

MCP16321 Evaluation Board User's Guide

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION. QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, PIC³² logo, rfPIC and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, HI-TECH C, Linear Active Thermistor, MXDEV, MXLAB, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omniscient Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rfLAB, Select Mode, Total Endurance, TSHARC, UniWinDriver, WiperLock and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2011, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

ISBN: 978-1-61341-850-5

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV ISO/TS 16949:2009

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Table of Contents

Preface		5
	Introduction	
	Document Layout	5
	Conventions Used in this Guide	6
	Recommended Reading	7
	The Microchip Web Site	7
	Customer Support	
	Document Revision History	
Chapter	1. Product Overview	
	1.1 Introduction	9
	1.2 MCP16321 Short Overview	9
	1.3 What is the MCP16321 Evaluation Board?	10
	1.4 MCP16321 Evaluation Board Kit Contents	10
Chapter	2. Installation and Operation	
	2.1 Introduction	11
	2.2 Getting Started	12
Appendi	ix A. Schematic and Layouts	
	A.1 Introduction	13
	A.2 Board – Schematic	14
	A.3 Board – Top Layer	15
	A.4 Board – Top Copper	15
	A.5 Board – Bottom Copper	16
Appendi	ix B. Bill of Materials	
Worldwi	de Sales and Service	18

MCP16321 Evaluation E	3oard เ	Jser's	Guide
-----------------------	---------	--------	-------

N	1	т	E	C	
1	v		ᆫ	J	•

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXA", where "XXXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE on-line help. Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP16321 Evaluation Board. Items discussed in this chapter include:

- · Document Layout
- · Conventions Used in this Guide
- Recommended Reading
- The Microchip Web Site
- · Customer Support
- Document Revision History

DOCUMENT LAYOUT

This document describes how to use the MCP16321 Evaluation Board. The manual layout is as follows:

- Chapter 1. "Product Overview" Important information about the MCP16321 Evaluation Board.
- Chapter 2. "Installation and Operation" Includes instructions on how to get started with the MCP16321 Evaluation Board and a description of the user's guide.
- Appendix A. "Schematic and Layouts" Shows the schematic and layout diagrams for the MCP16321 Evaluation Board.
- Appendix B. "Bill of Materials" Lists the parts used to build the MCP16321 Evaluation Board.

CONVENTIONS USED IN THIS GUIDE

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description	Represents	Examples	
Arial font:			
Italic characters	Referenced books	MPLAB [®] IDE User's Guide	
	Emphasized text	is the only compiler	
Initial caps	A window	the Output window	
	A dialog	the Settings dialog	
	A menu selection	select Enable Programmer	
Quotes	A field name in a window or dialog	"Save project before build"	
Underlined, italic text with right angle bracket	A menu path	File>Save	
Bold characters	A dialog button	Click OK	
	A tab	Click the Power tab	
N'Rnnnn	A number in verilog format, where N is the total number of digits, R is the radix and n is a digit.	4'b0010, 2'hF1	
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>	
Courier New font:			
Plain Courier New	Sample source code	#define START	
	Filenames	autoexec.bat	
	File paths	c:\mcc18\h	
	Keywords	_asm, _endasm, static	
	Command-line options	-Opa+, -Opa-	
	Bit values	0, 1	
	Constants	0xFF, 'A'	
Italic Courier New	A variable argument	file.o, where file can be any valid filename	
Square brackets []	Optional arguments	mcc18 [options] file [options]	
Curly brackets and pipe character: { }	Choice of mutually exclusive arguments; an OR selection	errorlevel {0 1}	
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>	
	Represents code supplied by user	<pre>void main (void) { }</pre>	

RECOMMENDED READING

This user's guide describes how to use MCP16321 Evaluation Board. Other useful documents are listed below. The following Microchip documents are available and recommended as supplemental reference resources.

• MCP16321/2 Data Sheet – "24V Input, 1A/2A Output, High Efficiency Synchronous Buck Regulator with Power Good Indication" (DS22285)

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com.

DOCUMENT REVISION HISTORY

Revision A (November 2011)

· Initial Release of this Document.

MCP16321 Evaluation	Board	User's	Guide
---------------------	--------------	--------	-------

Chapter 1. Product Overview

1.1 INTRODUCTION

This chapter provides an overview of the MCP16321 Evaluation Board and covers the following topics:

- MCP16321 Short Overview
- What is the MCP16321 Evaluation Board?
- · MCP16321 Evaluation Board kit contents

1.2 MCP16321 SHORT OVERVIEW

The MCP16321 is a highly integrated, 1A output current capable, high-efficiency, fixed frequency, synchronous, step-down DC-DC converter in a popular 3 mm x 3 mm 16-lead QFN package that operates from input voltage sources up to 24V. Integrated features include a low resistance high-side switch, low resistance low-side switch, 1.0 Mhz fixed-frequency peak-current mode control, internal compensation, power good output, peak current limit, V_{OUT} overvoltage and overtemperature protection. Minimal external components are necessary to develop a complete step-down DC-DC converter power supply. The MCP16321 draws less than 10 µA while disabled.

