includes a single application and debug capability, all on one board.

Check the Microchip web page (www.microchip.com) for the complete list of demonstration, development and evaluation kits.

26.0 ELECTRICAL CHARACTERISTICS

This section provides an overview of dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 electrical characteristics. Additional information will be provided in future revisions of this document as it becomes available.

Absolute maximum ratings for the dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 family are listed below. Exposure to these maximum rating conditions for extended periods may affect device reliability. Functional operation of the device at these or any other conditions above the parameters indicated in the operation listings of this specification is not implied.

Absolute Maximum Ratings⁽¹⁾

Ambient temperature under bias	40°C to +125°C
Storage temperature	65°C to +150°C
Voltage on VDD with respect to Vss	0.3V to +4.0V
Voltage on any pin that is not 5V tolerant with respect to Vss ⁽⁴⁾	0.3V to (VDD + 0.3V)
Voltage on any 5V tolerant pin with respect to VSS when $VDD \ge 3.0V^{(4)}$	0.3V to +5.6V
Voltage on any 5V tolerant pin with respect to Vss when $VDD < 3.0V^{(4)}$	0.3V to 3.6V
Maximum current out of Vss pin	
Maximum current into Vod pin ⁽²⁾	250 mA
Maximum output current sunk by any I/O pin ⁽³⁾	8 mA
Maximum output current sourced by any I/O pin ⁽³⁾	8 mA
Maximum current sunk by all ports	200 mA
Maximum current sourced by all ports ⁽²⁾	200 mA

Note 1: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only, and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure to maximum rating conditions for extended periods may affect device reliability.

- 2: Maximum allowable current is a function of device maximum power dissipation (see Table 26-2).
- 3: Exception is the OSCO pin, which is able to source 12 mA and sink 10 mA.
- 4: See the "Pin Diagrams" section for 5V tolerant pins.

26.1 DC Characteristics

	Voo Bongo	Tomp Bongo	Max MIPS	
Characteristic	VDD Range (in Volts)	Temp Range (in °C)	dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102	
	3.0V-3.6V	-40°C to +85°C	16	
DC5	3.0V-3.6V	-40°C to +125°C	16	

TABLE 26-1: OPERATING MIPS VS. VOLTAGE

TABLE 26-2: THERMAL OPERATING CONDITIONS

Rating	Symbol	Min	Тур	Max	Unit
Industrial Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+125	°C
Operating Ambient Temperature Range	TA	-40	—	+85	°C
Extended Temperature Devices					
Operating Junction Temperature Range	TJ	-40	—	+140	°C
Operating Ambient Temperature Range	TA	-40	—	+125	°C
Power Dissipation: Internal chip power dissipation: $PINT = VDD x (IDD - \Sigma IOH)$ I/O Pin Power Dissipation: $U(D - \Sigma (VDP - VDP) + \Sigma (VDP - VDP))$	PD	PINT + PI/O V			w
$I/O = \Sigma (\{VDD - VOH\} \times IOH) + \Sigma (VOL \times IOL)$ Maximum Allowed Power Dissipation	PDMAX	(TJ — TA)/θJ	IA	W

TABLE 26-3: THERMAL PACKAGING CHARACTERISTICS

Characteristic	Symbol	Тур	Max	Unit	Notes
Package Thermal Resistance, 18-pin PDIP	θja	50		°C/W	1
Package Thermal Resistance, 20-pin PDIP	θја	50		°C/W	1
Package Thermal Resistance, 28-pin SPDIP	θја	50		°C/W	1
Package Thermal Resistance, 18-pin SOIC	θја	63		°C/W	1
Package Thermal Resistance, 20-pin SOIC	θја	63		°C/W	1
Package Thermal Resistance, 28-pin SOIC	θја	55		°C/W	1
Package Thermal Resistance, 20-pin SSOP	θја	90		°C/W	1
Package Thermal Resistance, 28-pin SSOP	θја	71		°C/W	1
Package Thermal Resistance, 28-pin QFN (6x6 mm)	θја	37	_	°C/W	1
Package Thermal Resistance, 36-pin TLA (5x5 mm)	θја	31.1	-	°C/W	1

Note 1: Junction to ambient thermal resistance, Theta-JA (θ JA) numbers are achieved by package simulations.

TABLE 26-4 :	DC TEMPERATURE AND VOLTAGE SPECIFICATIONS
---------------------	---

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				⊊+85°C for Industrial
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions
Operati	ng Voltag	e					
DC10	Supply V	/oltage					
	Vdd	—	3.0	_	3.6	V	Industrial and Extended
DC12	Vdr	RAM Data Retention Voltage ⁽²⁾	1.8	_		V	—
DC16	VPOR	VDD Start Voltage to ensure internal Power-on Reset signal	_	_	Vss	V	_
DC17	SVDD	VDD Rise Rate to ensure internal Power-on Reset signal	0.024	_	—	V/ms	0-2.4V in 0.1s

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: This is the limit to which VDD may be lowered without losing RAM data.

TABLE 26-5: ELECTRICAL CHARACTERISTICS: BOR

DC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Character	istic	Min ⁽¹⁾	Тур	Max	Units	Conditions
BO10	VBOR	BOR Event on VDD tra high-to-low	nsition	2.40	2.48	2.55	V	_

Note 1: Parameters are for design guidance only and are not tested in manufacturing.

TABLE 26-6: DC CHARACTERISTICS: OPERATING CURRENT (IDD)

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Parameter No.	Typical ⁽¹⁾	Max	Units	Units Conditions				
Operating Cur	rent (IDD) ⁽²⁾		•					
DC20d	0.7	1.7	mA	-40°C				
DC20a	0.7	1.7	mA	+25°C	2.21/	LPRC (31 kHz) ⁽³⁾		
DC20b	1.0	1.7	mA	+85°C	- 3.3V			
DC20c	1.3	1.7	mA	+125°C				
DC21d	1.9	2.6	mA	-40°C		1 MIPS ⁽³⁾		
DC21a	1.9	2.6	mA	+25°C	0.01/			
DC21b	1.9	2.6	mA	+85°C	- 3.3V	1 MIPS		
DC21c	2.0	2.6	mA	+125°C				
DC22d	6.5	8.5	mA	-40°C		4 MIPS ⁽³⁾		
DC22a	6.5	8.5	mA	+25°C	2.21/			
DC22b	6.5	8.5	mA	+85°C	- 3.3V	4 MIPS**		
DC22c	6.5	8.5	mA	+125°C				
DC23d	12.2	16	mA	-40°C				
DC23a	12.2	16	mA	+25°C	0.01/	10 MIPS ⁽³⁾		
DC23b	12.2	16	mA	+85°C	- 3.3V	10 MIPS		
DC23c	12.2	16	mA	+125°C	1			
DC24d	16	21	mA	-40°C				
DC24a	16	21	mA	+25°C	0.01/	40 MIDO		
DC24b	16	21	mA	+85°C	- 3.3V	16 MIPS		
DC24c	16	21	mA	+125°C	1			

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: IDD is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDD measurements are as follows:

• Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail

- CLKO is configured as an I/O input pin in the Configuration word
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- CPU executing while(1) statement
- **3:** These parameters are characterized, but not tested in manufacturing.

DC CHARACT	ERISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended						
Parameter No.	Typical ⁽¹⁾	Мах	Units	Conditions					
Idle Current (IIDLE): Core OFF Clock ON Base Current ⁽²⁾									
DC40d	0.6	1.6	mA	-40°C					
DC40a	0.6	1.6	mA	+25°C		LPRC (31 kHz) ⁽³⁾			
DC40b	0.9	1.6	mA	+85°C	3.3V				
DC40c	1.2	1.6	mA	+125°C					
DC41d	0.5	1.1	mA	-40°C		1 MIPS ⁽³⁾			
DC41a	0.5	1.1	mA	+25°C	2.21/				
DC41b	0.5	1.1	mA	+85°C	3.3V	T MIPS			
DC41c	0.8	1.1	mA	+125°C					
DC42d	0.9	1.6	mA	-40°C		4 MIPS ⁽³⁾			
DC42a	0.9	1.6	mA	+25°C	2.21/				
DC42b	1.0	1.6	mA	+85°C	- 3.3V	4 MIPS**			
DC42c	1.2	1.6	mA	+125°C					
DC43a	1.6	2.6	mA	+25°C					
DC43d	1.6	2.6	mA	-40°C	2.21/	10 MIPS ⁽³⁾			
DC43b	1.7	2.6	mA	+85°C	3.3V	10 MIPS**			
DC43c	2	2.6	mA	+125°C					
DC44d	2.4	3.8	mA	-40°C					
DC44a	2.4	3.8	mA	+25°C	3.3V	16 MIPS ⁽³⁾			
DC44b	2.6	3.8	mA	+85°C					
DC44c	2.9	3.8	mA	+125°C					

TABLE 26-7: DC CHARACTERISTICS: IDLE CURRENT (IIDLE)

Note 1: Data in "Typical" column is at 3.3V, 25°C unless otherwise stated.

2: Base Idle current is measured as follows:

- CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
- CLKO is configured as an I/O input pin in the Configuration word
- External Secondary Oscillator (Sosc) is disabled (i.e., SOSCO and SOSCI pins are configured as digital I/O inputs)
- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroed)
- The VREGS bit (RCON<8>) = 1
- 3: These parameters are characterized, but not tested in manufacturing.

TABLE 26-8: DC CHARACTERISTICS: POWER-DOWN CURRENT (IPD)

DC CHARAC	TERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Parameter No.	Typical ⁽¹⁾	Max	Units	Conditions				
Power-Down	Current (IPD)	(2)						
DC60d	27	250	μA	-40°C				
DC60a	32	250	μA	+25°C	2.21/	Base Power-Down Current ^(3,4)		
DC60b	43	250	μA	+85°C	3.3V	Base Power-Down Current		
DC60c	150	500	μA	+125°C				
DC61d	420	600	μA	-40°C				
DC61a	420	600	μA	+25°C	0.01/	Motob dog Timor Current, Alwor(3.5)		
DC61b	530	750	μA	+85°C	3.3V	Watchdog Timer Current: ∆IwDT ^(3,5)		
DC61c	620	900	μA	+125°C				

Note 1: Data in the Typical column is at 3.3V, 25°C unless otherwise stated.

- 2: IPD (Sleep) current is measured as follows:
 - CPU core is off, oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail
 - CLKO is configured as an I/O input pin in the Configuration word
 - External Secondary Oscillator (Sosc) is disabled (i.e., SOSCO and SOSCI pins are configured as digital I/O inputs)
 - All I/O pins are configured as inputs and pulled to Vss
 - $\overline{\text{MCLR}}$ = VDD, WDT and FSCM are disabled
 - All peripheral modules are disabled (PMDx bits are all ones)
 - VREGS bit (RCON<8>) = 1 (i.e., core regulator is set to stand-by while the device is in Sleep mode)
 - On applicable devices, RTCC is disabled plus the VREGS bit (RCON<8>) = 1
- 3: The Δ current is the additional current consumed when the module is enabled. This current should be added to the base IPD current.
- 4: These currents are measured on the device containing the most memory in this family.
- **5:** These parameters are characterized, but not tested in manufacturing.

DC CHARACTERI	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Parameter No.	Typical ⁽¹⁾	Doze Ratio ⁽²⁾	Units	Conditions			
DC73a	13.2	17.2	1:2	mA			16 MIPS
DC73f	4.7	6.2	1:64	mA	-40°C	3.3V	
DC73g	4.7	6.2	1:128	mA			
DC70a	13.2	17.2	1:2	mA			
DC70f	4.7	6.2	1:64	mA	+25°C	3.3V	16 MIPS
DC70g	4.7	6.2	1:128	mA			
	10.0	17.0	1.0				
DC71a DC71f	13.2 4.7	17.2 6.2	1:2	mA mA	+85°C	3.3V	16 MIPS
DC71g	4.7	6.2	1:128	mA		3.3V	
5			<u> </u>				
DC72a	13.2	17.2	1:2	mA			16 MIPS
DC72f	4.7	6.2	1:64	mA	+125°C	3.3V	
DC72g	4.7	6.2	1:128	mA			

TABLE 26-9: DC CHARACTERISTICS: DOZE CURRENT (IDOZE)

Data in the Typical column is at 3.3V, 25°C unless otherwise stated. Note 1:

2: IDOZE is primarily a function of the operating voltage and frequency. Other factors, such as I/O pin loading and switching rate, oscillator type, internal code execution pattern and temperature, also have an impact on the current consumption. The test conditions for all IDOZE measurements are as follows:

Oscillator is configured in EC mode, OSC1 is driven with external square wave from rail-to-rail

· CLKO is configured as an I/O input pin in the Configuration word

- All I/O pins are configured as inputs and pulled to Vss
- MCLR = VDD, WDT and FSCM are disabled
- CPU, SRAM, program memory and data memory are operational
- No peripheral modules are operating; however, every peripheral is being clocked (PMDx bits are all zeroes)
- CPU executing while (1) statement

DC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended							
Param No.	Symbol	Characteristic	Min	Тур ⁽¹⁾	Max	Units	Conditions			
	VIL	Input Low Voltage								
DI10		I/O pins	Vss	—	0.2 Vdd	V				
DI15		MCLR	Vss	—	0.2 Vdd	V				
DI16		I/O pins with OSC1 or SOSCI	Vss	—	0.2 Vdd	V				
DI18		SDA, SCL	Vss	—	0.3 Vdd	V	SMBus disabled			
DI19		SDA, SCL	Vss	—	0.8	V	SMBus enabled			
	Vih	Input High Voltage								
DI20		I/O pins not 5V tolerant ⁽⁴⁾ I/O pins 5V tolerant ⁽⁴⁾	0.7 Vdd 0.7 Vdd	_	Vdd 5.5	V V				
DI28		SDAx, SCLx	0.7 Vdd	_	Vdd	V	SMBus disabled			
DI29		SDAx, SCLx	2.1	—	Vdd	V	SMBus enabled			
	ICNPU	CNx Pull-up Current								
DI30			50	250	400	μA	VDD = 3.3V, VPIN = VSS			
	lı∟	Input Leakage Current ^(2,3)								
DI50a		MCLR pin	-2	—	+2	μA	Vss ≤ VPıN ≤ Vɒɒ, Pin at high-impedance			
DI50b		All pins except MCLR and OSCO	-2	—	+2	μA	Vss ≤VPIN ≤VDD, Pin at high-impedance			
DI50c		osco	-4	—	+4	μA	Vss ≤ VPIN ≤ VDD, Pin at high-impedance			

TABLE 26-10: DC CHARACTERISTICS: I/O PIN INPUT SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: The leakage current on the MCLR pin is strongly dependent on the applied voltage level. The specified levels represent normal operating conditions. Higher leakage current may be measured at different input voltages.

3: Negative current is defined as current sourced by the pin.

4: See "Pin Diagrams" for a list of 5V tolerant pins.

DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended							
Param No.	Symbol	Characteristic	Min Typ Max Units Conditions						
	Vol	Output Low Voltage							
DO10b		All I/O pins except OSCO	_	_	0.4	V	IOL = 8 mA, VDD = 3.3V		
DO10c		osco	—		0.4	V	IOL = 10 mA, VDD = 3.3V		
	Voн	Output High Voltage							
DO20b		All I/O pins except OSCO	2.4	—	—	V	IOL = -8 mA, VDD = 3.3V		
DO20c		osco	2.4	2.4 — V IOL = -12 mA, VDD = 3.3					

TABLE 26-11: DC CHARACTERISTICS: I/O PIN OUTPUT SPECIFICATIONS

TABLE 26-12: DC CHARACTERISTICS: PROGRAM MEMORY

DC CHAI	RACTERI	Standa (unless Operati	s: 3.0V to 3.6V ≤TA ≤+85°C for Industrial ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽³⁾	Min	Тур ⁽¹⁾	Max	Units	Conditions
		Program Flash Memory					
D130a	Eр	Cell Endurance	10,000	—	—	E/W	-40° C to +125° C
D131	Vpr	VDD for Read	VMIN	—	3.6	V	Vмın = Minimum operating voltage
D132B	Vpew	VDD for Self-Timed Write	VMIN	—	3.6	V	Vміn = Minimum operating voltage
D134	Tretd	Characteristic Retention	20	—	—	Year	Provided no other specifications are violated
D135	IDDP	Supply Current during Programming	—	10	—	mA	
D137a	Tpe	Page Erase Time	20.1	—	26.5	ms	TPE = 168517 FRC cycles, TA = +100°C, See Note 2
D137b	Tpe	Page Erase Time	19.5	—	27.3	ms	TPE = 168517 FRC cycles, TA = +125°C, See Note 2
D138a	Tww	Word Write Cycle Time	47.9	—	48.8	μs	Tww = 355 FRC cycles, TA = +100°C, See Note 2
D138b	Tww	Word Write Cycle Time	47.4	—	49.3	μs	Tww = 355 FRC cycles, TA = +125°C, See Note 2

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

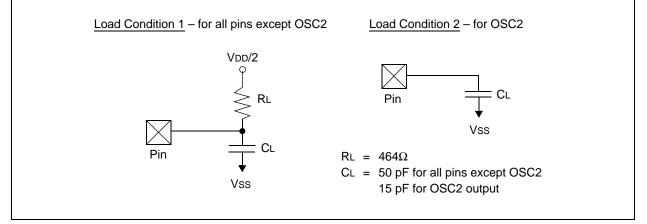
2: Other conditions: FRC = 7.37 MHz, TUN<5:0> = b '011111 (for Min), TUN<5:0> = b '100000 (for Max). This parameter depends on the FRC accuracy (see Table 26-18) and the value of the FRC Oscillator Tuning register (see Register 8-3). For complete details on calculating the Minimum and Maximum time, see Section 5.3 "Programming Operations".

3: These parameters are ensured by design, but are not characterized or tested in manufacturing.

TABLE 26-13: INTERNAL VOLTAGE REGULATOR SPECIFICATIONS

DC CHAF	DC CHARACTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Characteristics	Min	Тур	Max	Units	Comments		
_	Cefc	External Filter Capacitor Value ⁽¹⁾	4.7	10	—	μF	Capacitor must be low series resistance (< 5 ohms)		

Note 1: Typical VCAP voltage = 2.5V when VDD \ge VDDMIN.


26.2 AC Characteristics and Timing Parameters

This section defines dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 AC characteristics and timing parameters.

TABLE 26-14: TEMPERATURE AND VOLTAGE SPECIFICATIONS - AC

	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)
AC CHARACTERISTICS	Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended
	Operating voltage VDD range as described in Section 26.1 "DC Characteristics".

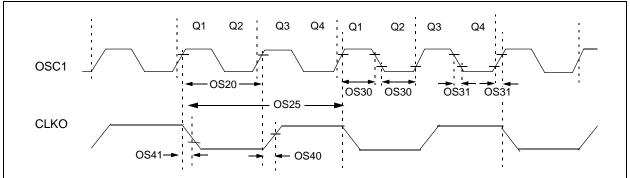

FIGURE 26-1: LOAD CONDITIONS FOR DEVICE TIMING SPECIFICATIONS

TABLE 26-15: CAPACITIVE LOADING REQUIREMENTS ON OUTPUT PINS

Param No.	Symbol	Characteristic	Min	Тур	Max	Units	Conditions
DO50	Cosc2	OSC2/SOSC2 pin			15	pF	In MS and HS modes when external clock is used to drive OSC1
DO56	Сю	All I/O pins and OSC2	—	—	50	pF	EC mode
DO58	Св	SCLx, SDAx	—	_	400	pF	In I ² C™ mode

FIGURE 26-2: EXTERNAL CLOCK TIMING

AC CHA	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symb	Characteristic	Min	Typ ⁽¹⁾	Мах	Units	Conditions			
OS10	Fin	External CLKI Frequency (External clocks allowed only in EC and ECPLL modes)	DC	—	32	MHz	EC			
		Oscillator Crystal Frequency	3.0 10 31	 	10 32 33	MHz MHz kHz	MS HS SOSC			
OS20	Tosc	Tosc = 1/Fosc	31.25	—	DC	ns	—			
OS25	TCY	Instruction Cycle Time ^(2,4)	62.5		DC	ns	—			
OS30	TosL, TosH	External Clock in (OSC1) ⁽⁵⁾ High or Low Time	0.45 x Tosc	—	_	ns	EC			
OS31	TosR, TosF	External Clock in (OSC1) ⁽⁵⁾ Rise or Fall Time	_	—	20	ns	EC			
OS40	TckR	CLKO Rise Time ^(3,5)		6	10	ns	—			
OS41	TckF	CLKO Fall Time ^(3,5)	_	6	10	ns	—			
OS42	Gм	External Oscillator Transconductance ⁽⁴⁾	14	16	18	mA/V	VDD = 3.3V TA = +25°C			

TABLE 26-16: EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: Instruction cycle period (TCY) equals two times the input oscillator time-base period. All specified values are based on characterization data for that particular oscillator type under standard operating conditions with the device executing code. Exceeding these specified limits may result in an unstable oscillator operation and/or higher than expected current consumption. All devices are tested to operate at "min." values with an external clock applied to the OSC1/CLKI pin. When an external clock input is used, the "max." cycle time limit is "DC" (no clock) for all devices.

- 3: Measurements are taken in EC mode. The CLKO signal is measured on the OSC2 pin.
- 4: These parameters are characterized by similarity, but are tested in manufacturing at FIN = 32 MHz only.
- **5:** These parameters are characterized by similarity, but are not tested in manufacturing.
- 6: Data for this parameter is Preliminary. This parameter is characterized, but not tested in manufacturing.

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended							
Param No. Symbol Characteris			stic	Min	Typ ⁽¹⁾	Max	Units	Conditions		
OS50	Fplli	PLL Voltage Controlled Oscillator (VCO) Input Frequency Range ⁽²⁾		3.0		8	MHz	ECPLL and MSPLL modes		
OS51	Fsys	On-Chip VCO System Frequency ⁽³⁾		12	—	32	MHz	_		
OS52	TLOCK	PLL Start-up Time (Lock Time) ⁽³⁾		_	—	2	mS	—		
OS53	DCLK	CLKO Stability (Jitter) ⁽³⁾		-2	1	+2	%	—		

TABLE 26-17: PLL CLOCK TIMING SPECIFICATIONS

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated. Parameters are for design guidance only and are not tested.

2: These parameters are characterized by similarity, but are tested in manufacturing at 7.7 MHz input only.

3: These parameters are characterized by similarity, but are not tested in manufacturing. This specification is based on clock cycle by clock cycle measurements. The effective jitter for individual time bases or communication clocks used by the user application, are derived from dividing the CLKO stability specification by the square root of "N" (where "N" is equal to FOSC divided by the peripheral data rate clock). For example, if FOSC = 32 MHz and the SPI bit rate is 5 MHz, the effective jitter of the SPI clock is equal to:

$$\frac{DCLK}{\sqrt{\frac{32}{5}}} = \frac{2\%}{2.53} = 0.79\%$$

TABLE 26-18: AC CHARACTERISTICS: INTERNAL FAST RC (FRC) ACCURACY

АС СНА	RACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended								
Param No.	Characteristic	Min	Тур	Max	Units Conditions					
	Internal FRC Accuracy @	7.3728	MHz ⁽¹⁾							
F20a	FRC	1.5	±0.25	1.5	%	-40°C ≤TA ≤+85°C				
F20b	FRC	-2	±0.25 +2 % -40°C ≤TA ≤+125°C							

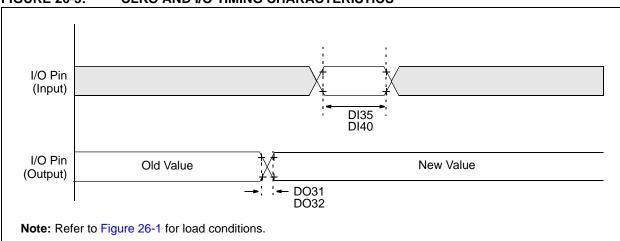

Note 1: Frequency calibrated at 25°C and 3.3V. TUN bits may be used to compensate for temperature drift.

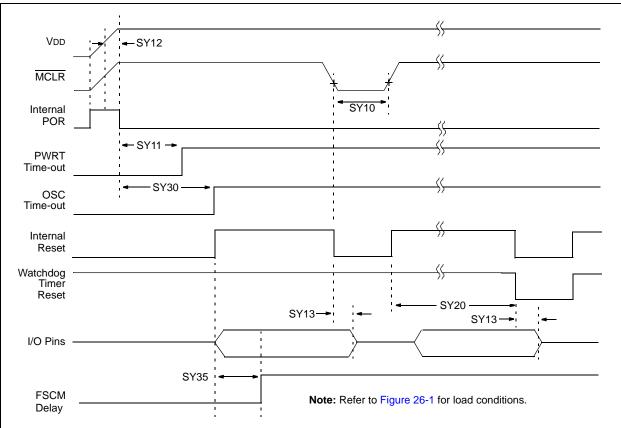
TABLE 26-19: INTERNAL LOW-POWER RC (LPRC) ACCURACY

AC CH	ARACTERISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended								
Param No.	Characteristic	Min	Тур	Max	Units Conditions					
	LPRC @ 32.768 kHz ^(1,2)									
F21a	LPRC	-20	±10	+20	%	-40°C ≤TA ≤+85°C				
F21b	LPRC	-30 ±10 +30 % -40°C ≤TA ≤+125°C								

Note 1: Change of LPRC frequency as VDD changes.

2: LPRC accuracy impacts the Watchdog Timer Time-out Period (TWDT1). See Section 23.4 "Watchdog Timer (WDT)" for more information.

FIGURE 26-3: CLKO AND I/O TIMING CHARACTERISTICS

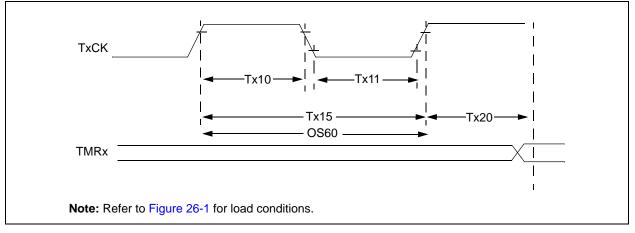

TABLE 26-20: I/O TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended							
Param No.	Symbol	Characteristic ⁽²⁾		Min	Typ ⁽¹⁾	Max	Units	Conditions		
DO31	TIOR	Port Output Rise Tim	е		10	25	ns	—		
DO32	TioF	Port Output Fall Time	9	_	10	25	ns	—		
DI35	TINP	INTx Pin High or Low Time (input)		25	_	_	ns	_		
DI40	Trbp	CNx High or Low Tim	2	_		TCY				

Note 1: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

2: These parameters are characterized, but are not tested in manufacturing.

TABLE 26-21: RESET, WATCHDOG TIMER, OSCILLATOR START-UP TIMER, POWER-UP TIMER TIMING REQUIREMENTS


AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max Units Conditions				
SY10	TMCL	MCLR Pulse Width (low)	2	_	_	μs	_		
SY11	TPWRT	Power-up Timer Period ⁽¹⁾		64		ms	_		
SY12	TPOR	Power-on Reset Delay ⁽³⁾	3	10	30	μs	—		
SY13	Tioz	I/O High-Impedance from MCLR Low or Watchdog Timer Reset ⁽¹⁾	_	—	1.2	μs	—		
SY20	Twdt1	Watchdog Timer Time-out Period ⁽¹⁾	_		_	ms	See Section 23.4 "Watch- dog Timer (WDT)" and LPRC parameter F21a (Table 26-19).		
SY30	Tost	Oscillator Start-up Time	_	1024 * Tosc	_	_	Tosc = OSC1 period		
SY35	TFSCM	Fail-Safe Clock Monitor Delay ⁽¹⁾	_	500	900	μs	_		

Note 1: These parameters are characterized but not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: These parameters are characterized, but are not tested in manufacturing.

FIGURE 26-5: TIMER1, 2 AND 3 EXTERNAL CLOCK TIMING CHARACTERISTICS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Charac	teristic ⁽²⁾	Min	Тур	Мах	Units	Conditions		
ТА10 ТтхН		TxCK High Time	Synchronous mode	Greater of: 20 or (TcY + 20)/N		—	ns	Must also meet parameter TA15 N = prescaler		
			Asynchronous		—	—	ns	value (1, 8, 64, 256)		
TA11	TTXL	TxCK Low Time	Synchronous mode	Greater of: 20 ns or (TCY + 20)/N		_	ns	Must also meet parameter TA15 N = prescaler		
		F	Asynchronous	s 10	_	—	ns	value (1, 8, 64, 256)		
TA15	ΤτχΡ	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	-	ns	N = prescale value (1, 8, 64, 256)		
OS60	Ft1	SOSC1/T1CK Oscillator Input frequency Range (oscillator enabled by set- ting bit TCS (T1CON<1>))		DC		50	kHz	_		
TA20	TCKEXTMRL	Delay from Ex Clock Edge to Increment		0.75 Tcy + 40		1.75 Tcy + 40	ns	—		

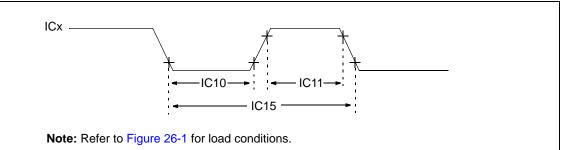
Note 1: Timer1 is a Type A.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

				Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Chara	cteristic ⁽¹⁾	Min	Тур	Max	Units	Conditions	
TB10	TtxH	TxCK High Time	Synchronous mode	Greater of: 20 or (TcY + 20)/N		_	ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)	
TB11	TtxL	TxCK Low Time	Synchronous mode	Greater of: 20 or (TcY + 20)/N	_	_	ns	Must also meet parameter TB15 N = prescale value (1, 8, 64, 256)	
TB15	TtxP	TxCK Input Period	Synchronous mode	Greater of: 40 or (2 Tcy + 40)/N	_	_	ns	N = prescale value (1, 8, 64, 256)	
TB20	TCKEXTMRL	-	External TxCK to Timer Incre		_	1.75 Tcy + 40	ns	—	

TABLE 26-23: TIMER2 EXTERNAL CLOCK TIMING REQUIREMENTS

Note 1: These parameters are characterized, but are not tested in manufacturing.