High converter efficiency is achieved by integrating the current limited, low resistance, high-speed N-Channel MOSFETs and associated drive circuitry. Incorporating both the upper and lower switches reduces the need for external components. High switching frequency minimizes the size of external filtering components resulting in an overall small solution size.

The MCP16321 can supply 1A of continuous current while regulating the output voltage from 0.9V to 5V. An integrated high performance peak-current mode architecture keeps the output voltage tightly regulated, even during input voltage steps and output current transient conditions that are common in power systems.

The evaluation board is populated with the adjustable version of the MCP16321; V_{OUT} is set to 3.0V using an external resistor divider. The evaluation board was developed to accommodate the MCP16321 fixed output voltage options.

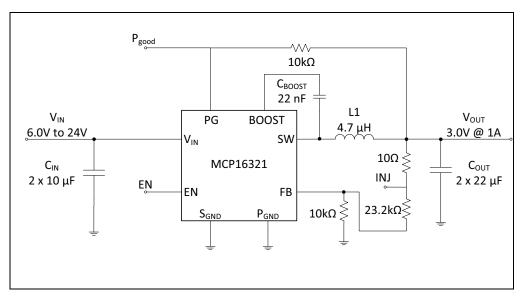


FIGURE 1-1: Typical MCP16321 Buck Application.

1.3 WHAT IS THE MCP16321 EVALUATION BOARD?

The MCP16321 Evaluation Board is designed to operate from a 6V to 24V input and regulate the output to 3.0V. Test points for input power and load are provided to demonstrate the capability of the MCP16321 Evaluation Board over the entire range. The MCP16321 Evaluation Board was designed using small surface-mount components to show application size for a high-voltage buck design. The board was designed to be the evaluation platform for the MCP16321 product.

1.4 MCP16321 EVALUATION BOARD KIT CONTENTS

This MCP16321 Evaluation Board kit includes the following items:

- MCP16321 Evaluation Board, 102-00414
- · Important Information Sheet

Chapter 2. Installation and Operation

2.1 INTRODUCTION

2.1.1 MCP16321 Features

The MCP16321 devices have been developed to provide high input voltage, high current applications with a precisely regulated rail while operating at high efficiency.

The key features of the MCP16321 include:

- Up to 95% Typical Efficiency for 5V Output Applications
- · Input Voltage Range: 6.0V to 24V
- · Output Voltage Range: 0.9V to 5V set using external resistor divider
- 1.5% V_{REF} Accuracy
- Fixed Output Voltage Options 0.9V, 1.5V, 1.8V, 2.5V, 3.3V, 5V
- 2.0% V_{OUT} Accuracy
- Integrated High-Side N-Channel Switch: 180 mΩ
- Integrated Low-Side N-Channel Switch: 120 mΩ
- 1A Output Current MCP16321
- 1 MHz Fixed Frequency
- · Adjustable Output Voltage
- · Low Device Shutdown Current
- · Peak Current Mode Control
- Internal Compensation
- · Stable with Ceramic Capacitors
- Internal Soft-Start
- · Cycle by Cycle Peak Current Limit
- Under Voltage Lockout (UVLO): 5.75V (typical)
- · Output Overvoltage Protection
- · Overtemperature Protection
- Available Package: 3 mm x 3 mm QFN-16 lead package

A high-performance peak-current mode control system is used to deliver a fast response to sudden line and load changes

2.1.1.1 MCP16321 EVALUATION BOARD FEATURES

The MCP16321 Evaluation Board is developed to demonstrate how the MCP16321 buck regulator operates over a wide input voltage and load range. Test points are provided for input and output voltage, allowing the MCP16321 Evaluation Board to be connected directly to a system. Test vias are also included to give the user easy access to the switch, power good, enable and injection nodes for easy evaluation of the device. There are also ancillary vias provided for attaching extra input and output connections. The 1A maximum continuous output current is available over the entire V_{IN} range, (6.0V to 24.0V), along with the entire adjustable output range (0.9V to 5.0V).

A copper via, labeled PGD, connected to the power good pin on the device, can be populated to monitor the power good output of the device. The power good pin is externally pulled up to V_{OUT} with a 10 k Ω resistor (R2). The power good output pin should not be pulled to a voltage higher than 6.0V.

A copper via, labeled INJ, connected between the 10Ω injection resistor (R1) and the R_{TOP} resistor can be populated to allow a convenient injection point for stability analysis.

A copper via, labeled EN, connected to the enable input on the device can be populated and used to turn the MCP16321 on and off. Turning the device ON (Enable > 2.2V) when the under-voltage lockout threshold is met ($V_{\rm IN}$ > 5.75V), will enable the device. This pin must be pulled low (Enable < 0.8V) to disable the device. The EN input is internally pulled high enabling the device. It is not necessary to pull the EN input high for the device to operate and regulate output voltage. The Enable input pin should not be driven to a voltage higher than 6.0V.