TABLE 26-24: TIMER3 EXTERNAL CLOCK TIMING REQUIREMENTS

AC CHARACTERISTICS				Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Charac	teristic ⁽¹⁾	Min	Тур	Max	Units	Conditions		
TC10	TtxH	TxCK High Time	Synchronous	Tcy + 20	—	_	ns	Must also meet parameter TC15		
TC11	TtxL	TxCK Low Time	Synchronous	Tcy + 20	—	—	ns	Must also meet parameter TC15		
TC15	TtxP	TxCK Input Period	Synchronous with prescale		_	—	ns	N = prescale value (1, 8, 64, 256)		
TC20	TCKEXTMRL	Delay from E Clock Edge t Increment	xternal TxCK o Timer	0.75 Tcy + 40	—	1.75 Tcy + 40	ns	—		

Note 1: These parameters are characterized, but are not tested in manufacturing.

© 2011 Microchip Technology Inc.

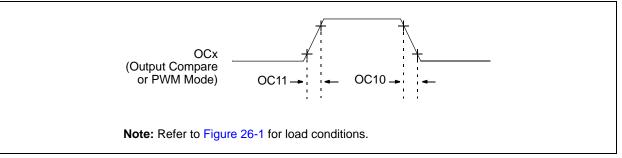

FIGURE 26-6: **INPUT CAPTURE (CAPx) TIMING CHARACTERISTICS**

TABLE 26-25: INPUT CAPTURE TIMING REQUIREMENTS

AC CHARACTERISTICS			(unless otherwise	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No. Symbol Characteristic ⁽¹⁾			ristic ⁽¹⁾	Min	Мах	Units	Conditions			
IC10	TccL	ICx Input Low Time	No Prescaler	0.5 TCY + 20		ns	—			
			With Prescaler	10	_	ns				
IC11	TccH	ICx Input High Time	No Prescaler	0.5 Tcy + 20		ns	—			
			With Prescaler	10	_	ns				
IC15	TccP	ICx Input Period		(Tcy + 40)/N	_	ns	N = prescale value (1, 4, 16)			
Note 1:	These p	arameters are charact	erized by similarity,	but are not tested	d in manufa	cturing.				

FIGURE 26-7: OUTPUT COMPARE MODULE (OCx) TIMING CHARACTERISTICS

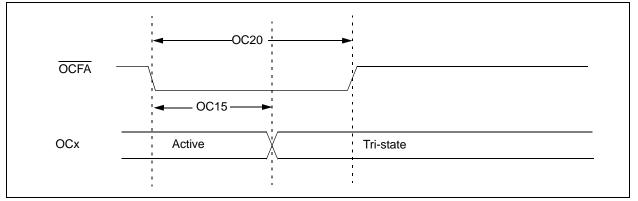
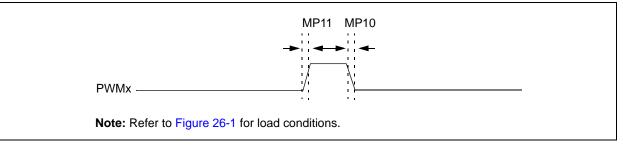


TABLE 26-26: OUTPUT COMPARE MODULE TIMING REQUIREMENTS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions		
OC10	TccF	OCx Output Fall Time	_	—	—	ns	See parameter DO32		
OC11	TccR	OCx Output Rise Time	— — ns See parameter DO31						

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.

FIGURE 26-8: OC/PWM MODULE TIMING CHARACTERISTICS


TABLE 26-27: SIMPLE OC/PWM MODE TIMING REQUIREMENTS

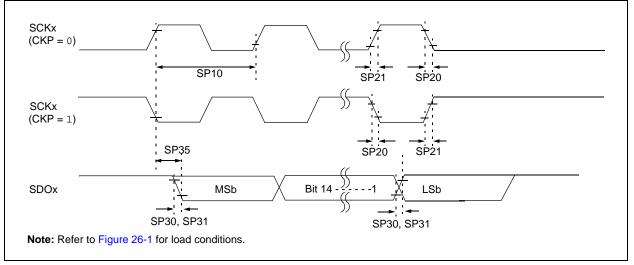
AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур	Мах	Units	Conditions	
OC15	TFD	Fault Input to PWM I/O Change	_		Tcy + 20 ns	ns	_	
OC20	TFLT	Fault Input Pulse Width	Tcy + 20 ns	_	—	ns	—	

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.

FIGURE 26-9: MOTOR CONTROL PWM MODULE FAULT TIMING CHARACTERISTICS FLTA1 MP30 FLTA1 MP20 PWMx See Note 1 Note 1: For the logic state after a Fault, refer to the FAOVxH:FAOVxL bits in the PxFLTACON register.

FIGURE 26-10: MOTOR CONTROL PWM MODULE TIMING CHARACTERISTICS

TABLE 26-28: MOTOR CONTROL PWM MODULE TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended				
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ Max Units Conditions				
MP10	TFPWM	PWM Output Fall Time	—	_	_	ns	See parameter DO32
MP11	TRPWM	PWM Output Rise Time	_		_	ns	See parameter DO31
MP20	Tfd	Fault Input ↓to PWM I/O Change	_	_	50	ns	_
MP30	Tfh	Minimum Pulse Width	50			ns	—

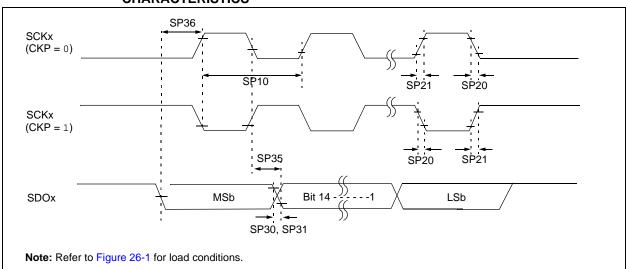

Note 1: These parameters are characterized by similarity, but are not tested in manufacturing.

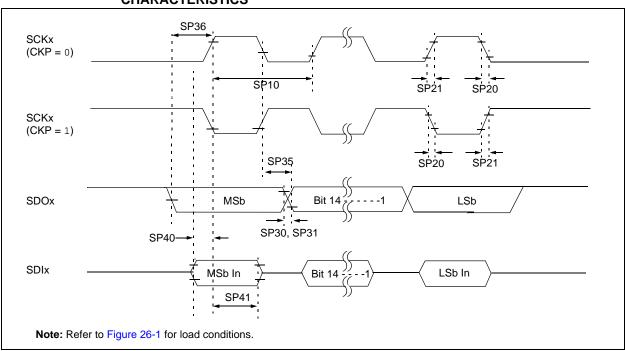
TABLE 26-29: SPIx MAXIMUM DATA/CLOCK RATE SUMMARY

AC CHARAG	CTERISTICS		Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Maximum Data Rate	Master Transmit Only (Half-Duplex)	Master Transmit/Receive (Full-Duplex)	Slave Transmit/Receive (Full-Duplex)	CKE	СКР	SMP		
15 MHz	Table 26-30	—	_	0,1	0,1	0,1		
10 MHz	—	Table 26-31	—	1	0,1	1		
10 MHz	—	Table 26-32	—	0	0,1	1		
15 MHz	—	—	Table 26-33	1	0	0		
11 MHz	_	_	Table 26-34	1	1	0		
15 MHz	_	_	Table 26-35	0	1	0		
11 MHz	_		Table 26-36	0	0	0		

FIGURE 26-11: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 0) TIMING CHARACTERISTICS

FIGURE 26-12: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY CKE = 1) TIMING CHARACTERISTICS

TABLE 26-30: SPIX MASTER MODE (HALF-DUPLEX, TRANSMIT ONLY) TIMING REQUIREMENTS


AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Conditions					
SP10	TscP	Maximum SCK Frequency	—	_	15	MHz	See Note 3		
SP20	TscF	SCKx Output Fall Time	_	_	_	ns	See parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	_	_	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdiV2scH, TdiV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—		

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 66.7 ns. Therefore, the clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.


FIGURE 26-13: SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 26-31:SPIX MASTER MODE (FULL-DUPLEX, CKE = 1, CKP = x, SMP = 1) TIMING
REQUIREMENTS

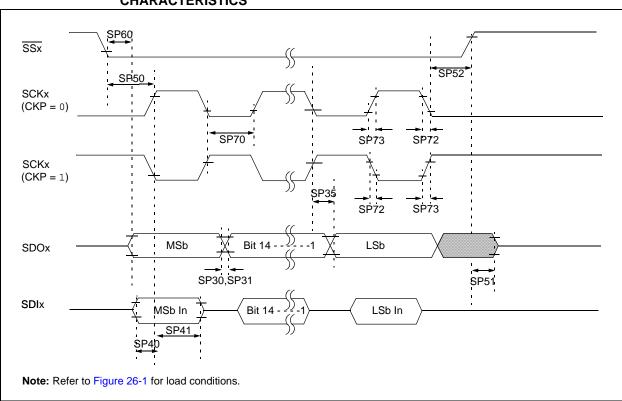
AC CHA	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP10	TscP	Maximum SCK Frequency	—	_	10	MHz	See Note 3
SP20	TscF	SCKx Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP21	TscR	SCKx Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	_
SP36	TdoV2sc, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—	_	ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	—		ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

- 2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.
- **3:** The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.
- 4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-14: SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING CHARACTERISTICS

TABLE 26-32:SPIX MASTER MODE (FULL-DUPLEX, CKE = 0, CKP = x, SMP = 1) TIMING
REQUIREMENTS


АС СНА	RACTERIST	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended							
Param No.	Symbol	Characteristic ⁽¹⁾	Min Typ ⁽²⁾ Max Units Conditions						
SP10	TscP	Maximum SCK Frequency			10	MHz	-40°C to +125°C and see Note 3		
SP20	TscF	SCKx Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4		
SP21	TscR	SCKx Output Rise Time	_	—	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	_	—	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	-	-	_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	_	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30			ns			
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30			ns	—		

Note 1: These parameters are characterized, but are not tested in manufacturing.

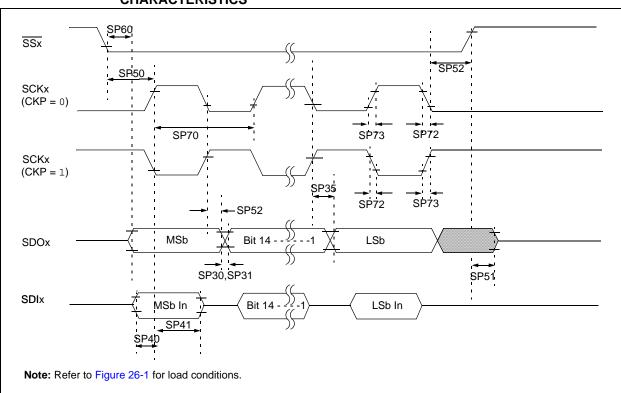
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 100 ns. The clock generated in Master mode must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-15: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 26-33:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 0, SMP = 0) TIMING
REQUIREMENTS


АС СНА	RACTERIS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions
SP70	TscP	Maximum SCK Input Frequency	—		15	MHz	See Note 3
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32 and Note 4
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4
SP31	TdoR	SDOx Data Output Rise Time	—	_	—	ns	See parameter DO31 and Note 4
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30			ns	—
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_		ns	—
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	—	ns	—
SP50	TssL2scH, TssL2scL	SSx ↓to SCKx ↑ or SCKx Input	120	_	_	ns	—
SP51	TssH2doZ	SSx	10	_	50	ns	-
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—	_	ns	See Note 4
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	—	_	50	ns	—

Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

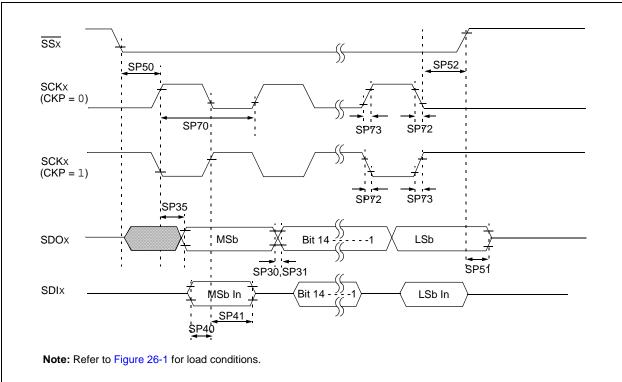
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

FIGURE 26-16: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING CHARACTERISTICS

TABLE 26-34:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 1, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

АС СНА	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Units	Conditions			
SP70	TscP	Maximum SCK Input Frequency	—	_	11	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—	—		ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	_	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	_	_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow to SCKx \uparrow or SCKx Input$	120	—	_	ns	—		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	—		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—		ns	See Note 4		
SP60	TssL2doV	SDOx Data Output Valid after SSx Edge	_	—	50	ns	_		


Note 1: These parameters are characterized, but are not tested in manufacturing.

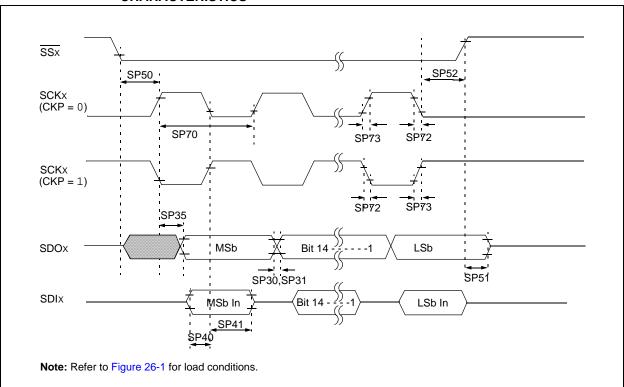
2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

TABLE 26-35:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 1, SMP = 0) TIMING
REQUIREMENTS

АС СНА	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscP	Maximum SCK Input Frequency	_	_	15	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	—			ns	See parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—	_	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—		_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—			ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	_	_	ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_	_	ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow to SCKx \uparrow or SCKx Input$	120	_	_	ns	_		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	_	50	ns	_		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	_	_	ns	See Note 4		


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.

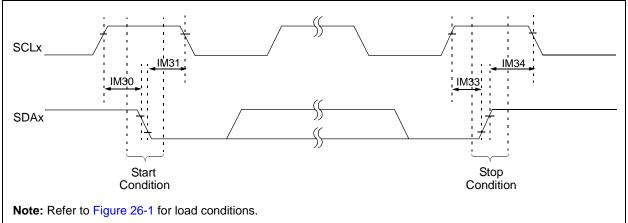
3: The minimum clock period for SCKx is 66.7 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

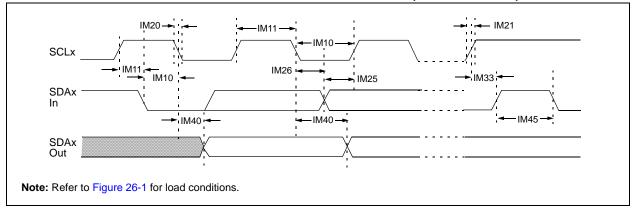
FIGURE 26-18: SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING CHARACTERISTICS

TABLE 26-36:SPIX SLAVE MODE (FULL-DUPLEX, CKE = 0, CKP = 0, SMP = 0) TIMING
REQUIREMENTS

АС СНА	AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended					
Param No.	Symbol	Characteristic ⁽¹⁾	Min	Тур ⁽²⁾	Max	Units	Conditions		
SP70	TscP	Maximum SCK Input Frequency	—	_	11	MHz	See Note 3		
SP72	TscF	SCKx Input Fall Time	—	_		ns	See parameter DO32 and Note 4		
SP73	TscR	SCKx Input Rise Time	—	—	_	ns	See parameter DO31 and Note 4		
SP30	TdoF	SDOx Data Output Fall Time	—	—	_	ns	See parameter DO32 and Note 4		
SP31	TdoR	SDOx Data Output Rise Time	—	—	_	ns	See parameter DO31 and Note 4		
SP35	TscH2doV, TscL2doV	SDOx Data Output Valid after SCKx Edge	—	6	20	ns	—		
SP36	TdoV2scH, TdoV2scL	SDOx Data Output Setup to First SCKx Edge	30	—		ns	—		
SP40	TdiV2scH, TdiV2scL	Setup Time of SDIx Data Input to SCKx Edge	30	—		ns	—		
SP41	TscH2diL, TscL2diL	Hold Time of SDIx Data Input to SCKx Edge	30	_		ns	—		
SP50	TssL2scH, TssL2scL	$\overline{SSx} \downarrow to SCKx \uparrow or SCKx Input$	120	—	_	ns	_		
SP51	TssH2doZ	SSx ↑ to SDOx Output High-Impedance ⁽⁴⁾	10	—	50	ns	—		
SP52	TscH2ssH TscL2ssH	SSx after SCKx Edge	1.5 TCY + 40	—		ns	See Note 4		


Note 1: These parameters are characterized, but are not tested in manufacturing.

2: Data in "Typ" column is at 3.3V, 25°C unless otherwise stated.


3: The minimum clock period for SCKx is 91 ns. Therefore, the SCK clock generated by the Master must not violate this specification.

4: Assumes 50 pF load on all SPIx pins.

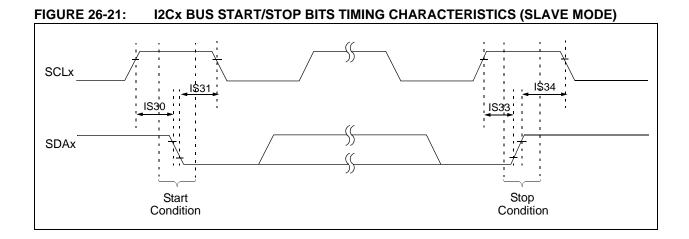
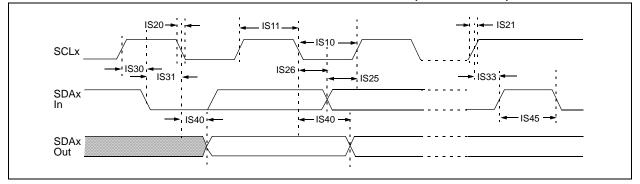

AC CHA	ARACTER	ISTICS		Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Charac	teristic	Min ⁽¹⁾	Max	Units	Conditions		
IM10	TLO:SCL	Clock Low Time	100 kHz mode	Tcy/2 (BRG + 1)	_	μs	—		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	_		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	—	μs	_		
IM11	THI:SCL	Clock High Time	100 kHz mode	Tcy/2 (BRG + 1)	—	μs	_		
			400 kHz mode	Tcy/2 (BRG + 1)	—	μs	_		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)	—	μs	_		
IM20	TF:SCL	SDAx and SCLx	100 kHz mode	_	300	ns	CB is specified to be		
		Fall Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	—	100	ns			
IM21	TR:SCL	SDAx and SCLx	100 kHz mode	—	1000	ns	CB is specified to be		
		Rise Time	400 kHz mode	20 + 0.1 Св	300	ns	from 10 to 400 pF		
			1 MHz mode ⁽²⁾	_	300	ns	-		
IM25	TSU:DAT	Data Input	100 kHz mode	250	_	ns	_		
		Setup Time	400 kHz mode	100	_	ns			
			1 MHz mode ⁽²⁾	40		ns	-		
IM26	THD:DAT	Data Input	100 kHz mode	0	_	μs	_		
		Hold Time	400 kHz mode	0	0.9	μs	-		
			1 MHz mode ⁽²⁾	0.2	_	μs	-		
IM30	TSU:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 1)	—	μs	Only relevant for		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	Repeated Start		
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	μs	condition		
IM31	THD:STA	Start Condition	100 kHz mode	TCY/2 (BRG + 1)	—	μs	After this period the		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs	first clock pulse is		
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)	—	μs	generated		
IM33	TSU:STO	Stop Condition	100 kHz mode	TCY/2 (BRG + 1)	_	μs	_		
		Setup Time	400 kHz mode	Tcy/2 (BRG + 1)	_	μs			
			1 MHz mode ⁽²⁾	TCY/2 (BRG + 1)	—	μs			
IM34	THD:STO	Stop Condition	100 kHz mode	TCY/2 (BRG + 1)	_	ns	_		
		Hold Time	400 kHz mode	Tcy/2 (BRG + 1)	_	ns			
			1 MHz mode ⁽²⁾	Tcy/2 (BRG + 1)	_	ns	-		
IM40	TAA:SCL	Output Valid	100 kHz mode	_	3500	ns	_		
		From Clock	400 kHz mode	—	1000	ns	—		
			1 MHz mode ⁽²⁾	—	400	ns	—		
IM45	TBF:SDA	Bus Free Time	100 kHz mode	4.7	—	μs	Time the bus must be		
			400 kHz mode	1.3	—	μs	free before a new		
			1 MHz mode ⁽²⁾	0.5	_	μs	transmission can star		
IM50	Св	Bus Capacitive L		—	400	, pF	—		
IM51	TPGD	Pulse Gobbler De	elav	65	390	ns	See Note 3		

TABLE 26-37: I2Cx BUS DATA TIMING REQUIREMENTS (MASTER MODE)


Note 1: BRG is the value of the I²C Baud Rate Generator. Refer to Section 19. "Inter-Integrated Circuit (I²C[™])" (DS70195) in the "dsPIC33F/PIC24H Family Reference Manual". Please see the Microchip web site for the latest dsPIC33F/PIC24H Family Reference Manual sections.

2: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

3: Typical value for this parameter is 130 ns.

Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) AC CHARACTERISTICS Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial -40°C \leq TA \leq +125°C for Extended Param. Symbol Characteristic Min Units Conditions Max IS10 TLO:SCL Clock Low Time 100 kHz mode 4.7 Device must operate at a μs minimum of 1.5 MHz 400 kHz mode Device must operate at a 1.3 μs minimum of 10 MHz 1 MHz mode⁽¹⁾ 0.5 μs IS11 THI:SCL Clock High Time 100 kHz mode 4.0 Device must operate at a μs minimum of 1.5 MHz 400 kHz mode 0.6 Device must operate at a μs minimum of 10 MHz 1 MHz mode⁽¹⁾ 0.5 μs ____ IS20 TF:SCL SDAx and SCLx 100 kHz mode 300 ns CB is specified to be from Fall Time 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode⁽¹⁾ 100 ns 100 kHz mode **IS21** TR:SCL SDAx and SCLx 1000 ns CB is specified to be from **Rise Time** 10 to 400 pF 400 kHz mode 20 + 0.1 CB 300 ns 1 MHz mode⁽¹⁾ 300 ns IS25 TSU:DAT Data Input 100 kHz mode 250 _ ns Setup Time 400 kHz mode 100 ns 1 MHz mode⁽¹⁾ 100 ns IS26 100 kHz mode THD:DAT Data Input 0 _ μs Hold Time 400 kHz mode 0 0.9 μs 1 MHz mode⁽¹⁾ 0 0.3 μs 100 kHz mode IS30 TSU:STA Start Condition 4.7 μs Only relevant for Repeated ____ Setup Time Start condition 400 kHz mode 0.6 μs 1 MHz mode⁽¹⁾ 0.25 μs IS31 Start Condition 100 kHz mode After this period, the first THD:STA 4.0 μs Hold Time clock pulse is generated 400 kHz mode 0.6 us 1 MHz mode⁽¹⁾ 0.25 ____ μs IS33 TSU:STO Stop Condition 100 kHz mode 4.7 μs Setup Time 400 kHz mode 0.6 ____ μs 1 MHz mode⁽¹⁾ 0.6 μs IS34 THD:STO Stop Condition 100 kHz mode 4000 ns Hold Time 400 kHz mode 600 ns 1 MHz mode⁽¹⁾ 250 ns IS40 TAA:SCL **Output Valid** 100 kHz mode 0 3500 ns From Clock 400 kHz mode 0 1000 ns 1 MHz mode⁽¹⁾ 0 350 ns IS45 100 kHz mode TBF:SDA **Bus Free Time** 4.7 Time the bus must be free μs ____ before a new transmission 400 kHz mode 1.3 μs can start 1 MHz mode⁽¹⁾ 0.5 μs _ IS50 Св **Bus Capacitive Loading** 400 pF

TABLE 26-38: I2Cx BUS DATA TIMING REQUIREMENTS (SLAVE MODE)

Note 1: Maximum pin capacitance = 10 pF for all I2Cx pins (for 1 MHz mode only).

AC CHA	RACTER	ISTICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤TA ≤+85°C for Industrial -40°C ≤TA ≤+125°C for Extended								
Param No.	Symbol	Characteristic	Min.	Тур	Conditions						
	Device Supply										
AD01	AVDD	Module VDD Supply ^(2,4)	Greater of VDD – 0.3 or 2.9	_	Lesser of VDD + 0.3 or 3.6	V	_				
AD02	AVss	Module Vss Supply ^(2,5)	Vss – 0.3		Vss + 0.3	V	—				
AD09	IAD	Operating Current	—	7.0	9.0	mA	See Note 1				
			Anal	og Input							
AD12	Vinh	Input Voltage Range _{VINH} (2)	Vinl		AVdd	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), positive input				
AD13	VINL	Input Voltage Range _{VINL} (2)	AVss	_	AVss + 1V	V	This voltage reflects Sample and Hold Channels 0, 1, 2, and 3 (CH0-CH3), negative input				
AD17	Rin	Recommended Imped- ance of Analog Voltage Source ⁽³⁾	_		200	Ω	_				

TABLE 26-39: ADC MODULE SPECIFICATIONS

Note 1: These parameters are not characterized or tested in manufacturing.

2: These parameters are characterized, but are not tested in manufacturing.

3: These parameters are assured by design, but are not characterized or tested in manufacturing.

4: This pin may not be available on all devices, in which case, this pin will be connected to VDD internally. See the **"Pin Diagrams"** section for availability.

5: This pin may not be available on all devices, in which case, this pin will be connected to Vss internally. See the "Pin Diagrams" section for availability.

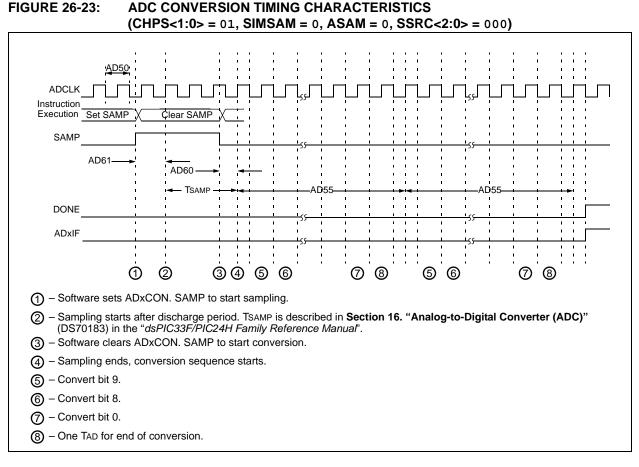
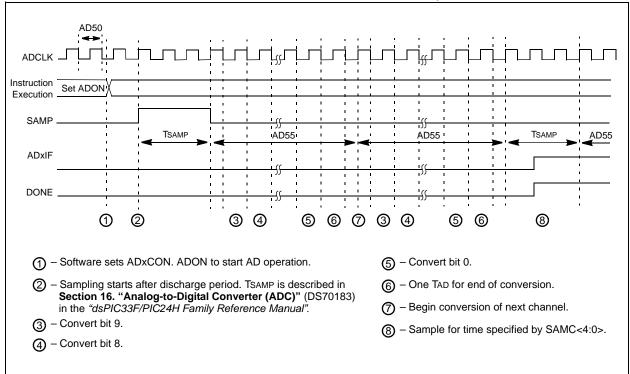

	RACTERIS	TICS	Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated)								
	RACIERIS	1105	Operatir	ig tempe	rature	նձ ⊴+85°C for Industrial					
				-40°C ≤TA ≤+125°C for Extended							
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions				
10-bit ADC Accuracy – Measurements with AVDD/AVss ⁽³⁾											
AD20b	Nr	Resolution	1) data bi	ts	bits	—				
AD21b	INL	Integral Nonlinearity	-1		+1	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD22b	DNL	Differential Nonlinearity	>-1	_	<1	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD23b	Gerr	Gain Error	3	7	15	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD24b	EOFF	Offset Error	1.5	3	7	LSb	VINL = AVSS = 0V, AVDD = 3.6V				
AD25b	—	Monotonicity	—	_	_	_	Guaranteed ⁽¹⁾				
		Dynamic P	erformar	ice (10-b	oit Mode	(2)					
AD30b	THD	Total Harmonic Distortion	_		-64	dB	—				
AD31b	SINAD	Signal to Noise and Distortion	57	58.5		dB	_				
AD32b	SFDR	Spurious Free Dynamic Range	72	—	_	dB	_				
AD33b	Fnyq	Input Signal Bandwidth	_		550	kHz	—				
AD34b	ENOB	Effective Number of Bits	9.16	9.4	_	bits	—				

TABLE 26-40: 10-BIT ADC MODULE SPECIFICATIONS


Note 1: The analog-to-digital conversion result never decreases with an increase in the input voltage, and has no missing codes.

2: These parameters are characterized by similarity, but are not tested in manufacturing.

3: These parameters are characterized, but are tested at 20 ksps only.

FIGURE 26-24: ADC CONVERSION TIMING CHARACTERISTICS (CHPS<1:0> = 01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 111, SAMC<4:0> = 00001)

AC CHA	ARACTER	RISTICS	Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature-40°C ≤TA ≤+85°C for Industrial-40°C ≤TA ≤+125°C for Extended						
Param No.	Symbol	Characteristic	Min. Typ ⁽¹⁾ Max. Units Conditions						
		Clock	Paramet	ers ⁽²⁾					
AD50	Tad	ADC Clock Period	76	_	_	ns	—		
AD51	tRC	ADC Internal RC Oscillator Period	—	250	—	ns	—		
		Con	version F	late					
AD55	tCONV	Conversion Time	—	12 Tad	—	_	—		
AD56	FCNV	Throughput Rate	—	—	1.1	Msps	—		
AD57	TSAMP	Sample Time	2.0 Tad	—	—	_	—		
		Timin	g Param	eters					
AD60	tPCS	Conversion Start from Sample Trigger ⁽¹⁾	2.0 TAD	—	3.0 Tad	_	Auto-Convert Trigger (SSRC<2:0> = 111) not selected		
AD61	tPSS	Sample Start from Setting Sample (SAMP) bit ⁽¹⁾	2.0 Tad	_	3.0 Tad		_		
AD62	tCSS	Conversion Completion to Sample Start (ASAM = 1) ⁽¹⁾	—	0.5 Tad	—		—		
AD63	tdpu	Time to Stabilize Analog Stage from ADC Off to ADC On ⁽¹⁾		_	20	μs			

TABLE 26-41: 10-BIT ADC CONVERSION TIMING REQUIREMENTS

Note 1: These parameters are characterized but not tested in manufacturing.

2: Because the sample caps will eventually lose charge, clock rates below 10 kHz may affect linearity performance, especially at elevated temperatures.

TABLE 26-42: COMPARATOR TIMING SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min.	Тур	Conditions			
300	TRESP	Response Time ^(1,2)		150	400	ns	—	
301	TMC2OV	Comparator Mode Change to Output Valid ⁽¹⁾	_	_	10	μs	_	
302	Ton2ov	Comparator Enabled to Output Valid ⁽¹⁾	—	_	10	μs	_	

Note 1: Parameters are characterized but not tested.

2: Response time measured with one comparator input at (VDD - 1.5)/2, while the other input transitions from Vss to VDD.

TABLE 26-43: COMPARATOR MODULE SPECIFICATIONS

			Standard Operating Conditions: 3.0V to 3.6V (unless otherwise stated) Operating temperature -40°C ≤ TA ≤ +85°C for Industrial -40°C ≤ TA ≤ +125°C for Extended					
Param No.	Symbol	Characteristic	ic Min. Typ Max. Units Conditi				Conditions	
D300	VIOFF	Input Offset Voltage ⁽¹⁾	—	±10	—	mV	_	
D301	VICM	Input Common Mode Voltage ⁽¹⁾	0	—	AVDD-1.5V	V	—	
D302	CMRR	Common Mode Rejection Ratio ⁽¹⁾	-54	—	—	dB	—	
D305	IVREF	Internal Voltage Reference ⁽¹⁾	1.116	1.24	1.364	V	—	

Note 1: Parameters are characterized but not tested.

TABLE 26-44: COMPARATOR REFERENCE VOLTAGE SETTLING TIME SPECIFICATIONS

AC CHARACTERISTICS			Standard Operating Conditions: 3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended					
Param No.	Symbol	Characteristic	Min. Typ Max. Units Condition			Conditions		
VR310	TSET	Settling Time ⁽¹⁾	<u> </u>					

Note 1: Setting time measured while CVRR = 1 and CVR3:CVR0 bits transition from '0000' to '1111'.

TABLE 26-45: COMPARATOR REFERENCE VOLTAGE SPECIFICATIONS

DC CHARACTERISTICS			Standard Operating Conditions:3.0V to 3.6V(unless otherwise stated)Operating temperature $-40^{\circ}C \le TA \le +85^{\circ}C$ for Industrial $-40^{\circ}C \le TA \le +125^{\circ}C$ for Extended				
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions
VRD310	CVRES	Resolution	CVRSRC/24		CVRSRC/32	LSb	—
VRD311	CVRAA	Absolute Accuracy	—		0.5	LSb	—
VRD312	CVRur	Unit Resistor Value (R)	—	2k		Ω	—

© 2011 Microchip Technology Inc.

DC CHARACTERISTICS			Standard Operating Conditions:3.0V to 3.6V (unless otherwise stated)Operating temperature $-40^{\circ}C \leq TA \leq +85^{\circ}C$ for Industrial $-40^{\circ}C \leq TA \leq +125^{\circ}C$ for Extended								
Param No.	Symbol	Characteristic	Min.	Тур	Max.	Units	Conditions				
CTMU CURRENT SOURCE											
CTMUI1	IOUT1	Base Range ⁽¹⁾		550	_	na	IRNG<1:0> bits (CTMUICON<9:8>) = 0b01				
CTMUI2	IOUT2	10x Range ⁽¹⁾		5.5		μA	IRNG<1:0> bits (CTMUICON<9:8>) = 0b10				
CTMUI3	Ιουτ3	100x Range ⁽¹⁾		55		μA	IRNG<1:0> bits (CTMUICON<9:8>) = 0b11				
Internal Diode											
CTMUFV1	VF	Forward Voltage ⁽²⁾		0.77		V	IRNG<1:0>bits (CTMUICON<9:8>)=0b11 @ 25°C				
CTMUFV2	Vfvr	Forward Voltage Rate ⁽²⁾	—	-1.38		mV/⁰C	IRNG<1:0> bits (CTMUICON<9:8>) = 0b11				

TABLE 26-46: CTMU CURRENT SOURCE SPECIFICATIONS

Note 1: Nominal value at center point of current trim range (ITRIM<5:0> bits (CTMUICON<15:10>) = 0b000000).

2: ADC module configured for conversion speed of 500 ksps. Parameters are characterized but not tested in manufacturing.


FIGURE 26-25: FORWARD VOLTAGE VERSUS TEMPERATURE

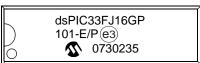
27.0 PACKAGING INFORMATION

27.1 Package Marking Information

18-Lead PDIP

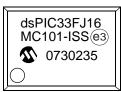
18-Lead SOIC

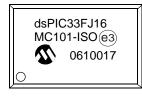

20-Lead PDIP


20-Lead SSOP

20-Lead SOIC

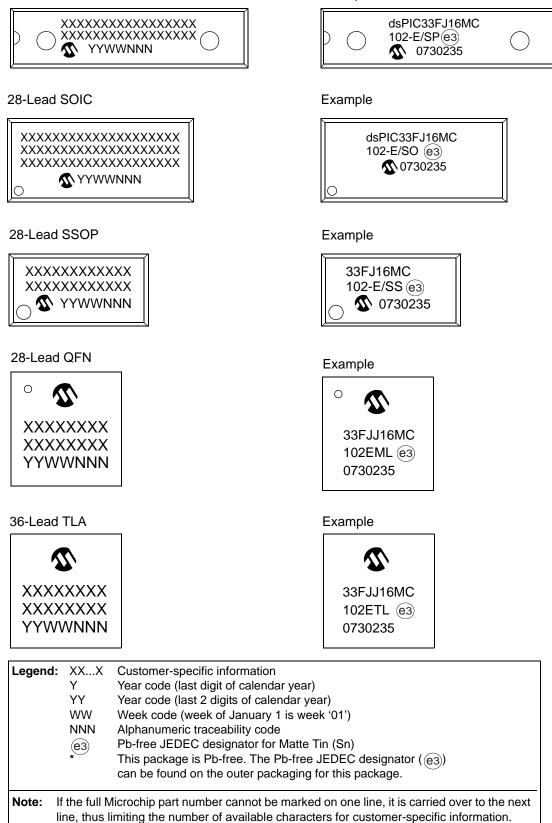
Example


Example


Example

Example

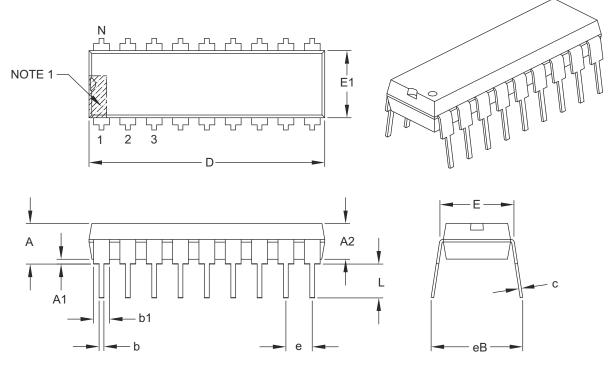
Example



Legenc	I: XXX Y YY WW NNN @3 *	Customer-specific information Year code (last digit of calendar year) Year code (last 2 digits of calendar year) Week code (week of January 1 is week '01') Alphanumeric traceability code Pb-free JEDEC designator for Matte Tin (Sn) This package is Pb-free. The Pb-free JEDEC designator (@3) can be found on the outer packaging for this package.
Note:		Aicrochip part number cannot be marked on one line, it is carried over to the next limiting the number of available characters for customer-specific information.

Example

27.1 Package Marking Information (Continued)


28-Lead SPDIP

27.2 Package Details

18-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

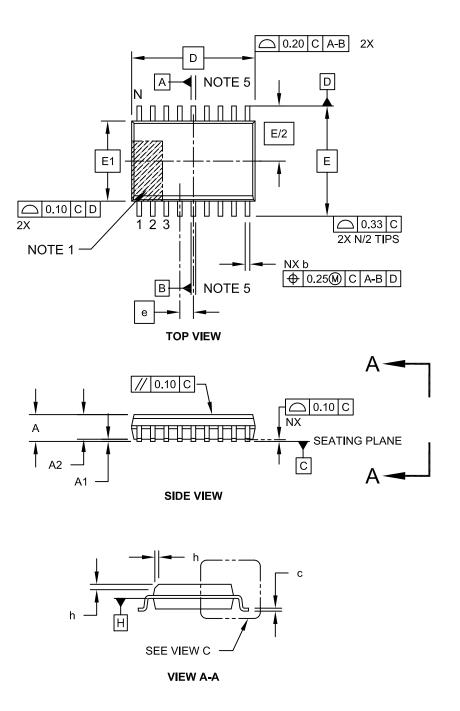
	Units		INCHES	
Dimension	n Limits	MIN	NOM	MAX
Number of Pins	Ν		18	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.880	.900	.920
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	С	.008	.010	.014
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	_	.430

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic.

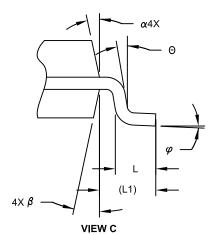
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.

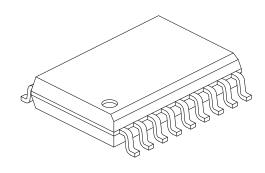

4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-007B

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

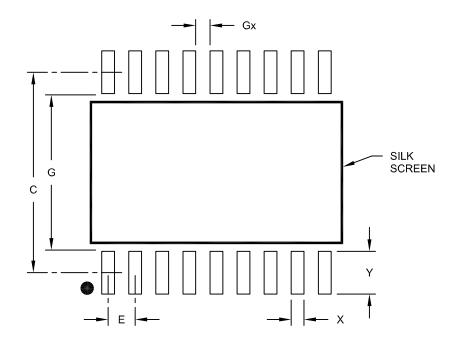

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging



Microchip Technology Drawing C04-051C Sheet 1 of 2

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging


	Units		ILLIMETER	S
Dimension Lin	nits	MIN	NOM	MAX
Number of Pins	N		18	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E	10.30 BSC		
Molded Package Width	E1	7.50 BSC		
Overall Length	D	11.55 BSC		
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1	1.40 REF		
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0° - 8°		8°
Lead Thickness	С	0.20 - 0.33		0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°

Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M BSC: Basic Dimension. Theoretically exact value shown without tolerances. REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

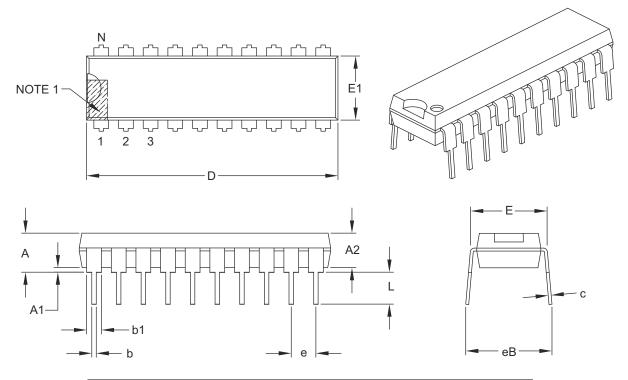
Microchip Technology Drawing No. C04-051C Sheet 2 of 2

18-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimensior	Dimension Limits		NOM	MAX	
Contact Pitch	E	1.27 BSC		-	
Contact Pad Spacing	С		9.40		
Contact Pad Width	Х			0.60	
Contact Pad Length	Y			2.00	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.40			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2051A

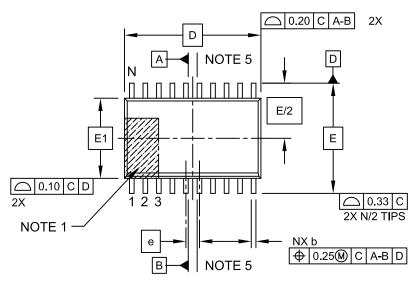
20-Lead Plastic Dual In-Line (P) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

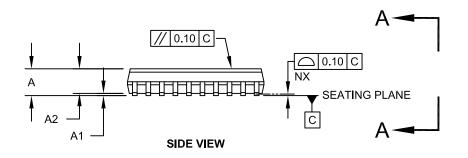
	Units		INCHES	
Dimensio	n Limits	MIN	NOM	MAX
Number of Pins N			20	
Pitch	е		.100 BSC	
Top to Seating Plane	А	-	-	.210
Molded Package Thickness	A2	.115	.130	.195
Base to Seating Plane	A1	.015	-	-
Shoulder to Shoulder Width	E	.300	.310	.325
Molded Package Width	E1	.240	.250	.280
Overall Length	D	.980	1.030	1.060
Tip to Seating Plane	L	.115	.130	.150
Lead Thickness	с	.008	.010	.015
Upper Lead Width	b1	.045	.060	.070
Lower Lead Width	b	.014	.018	.022
Overall Row Spacing §	eB	_	-	.430

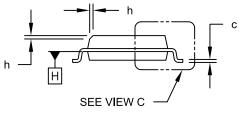
Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

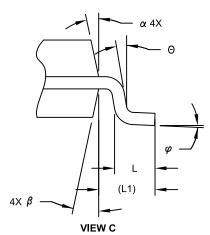
BSC: Basic Dimension. Theoretically exact value shown without tolerances.

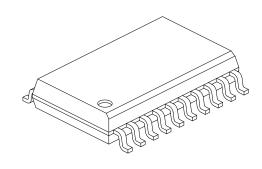

Microchip Technology Drawing C04-019B


20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

TOP VIEW





Microchip Technology Drawing C04-094C Sheet 1 of 2

20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

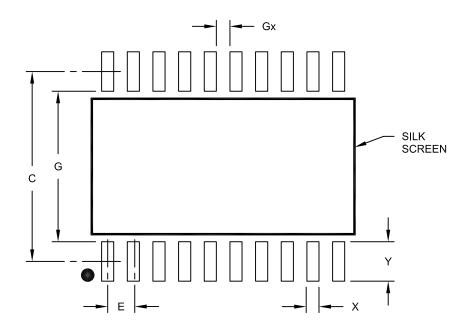
Units		N	MILLIMETERS		
Dimension Lim	nits	MIN	NOM	MAX	
Number of Pins			20		
Pitch	е		1.27 BSC		
Overall Height	Α	-	-	2.65	
Molded Package Thickness	A2	2.05	-	-	
Standoff §	A1	0.10	-	0.30	
Overall Width	Е	10.30 BSC			
Molded Package Width	E1	7.50 BSC			
Overall Length	D	12.80 BSC			
Chamfer (Optional)	h	0.25	-	0.75	
Foot Length	L	0.40	-	1.27	
Footprint	L1	1.40 REF			
Lead Angle	Θ	0°	-	-	
Foot Angle	φ	0° - 8°		8°	
Lead Thickness	С	0.20 - 0.33		0.33	
Lead Width	b	0.31	-	0.51	
Mold Draft Angle Top	α	5° - 15°		15°	
Mold Draft Angle Bottom	β	5°	-	15°	

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. § Significant Characteristic

 Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.


Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing No. C04-094C Sheet 2 of 2

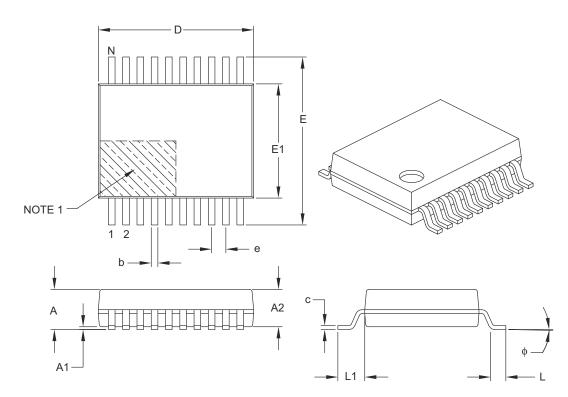
20-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units		MILLIMETERS		
Dimensior	Dimension Limits		NOM	MAX	
Contact Pitch	E		1.27 BSC		
Contact Pad Spacing	С		9.40		
Contact Pad Width (X20)	X			0.60	
Contact Pad Length (X20)	Y			1.95	
Distance Between Pads	Gx	0.67			
Distance Between Pads	G	7.45			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

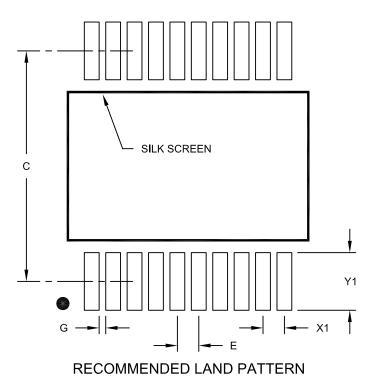
Microchip Technology Drawing No. C04-2094A

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimension	n Limits	MIN	NOM	MAX	
Number of Pins	Ν		20		
Pitch	е		0.65 BSC		
Overall Height	Α	_	-	2.00	
Molded Package Thickness	A2	1.65	1.75	1.85	
Standoff	A1	0.05	-	-	
Overall Width	Е	7.40	7.80	8.20	
Molded Package Width	E1	5.00	5.30	5.60	
Overall Length	D	6.90	7.20	7.50	
Foot Length	L	0.55	0.75	0.95	
Footprint	L1	1.25 REF			
Lead Thickness	С	0.09	-	0.25	
Foot Angle	φ	0°	4°	8°	
Lead Width	b	0.22	-	0.38	

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.
- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

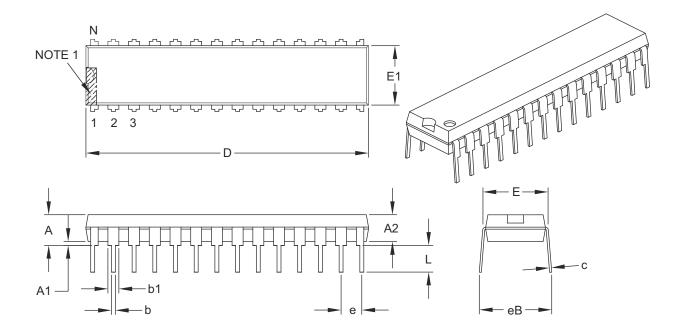
Microchip Technology Drawing C04-072B

20-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS		
Dimens	Dimension Limits		NOM	MAX	
Contact Pitch	E	0.65 BSC			
Contact Pad Spacing	С		7.20		
Contact Pad Width (X20)	X1			0.45	
Contact Pad Length (X20)	Y1			1.75	
Distance Between Pads	G	0.20			

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

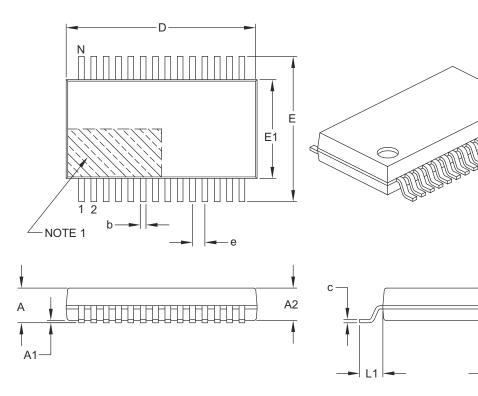
Microchip Technology Drawing No. C04-2072A

28-Lead Skinny Plastic Dual In-Line (SP) – 300 mil Body [SPDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		INCHES		
	Dimension Limits	MIN	NOM	MAX	
Number of Pins	N	N 28			
Pitch	е		.100 BSC		
Top to Seating Plane	A	—	-	.200	
Molded Package Thickness	A2	.120	.135	.150	
Base to Seating Plane	A1	.015	-	—	
Shoulder to Shoulder Width	E	.290	.310	.335	
Molded Package Width	E1	.240	.285	.295	
Overall Length	D	1.345	1.365	1.400	
Tip to Seating Plane	L	.110	.130	.150	
Lead Thickness	С	.008	.010	.015	
Upper Lead Width	b1	.040	.050	.070	
Lower Lead Width	b	.014	.018	.022	
Overall Row Spacing §	eB	-	-	.430	

Notes:


- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic.
- 3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010" per side.
- 4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-070B

28-Lead Plastic Shrink Small Outline (SS) – 5.30 mm Body [SSOP]

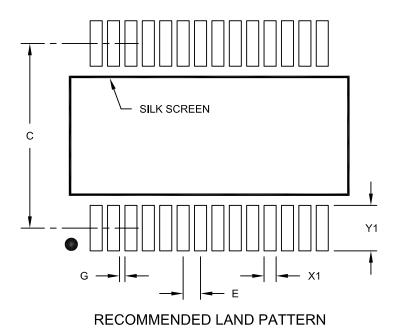
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	5
Dimens	Dimension Limits		NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	-	-	2.00
Molded Package Thickness	A2	1.65	1.75	1.85
Standoff	A1	0.05	-	-
Overall Width	E	7.40	7.80	8.20
Molded Package Width	E1	5.00	5.30	5.60
Overall Length	D	9.90	10.20	10.50
Foot Length	L	0.55	0.75	0.95
Footprint	L1	1.25 REF		
Lead Thickness	С	0.09	_	0.25
Foot Angle	ф	0°	4°	8°
Lead Width	b	0.22	_	0.38

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.20 mm per side.


- 3. Dimensioning and tolerancing per ASME Y14.5M.
 - BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

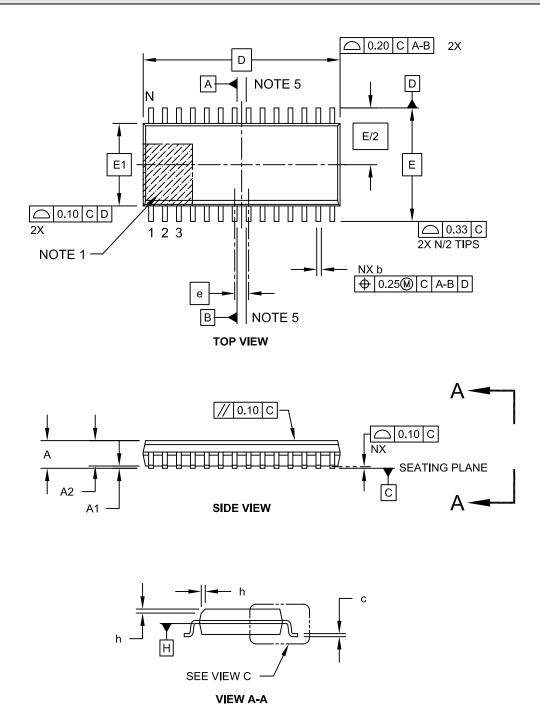
Microchip Technology Drawing C04-073B

28-Lead Plastic Shrink Small Outline (SS) - 5.30 mm Body [SSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimensior	Dimension Limits		NOM	MAX
Contact Pitch	E	0.65 BSC		
Contact Pad Spacing	С		7.20	
Contact Pad Width (X28)	X1			0.45
Contact Pad Length (X28)	Y1	1.75		1.75
Distance Between Pads	G	0.20		

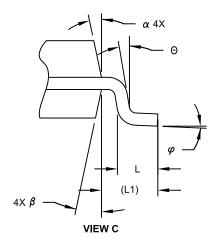
Notes:

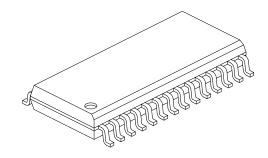

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2073A

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]


Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

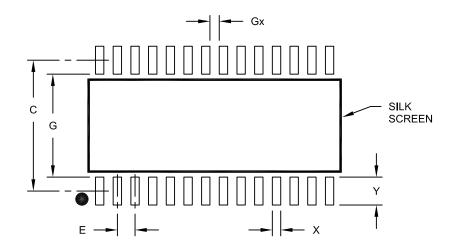


Microchip Technology Drawing C04-052C Sheet 1 of 2

28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Units		MILLIMETERS		
Dimension	Limits	MIN	NOM	MAX
Number of Pins	Z		28	
Pitch	е		1.27 BSC	
Overall Height	A	-	-	2.65
Molded Package Thickness	A2	2.05	-	-
Standoff §	A1	0.10	-	0.30
Overall Width	E		10.30 BSC	
Molded Package Width	E1		7.50 BSC	
Overall Length	D		17.90 BSC	
Chamfer (Optional)	h	0.25	-	0.75
Foot Length	L	0.40	-	1.27
Footprint	L1		1.40 REF	
Lead Angle	Θ	0°	-	-
Foot Angle	φ	0°	-	8°
Lead Thickness	С	0.18	-	0.33
Lead Width	b	0.31	-	0.51
Mold Draft Angle Top	α	5°	-	15°
Mold Draft Angle Bottom	β	5°	-	15°


Notes:

- 1. Pin 1 visual index feature may vary, but must be located within the hatched area.
- 2. § Significant Characteristic
- 3. Dimension D does not include mold flash, protrusions or gate burrs, which shall not exceed 0.15 mm per end. Dimension E1 does not include interlead flash or protrusion, which shall not exceed 0.25 mm per side.
- Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.
- 5. Datums A & B to be determined at Datum H.

Microchip Technology Drawing C04-052C Sheet 2 of 2

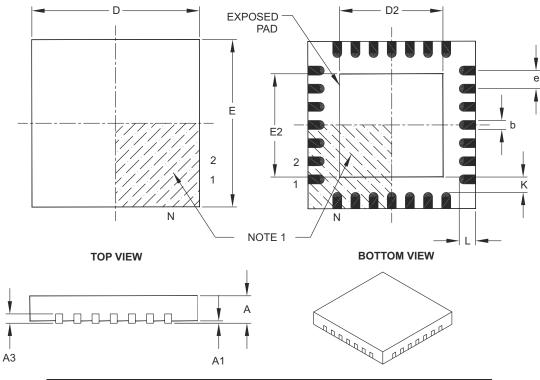
28-Lead Plastic Small Outline (SO) - Wide, 7.50 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

	Units	N	ILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Contact Pitch	E		1.27 BSC	
Contact Pad Spacing	С		9.40	
Contact Pad Width (X28)	X			0.60
Contact Pad Length (X28)	Y			2.00
Distance Between Pads	Gx	0.67		
Distance Between Pads	G	7.40		

Notes:


1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2052A

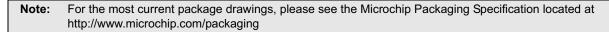
28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

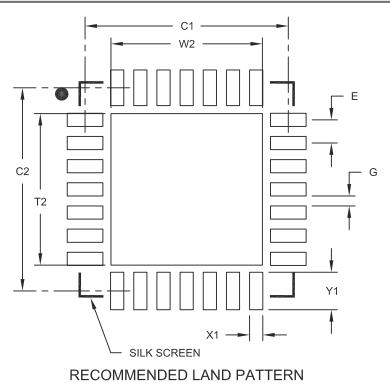
Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

	Units		MILLIMETERS	3
Dimensio	on Limits	MIN	NOM	MAX
Number of Pins	Ν		28	
Pitch	е		0.65 BSC	
Overall Height	Α	0.80	0.90	1.00
Standoff	A1	0.00	0.02	0.05
Contact Thickness	A3		0.20 REF	
Overall Width	E		6.00 BSC	
Exposed Pad Width	E2	3.65	3.70	4.20
Overall Length	D		6.00 BSC	
Exposed Pad Length	D2	3.65	3.70	4.20
Contact Width	b	0.23	0.30	0.35
Contact Length	L	0.50	0.55	0.70
Contact-to-Exposed Pad	К	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.


- 2. Package is saw singulated.
- 3. Dimensioning and tolerancing per ASME Y14.5M.

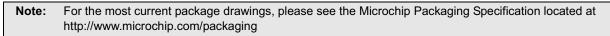

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

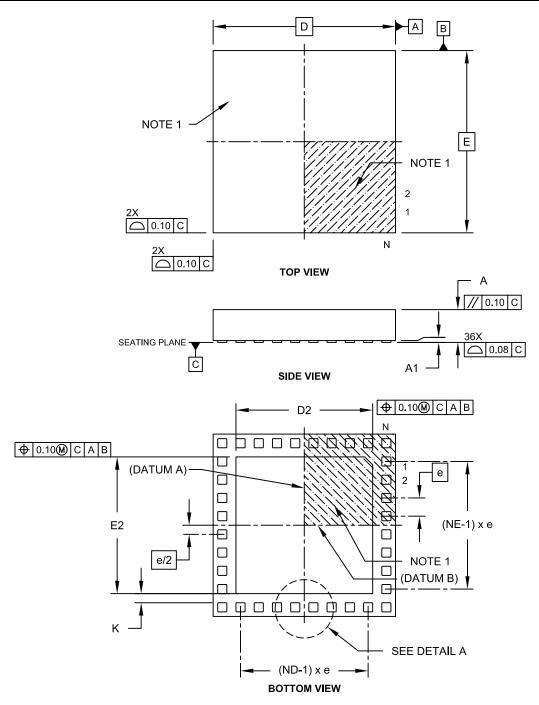
REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-105B

28-Lead Plastic Quad Flat, No Lead Package (ML) – 6x6 mm Body [QFN] with 0.55 mm Contact Length

Units		MILLIMETERS		
Dimension Limits		MIN	NOM	MAX
Contact Pitch	E		0.65 BSC	
Optional Center Pad Width	W2			4.25
Optional Center Pad Length	T2			4.25
Contact Pad Spacing	C1		5.70	
Contact Pad Spacing	C2		5.70	
Contact Pad Width (X28)	X1			0.37
Contact Pad Length (X28)	Y1			1.00
Distance Between Pads	G	0.20		

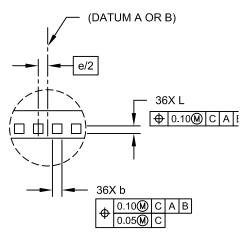

Notes:

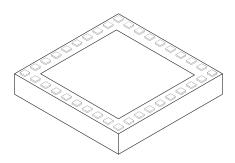

1. Dimensioning and tolerancing per ASME Y14.5M

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2105A

36-Lead Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [TLA]





Microchip Technology Drawing C04-187B Sheet 1 of 2

36-Lead Thermal Leadless Array Package (TL) – 5x5x0.9 mm Body with Exposed Pad [TLA]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

DETAIL A

	Units	N	IILLIMETER	S
Dimension	Limits	MIN	NOM	MAX
Number of Pins	N		36	
Number of Pins per Side	ND		10	
Number of Pins per Side	NE		8	
Pitch	е		0.50 BSC	
Overall Height	А	0.80	0.90	1.00
Standoff	A1	0.025	-	0.075
Overall Width	E		5.00 BSC	
Exposed Pad Width	E2	3.60	3.75	3.90
Overall Length	D		5.00 BSC	
Exposed Pad Length	D2	3.60	3.75	3.90
Contact Width	b	0.20	0.25	0.30
Contact Length	L	0.20	0.25	0.30
Contact-to-Exposed Pad	K	0.20	-	-

Notes:

1. Pin 1 visual index feature may vary, but must be located within the hatched area.

2. Package is saw singulated.

Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-187B Sheet 2 of 2

APPENDIX A: REVISION HISTORY

Revision A (January 2011)

This is the initial released version of this document.

Revision B (February 2011)

All major changes are referenced by their respective section in Table A-1.

In addition, minor text and formatting changes were incorporated throughout the document.

TABLE A-1:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
"High-Performance, Ultra Low Cost 16-bit	Pin diagram updates (see "Pin Diagrams"):
Digital Signal Controllers"	 20-pin PDIP/SOIC/SSOP (dsPIC33FJ16MC101): Removed the FLTB1 pin from pin 10
	 28-pin SPDIP/SOIC/SSOP (dsPIC33FJ16MC102): Relocated the FLTB1 pin from pin 12 to pin 14; relocated the FLTA1 pin from pin 16 to pin 15 28-pin QFN (dsPIC33FJ16MC102): Relocated the FLTA1 pin from pin 13 to pin 12; relocated the FLTB1 pin from pin 9 to pin 11 36-pin TLA (dsPIC33FJ16MC102):
	Relocated the FLTA1 pin from pin 17 to pin 16; relocated the FLTB1 pin from pin 10 to pin 15
Section 1.0 "Device Overview"	Added Notes 1, 2, and 3 regarding the FLTA1 and FLTB1 pins to the Pinout I/O Descriptions (see Table 1-1).
	Added Section 1.1 "Referenced Sources".
Section 4.0 "Memory Organization"	Updated All Resets value for PxFLTACON and PxFLTABCON to the 6-Output PWM1 Register Map (see Table 4-9).
	Added Note 1 to the PMD Register Map (see Table 4-29).
Section 6.0 "Resets"	Removed reset timing sequence information from Section 6.1 " System Reset ", as this information is provided in Figure 6-2.
Section 15.0 "Motor Control PWM Module"	Added Note 2 and Note 3 regarding the FLTA1 and FLTB1 pins to the 6-channel PWM Module Block Diagram (see Figure 15-1).
	Added Section 15.2 "PWM Faults" and Section 15.3 "Write- protected Registers".
	Added Note 2 and Note 3 regarding the FLTA1 and FLTB1 pins to the note boxes located below the PxFLTACON and PxFLTBCON registers (see Register 15-9 and Register 15-10).
Section 17.0 "Inter-Integrated Circuit™ (I ² C™)"	Updated the descriptions for the conditional If STREN = 1 and If STREN = 0 statements for the SCLREL bit in the I2Cx Control Register (see Register 17-1).
Section 23.0 "Special Features"	Added the RTSP Effect column to the dsPIC33F Configuration Bits Description (see Table 23-3).
Section 26.0 "Electrical Characteristics"	Added parameters 300 and D305 (see Table 26-42 and Table 26-43).
Section 27.0 "Packaging Information"	Modified the pending TLA packaging page.

© 2011 Microchip Technology Inc.

Revision C (June 2011)

This revision includes the following global update:

• All JTAG references have been removed

All other major changes are referenced by their respective section in Table A-2.

In addition, minor text and formatting changes were incorporated throughout the document.

TABLE A-2:	MAJOR SECTION UPDATES
------------	-----------------------

Section Name	Update Description
High-Performance, Ultra Low Cost 16-bit Digital Signal Controllers	The TMS, TDI, TDO, and TCK pin names were removed from these pin diagrams: • 28-pin SPDIP/SOIC/SSOP • 28-pin QFN • 36-pin TLA
Section 1.0 "Device Overview"	Updated the Buffer Type to Digital for the CTED1 and CTED2 pins (see Table 1-1).
Section 4.0 "Memory Organization"	Updated the SFR Address for IC2CON, IC3BUF, and IC3CON in the Input Capture Register Map (see Table 4-7).
	Added the VREGS bit to the RCON register in the System Control Register Map (see Table 4-27).
Section 6.0 "Resets"	Added the VREGS bit to the RCON register (see Register 6-1).
Section 8.0 "Oscillator Configuration"	Updated the definition for COSC<2:0> = 001 and NOSC<2:0> = 001 in the OSCCON register (see Register 8-1).
Section 15.0 "Motor Control PWM Module"	Updated the title for Example 15-1 to include a reference to the Assembly language.
	Added Example 15-2, which provides a C code version of the write- protected register unlock and fault clearing sequence.
Section 19.0 "10-bit Analog-to-Digital Converter (ADC)"	Updated the CH0 section and added Note 2 in both ADC block diagrams (see Figure 19-1 and Figure 19-2).
	Updated the multiplexer values in the ADC Conversion Clock Period Block Diagram (see Figure 19-3.
	Added the 01110 bit definitions and updated the 01101 bit definitions for the CH0SB<4:0> and CH0SA<4:0> bits in the AD1CHS0 register (see Register 19-5).
Section 22.0 "Charge Time Measurement Unit (CTMU)"	Removed Section 22.1 "Measuring Capacitance", Section 22.2 "Measuring Time", and Section 22.3 "Pulse Generation and Delay"
	Updated the key features.
	Added the CTMU Block Diagram (see Figure 22-1).
	Updated the ITRIM<5:0> bit definitions and added Note 1 to the CTMU Current Control register (see Register 22-3).

Section Name	Update Description
Section 23.0 "Special Features"	Updated bits 5 and 4 of FPOR, modified Note 2, and removed Note 3 from the Configuration Shadow Register Map (see Table 23-1).
	Updated bit 14 of CONFIG1 and removed Note 5 from the Configuration Flash Words (see Table 23-2).
	Updated the PLLKEN Configuration bit description (see Table 23-3).
	Added Note 3 to Connections for the On-Chip Voltage Regulator (see Figure 23-1).
Section 26.0 "Electrical	Updated the Standard Operating Conditions to: 3.0V to 3.6V in all tables.
Characteristics"	Removed the Voltage on VCAP with respect to VSS entry in Absolute Maximum Ratings ⁽¹⁾ .
	Updated the VDD Range (in Volts) in Operating MIPS vs. Voltage (see Table 26-1).
	Removed parameter DC18 and updated the minimum value for parameter DC 10 in the DC Temperature and Voltage Specifications (see Table 26-4)
	Updated the Characteristic definition and the Typical value for parameter BO10 in Electrical Characteristics: BOR (see Table 26-5).
	Updated Note 2 in the DC Characteristics: Operating Current (IDD) (see Table 26-6).
	Updated Note 2 in the DC Characteristics: Idle Current (IIDLE) (see Table 26-7).
	Updated Note 2 and parameters DC60C and DC61a-DC61d in the DC Characteristics: Power-Down Current (IPD) (see Table 26-8).
	Updated Note 2 in the DC Characteristics: Doze Current (IDOZE) (see Table 26-9).
	Added Note 1 to the Internal Voltage Regulator Specifications (see Table 26-13).
	Updated the Minimum and Maximum values for parameter F20a and the Typical value for parameter F20b in AC Characteristics: Internal Fast RC (FRC) Accuracy (see Table 26-18).
	Updated the Minimum, Typical, and Maximum values for parameters F21a and F21b in Internal Low-Power RC (LPRC) Accuracy (see Table 26-19).
	Updated the Minimum, Typical, and Maximum values for parameter D305 in the Comparator Module Specifications (see Table 26-43).
	Added parameters CTMUFV1 and CTMUFV2 and updated Note 1 and the Conditions for all parameters in the CTMU Current Source Specifications (see Table 26-46).
	Added Forward Voltage Versus Temperature (see Figure 26-25).

TABLE A-2: MAJOR SECTION UPDATES (CONTINUED)

NOTES:

INDEX

Α	
AC Characteristics	257
Internal Fast RC (FRC) Accuracy	259
Internal Low-Power RC (LPRC) Accuracy	
Load Conditions	257
ADC	
Initialization	189
Key Features	189
ADC Module	
ADC1 Register Map	. 50
ADC11 Register Map	. 49
Alternate Interrupt Vector Table (AIVT)	
Analog-to-Digital Converter (ADC)	189
Arithmetic Logic Unit (ALU)	. 31
Assembler	
MPASM Assembler	244

В

Barrel Shifter
Bit-Reversed Addressing
Example60
Implementation59
Sequence Table (16-Entry)60
Block Diagrams
16-bit Timer1 Module
Comparator I/O Operating Modes
Comparator Voltage Reference
Connections for On-Chip Voltage Regulator
CTMU Configurations
Time Measurement
Device Clock
Digital Filter Interconnect
DSP Engine
dsPIC33FJ12MC201/202
dsPIC33FJ12MC201/202 CPU Core
Input Capture147
Output Compare
PWM Module
Reset System69
Shared Port Structure
SPI
Timer2 (16-bit)143
Timer2/3 (32-bit)
UART
User Programmable Blanking Function
Watchdog Timer (WDT)233

С

C Compilers MPLAB C18	244
Charge Time Measurement Unit. See CTMU.	
Clock Switching	
Enabling	114
Sequence	
Code Examples	
Port Write/Read	122
PWRSAV Instruction Syntax	115
Code Protection	227, 234
Configuration Bits	
Configuration Register Map	
Configuring Analog Port Pins	122
CPU	
Control Register	28
CPU Clocking System	108

PLL Configuration	
Selection	108
Sources	108
CTMU	
Measuring Capacitance	224
Measuring Time	224
CTMU Module	
Register Map	51
Customer Change Notification Service	319
Customer Notification Service	319
Customer Support	319
D	
Data Accumulators and Adder/Subtracter	22
Data Space Write Saturation	
Overflow and Saturation	
Round Logic	
Write Back	
Data Address Space	
Alignment	
Memory Map for dsPIC33FJ12MC201/202	
1 KB RAM	
Near Data Space	
Software Stack	
Width	
DC Characteristics	
BOR	
I/O Pin Input Specifications	
I/O Pin Output Specifications	
Idle Current (IDOZE)	
Idle Current (IDLE)	
Operating Current (IDD)	
Power-Down Current (IPD)	
Program Memory	
Temperature and Voltage Specifications	
Development Support	
Doze Mode	
DSP Engine	-
Multiplier	
E	

Equations Device Operating Frequency...... 108 F Flash Program Memory 65 Table Instructions 65 L I/O Porte 121

I/O Ports	
Parallel I/O (PIO)	121
Write/Read Timing	
I ² C	
Addresses	176
Operating Modes	175
Registers	175
I ² C Module	

I2C1 Register Map	47
In-Circuit Debugger	
In-Circuit Emulation	
In-Circuit Serial Programming (ICSP)	
Input Capture	
Registers	
Input Change Notification	
Instruction Addressing Modes	
File Register Instructions	
Fundamental Modes Supported	57
MAC Instructions	
MCU Instructions	56
Move and Accumulator Instructions	57
Other Instructions	57
Instruction Set	
Overview	. 238
Summary	. 235
Instruction-Based Power-Saving Modes	. 115
Idle	. 116
Sleep	. 115
Internal RC Oscillator	
Use with WDT	. 233
Internet Address	. 319
Interrupt Control and Status Registers	
IECx	80
IFSx	80
INTCON1	80
INTCON2	80
IPCx	80
Interrupt Setup Procedures	. 106
Initialization	
Interrupt Disable	
Interrupt Service Routine	. 106
Trap Service Routine	. 106
Interrupt Vector Table (IVT)	
Interrupts Coincident with Power Save Instructions	. 116

Μ

Memory Organization
Microchip Internet Web Site
Modulo Addressing
Applicability
Operation Example
Start and End Address58
W Address Register Selection58
Motor Control PWM
Motor Control PWM Module
6-Output Register Map47
MPLAB ASM30 Assembler, Linker, Librarian
MPLAB Integrated Development Environment Software 243
MPLAB PM3 Device Programmer
MPLAB REAL ICE In-Circuit Emulator System
MPLINK Object Linker/MPLIB Object Librarian
N
N
NVM Module
Register Map55
0
Open-Drain Configuration
Output Compare
Ρ
Packaging
Details
Dotano

PAD Configuration
Register Map 51
Peripheral Module Disable (PMD) 116
Pinout I/O Descriptions (table) 17
PMD Module
Register Map 55
PORTA
Register Map 54
PORTB
Register Map for dsPIC33FJ12MC20154
Register Map for dsPIC33FJ12MC20254
Power-on Reset (POR)
Power-Saving Features
Clock Frequency and Switching 115
Program Address Space
Construction
Data Access from Program Memory Using Program
Space Visibility
Data Access from Program Memory Using Table Instruc-
tions
Data Access from, Address Generation
Memory Map
Table Read Instructions
TBLRDH
TBLRDL
Visibility Operation
Program Memory
Interrupt Vector
Organization
Reset Vector
PWM Time Base 157
R
R
Reader Response
Reader Response 320 Register Map 51 Register Maps 51 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1)
Reader Response 320 Register Map 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1)
Reader Response 320 Register Map 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196
Reader Response 320 Register Map 320 Register Maps 51 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199
Reader Response 320 Register Map 320 Register Maps 51 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxPCFGL (ADCx Port Configuration Low) 200
Reader Response 320 Register Map 320 Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxPCFGL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxPCFGL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204
Reader Response 320 Register Map 8 Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON3 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxPCFGL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Control) 205
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxPCFGL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Control) 205 CMxFLTR (Comparator Filter Control) 211
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON3 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxPCFGL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Filter Control) 205 CMxKECON (Comparator Mask Gating Control) 209
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps Comparator 52 Comparator 52 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxPCFGL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Control) 205 CMxFLTR (Comparator Filter Control) 211 CMXMSKCON (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCOSL (ADCx Input Scan Select Low) 199 ADxPCFGL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Control) 205 CMxFLTR (Comparator Filter Control) 201 CMxMSKCON (Comparator Mask Gating Control) 209 CMxMSKSRC (Comparator Mask Source Control) 207 CORCON (Core Control) 30, 81
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxPCFGL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Control) 205 CMXFLTR (Comparator Filter Control) 209 CMXMSKCON (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207 CORCON (Core Control) 30, 81 CTMUCON (CTMU Control) 224, 225
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCOSE (ADCx Input Scan Select Low) 199 ADxPCFGL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Control) 205 CMxCN (Comparator Filter Control) 209 CMXMSKCON (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207 CORCON (CTMU Control) 30, 81 CTMUCON (CTMU Control) 224, 225
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxPCFGL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Control) 205 CMXENKCON (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207 CORCON (Core Control) 30, 81 CTMUCON (CTMU Control Register 1) 224 CTMUCON1 (CTMU Control Register 2) 225
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxCSSL (ADCx Neput Scan Select Low) 199 ADxCSSL (ADCx Nort Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Filter Control) 205 CMXFLTR (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207 CORCON (Core Control) 30, 81 CTMUCON (CTMU Control Register 1) 224 CTMUCON1 (CTMU Control Register 2) 225 CTMUICON (CTMU Current Control) 225
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxCSSL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Control) 205 CMXENKCON (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207 CORCON (CTMU Control) 30, 81 CTMUCON1 (CTMU Control Register 1) 224 CTMUCON1 (CTMU Control Register 2) 225 CTMUICON (CTMU Current Control) 226 CVRCON (Comparator Voltage Reference Control) 212
Reader Response 320 Register Map Segister Maps Comparator 51 Register Maps 52 Register Maps 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCOSL (ADCx Input Scan Select Low) 199 ADxCSSL (ADCx Input Scan Select Low) 199 ADxCSSL (ADCx Neput Scan Select Low) 109 ADxCON3 (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Control) 205 CMXFLTR (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207 CORCON (Core Control) 30, 81 CTMUCON1 (CTMU Control Register 1) 224 CTMUCON1 (CTMU Control Register 2) 225 CTMUCON1 (CTMU Current Control) 226 CVRCON (Comparator Voltage Reference Control) 212 DEVID (Device ID) 231
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxCSSL (ADCx Neput Scan Select Low) 199 ADxCFGL (ADCx Port Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMXCON (Comparator Filter Control) 205 CMXMSKCON (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207 CORCON (Core Control) 30, 81 CTMUCON1 (CTMU Control Register 1) 224 CTMUCON1 (CTMU Control Register 2) 225 CTMUICON (CTMU Current Control) 226 CVRCON (Comparator Voltage Reference Control) 212 DEVID (Device ID) 231
Reader Response 320 Register Map 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxCSSL (ADCx Neut Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMXCON (Comparator Control) 205 CMXMSKCON (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207 CORCON (CTMU Control 30, 81 CTMUCON1 (CTMU Control Register 1) 224 CTMUCON1 (CTMU Control Register 2) 225 CTMUICON (CTMU Current Control) 226 CVRCON (Comparator Voltage Reference Control) 211 DEVREV (Device Revision) 231 DEVREV (Device Revision) 231
Reader Response 320 Register Map 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxCSSL (ADCx Neut Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMxCON (Comparator Control) 205 CMXELTR (Comparator Mask Gating Control) 207 CORCON (Core Control) 30, 81 CTMUCON (CTMU Control Register 1) 224 CTMUCON1 (CTMU Control Register 2) 225 CTMUCON1 (CTMU Control Register 2) 225 CTMUCON (CTMU Current Control) 212 DEVREV (Device ID) 231 DEVREV (Device Revision) 231 I2CxCON (I2Cx Control) 177 I2CxMSK (I2Cx Slave Mode Address Mask) 181
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCOSL (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxCSSL (ADCx Neut Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMXCON (Comparator Filter Control) 205 CMXSKSRC (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207 CORCON (CTMU Control) 224, 225 CTMUCON1 (CTMU Control Register 1) 224 CTMUCON1 (CTMU Control Register 2) 225 CTMUICON (CTMU Current Control) 226 CVRCON (Comparator Voltage Reference Control) 212 DEVID (Device ID) 231 DEVREV (Device Revision) 231 </td
Reader Response 320 Register Map 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCOSL (ADCx Input Scan Select Low) 199 ADxCSSL (ADCx Input Scan Select Low) 199 ADxCSSL (ADCx Neut Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMXCON (Comparator Control) 205 CMKFLTR (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207 CORCON (CTMU Control Register 1) 224 CTMUCON1 (CTMU Control Register 2) 225 CTMUCON1 (CTMU Current Control) 212 DEVREV (Device Revision) 231 DEVREV (Device Revision) 231 DEVREV (Device Revision) 231 I2CxCON (I2Cx Status) 179 I2CxMSK (I2Cx Status) 1
Reader Response 320 Register Map Real-Time Clock and Calendar 51 Register Maps 52 Comparator 52 Registers AD1CHS123 (ADC1 Input Channel 1, 2, 3 Select) 197 ADxCHS0 (ADCx Input Channel 0 Select 198 ADxCON1 (ADCx Control 1) 193 ADxCON2 (ADCx Control 2) 195 ADxCON3 (ADCx Control 3) 196 ADxCOSL (ADCx Control 3) 196 ADxCSSL (ADCx Input Scan Select Low) 199 ADxCSSL (ADCx Neut Configuration Low) 200 CLKDIV (Clock Divisor) 112 CMSTAT (Comparator Status) 204 CMXCON (Comparator Filter Control) 205 CMXSKSRC (Comparator Mask Gating Control) 209 CMXMSKSRC (Comparator Mask Source Control) 207 CORCON (CTMU Control) 224, 225 CTMUCON1 (CTMU Control Register 1) 224 CTMUCON1 (CTMU Control Register 2) 225 CTMUICON (CTMU Current Control) 226 CVRCON (Comparator Voltage Reference Control) 212 DEVID (Device ID) 231 DEVREV (Device Revision) 231 </td

IEC3 (Interrupt Enable Control 3)
IEC4 (Interrupt Enable Control 4)
IFS0 (Interrupt Flag Status 0)85
IFS1 (Interrupt Flag Status 1)87
IFS2 (Interrupt Flag Status 2) 88
IFS3 (Interrupt Flag Status 3)88
IFS4 (Interrupt Flag Status 4) 89
INTCON1 (Interrupt Control 1)
INTCON2 (Interrupt Control 2)
INTTREG Interrupt Control and Status Register 105
IPC0 (Interrupt Priority Control 0)
IPC1 (Interrupt Priority Control 1)96
IPC14 (Interrupt Priority Control 14)101
IPC15 (Interrupt Priority Control 15) 102
IPC16 (Interrupt Priority Control 16) 103
IPC19 (Interrupt Priority Control 19)
IPC2 (Interrupt Priority Control 0)
IPC2 (Interrupt Priority Control 2)
IPC3 (Interrupt Priority Control 3)
IPC4 (Interrupt Priority Control 4)
IPC5 (Interrupt Priority Control 5)100
IPC7 (Interrupt Priority Control 7) 100
IPC9 (Interrupt Priority Control 9)
NVMCON (Flash Memory Control)67
NVMKEY (Nonvolatile Memory Key)68
OCxCON (Output Compare x Control)
OSCCON (Oscillator Control) 110
OSCTUN (FRC Oscillator Tuning) 113
PDC3 PWM Duty Cycle 3 168
PMD1 (Peripheral Module Disable Control Register 1)
117
PMD2 (Peripheral Module Disable Control Register 2)
118
PMD3 (Peripheral Module Disable Control Register 3).
PMD3 (Peripheral Module Disable Control Register 3)
119
119 PMD4 (Peripheral Module Disable Control Register 4)
119 PMD4 (Peripheral Module Disable Control Register 4) 119
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)160
119 PMD4 (Peripheral Module Disable Control Register 4) 119
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119 PMD4 (Peripheral Module Disable Control Register 4) 119 PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)
119PMD4 (Peripheral Module Disable Control Register 4)119PWMxCON1 (PWM Control 1)

RPOR7 (Peripheral Pin Select Output Register 7) 137
SPIxCON1 (SPIx Control 1) 171
SPIxCON2 (SPIx Control 2) 173
SPIxSTAT (SPIx Status and Control) 170
SR (CPU Status)
T1CON (Timer1 Control) 140
T2CON Control 144
T3CON Control 145
TCxCON (Input Capture x Control) 148
UxMODE (UARTx Mode) 184
UxSTA (UARTx Status and Control) 186
Reset
Illegal Opcode 69, 75
Trap Conflict75
Uninitialized W Register 69, 75, 76
Reset Sequence
Resets

S

Serial Peripheral Interface (SPI)	5
CALLL Stack Frame	
SPI Module	
SPI1 Register Map 48	5
Symbols Used in Opcode Descriptions 236	5
System Control	
Register Map 55	5

Т

Temperature and Voltage Specifications	
AC	257
Timer1	139
Timer2/3	141
Timing Characteristics	
CLKO and I/O	260
Timing Diagrams	
10-bit ADC Conversion (CHPS<1:0> = 01, SIMSAM	= 0,
ASAM = 0, SSRC<2:0> = 000)	285
10-bit ADC Conversion (CHPS<1:0> = 01, SIMSAM	= 0,
ASAM = 1, SSRC<2:0> = 111, SAMC<4:0	> =
00001)	
ADC Conversion Timing Characteristics (CHPS<1:0	
01, SIMSAM = 0, ASAM = 1, SSRC<2:0> = 2	
SAMC<4:0> = 00001)	
Brown-out Situations	. 74
External Clock	
I2Cx Bus Data (Master Mode)	
I2Cx Bus Data (Slave Mode)	
I2Cx Bus Start/Stop Bits (Master Mode)	
I2Cx Bus Start/Stop Bits (Slave Mode)	
Input Capture (CAPx)	
Motor Control PWM	
Motor Control PWM Fault	
OC/PWM	
Output Compare (OCx)	
Reset, Watchdog Timer, Oscillator Start-up Timer	
Power-up Timer	
Timer1, 2 and 3 External Clock	262
Timing Requirements	
CLKO and I/O	
External Clock	
Input Capture	264
Timing Specifications	

10-bit ADC Requirements
I2Cx Bus Data Requirements (Master Mode)
I2Cx Bus Data Requirements (Slave Mode)
Motor Control PWM Requirements
Output Compare Requirements
PLL Clock
Reset, Watchdog Timer, Oscillator Start-up Timer, Pow-
er-up Timer and Brown-out Reset Requirements
261
Simple OC/PWM Mode Requirements
Timer1 External Clock Requirements
Timer2 External Clock Requirements
Timer3 External Clock Requirements

U

UART Module	
UART1 Register Map	48
Universal Asynchronous Receiver Transmitter (UART) 183
Using the RCON Status Bits	76

۷

Voltage Regulator (On-Chip)	
W	
Watchdog Time-out Reset (WDTR)	75
Watchdog Timer (WDT)	. 227, 233

THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip's customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under "Support", click on "Customer Change Notification" and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support

READER RESPONSE

It is our intention to provide you with the best documentation possible to ensure successful use of your Microchip product. If you wish to provide your comments on organization, clarity, subject matter, and ways in which our documentation can better serve you, please FAX your comments to the Technical Publications Manager at (480) 792-4150.

Please list the following information, and use this outline to provide us with your comments about this document.

TO: RE:	Technical Publications Manager Reader Response	Total Pages Sent							
	n: Name								
1 1011	Company								
	Address								
	City / State / ZIP / Country								
	Telephone: ()	FAX: ()							
Application (optional):									
Would you like a reply? Y N									
Device: dsPIC33FJ16GP101/102 and dsPIC33FJ16MC101/102 Literature Number: DS70652C									
Questions:									
1. \	1. What are the best features of this document?								
-									
2. I	. How does this document meet your hardware and software development needs?								
-									
3. I	Do you find the organization of this document easy to follow? If not, why?								
-									
4.	What additions to the document do you think would enhance the structure and subject?								
-									
5.	What deletions from the document could be made without affecting the overall usefulness?								
-									
6. I	Is there any incorrect or misleading information (what and w	nere)?							
-									
7. I	How would you improve this document?								
-									
-									

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

		d	<u>sPIC 33 FJ 16 MC1 02 T E / SP - XXX</u>	Exa	imples:
Tape and Reel Fla Temperature Ran Package	amily v Size (KB) ppli		a)	dsPIC33FJ16MC102-E/SP: Motor Control dsPIC33, 16 KB program memory, 28-pin, Extended temperature, SPDIP package.
Architecture:	33	=	16-bit Digital Signal Controller		
Flash Memory Family:	FJ	=	Flash program memory, 3.3V		
Product Group:	MC1	=	Motor Control family		
Pin Count:	01 02	= =	18-pin and 20-pin 28-pin and 32-pin		
Temperature Range:	l E	= =	-40° C to+85° C (Industrial) -40° C to+125° C (Extended)		
Package:	P SS SP SO ML TL		Plastic Shrink Small Outline -5.3 mm body (SSOP) Skinny Plastic Dual In-Line - 300 mil body (SPDIP) Plastic Small Outline - Wide, 7.50 mil body (SOIC)		

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support: http://www.microchip.com/ support

Web Address: www.microchip.com

Atlanta Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Boston Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL Tel: 630-285-0071 Fax: 630-285-0075

Cleveland Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto Mississauga, Ontario, Canada Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong Tel: 852-2401-1200 Fax: 852-2401-3431 Australia - Sydney Tel: 61-2-9868-6733

Fax: 61-2-9868-6755

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3180 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - Xiamen Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512 Fax: 91-20-2566-1513

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-6578-300 Fax: 886-3-6578-370

Taiwan - Kaohsiung Tel: 886-7-213-7830 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels Tel: 43-7242-2244-39 Fax: 43-7242-2244-393 Denmark - Copenhagen Tel: 45-4450-2828 Fax: 45-4485-2829

France - Paris Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: MA330029