A copper via, labeled SW, connected to the switch node of the device can be populated to analyze the switch node of the device.

2.2 GETTING STARTED

The MCP16321 Evaluation Board is fully assembled and tested to evaluate and demonstrate the MCP16321 operational capabilities.

2.2.1 Power Input and Output Connection

2.2.1.1 POWERING THE MCP16321 EVALUATION BOARD

The MCP16321 Evaluation Board is fully assembled, tested and ready to begin evaluation. Apply positive input voltage to the $V_{\rm IN}$ terminal and its return to the GND terminal. The maximum input voltage should not exceed 24V. An electronic load or resistive load can be used for evaluation, or the intended system load can be connected. Electronic loads attempt to sink current at 0V during startup; a resistive load or constant resistance is recommended for startup evaluation. Connect the positive voltage terminal of the load to the $V_{\rm OUT}$ terminal on the demo board and connect the negative or return side of the load to the GND terminal.

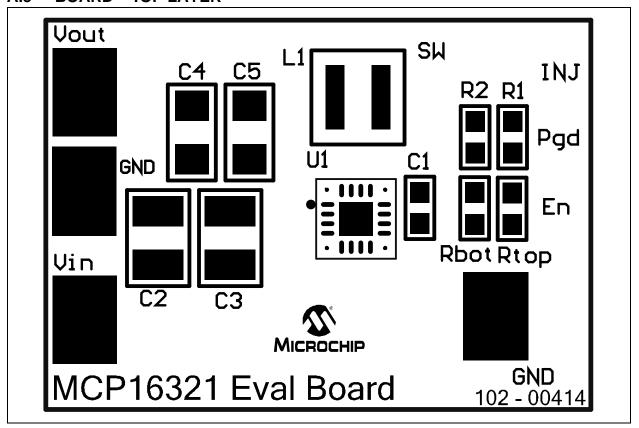
2.2.1.2 BOARD TESTING

To test the board:

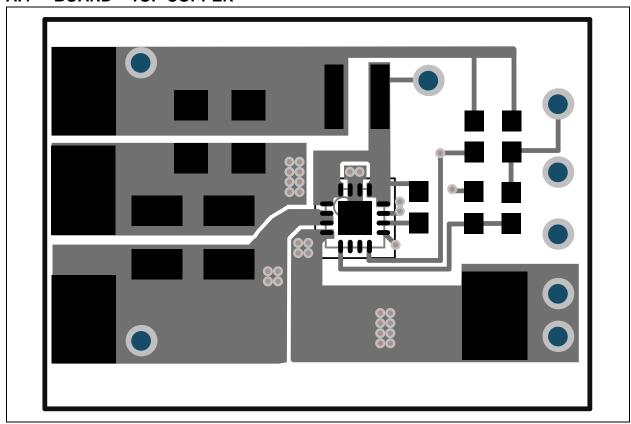
- 1. Apply greater than 6V to the input for proper operation; no minimum load is required to regulate the output to 3.0V.
- 2. The EN input is internally pulled up to a low voltage internal source enabling the device. To disable the device, the EN input can be pulled below 0.8V.
- The measured output voltage should be 3.0.V typical. Adjusting the input voltage
 and load should not cause the output to vary significantly over the operating
 range of the converter.

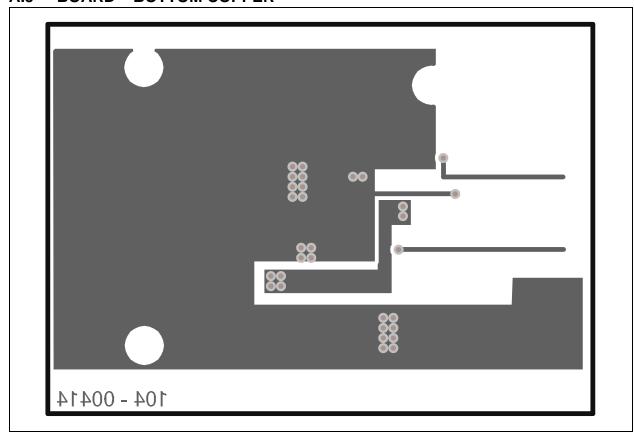
Appendix A. Schematic and Layouts

A.1 INTRODUCTION


This appendix contains the following schematics and layouts for the MCP16321 Evaluation Board:

- Board Schematic
- Board Top Layer
- Board Top Copper Layer
- Board Bottom Copper Layer


A.2 BOARD - SCHEMATIC


A.3 BOARD - TOP LAYER

A.4 BOARD – TOP COPPER

A.5 BOARD – BOTTOM COPPER

Appendix B. Bill of Materials

TABLE B-1: BILL OF MATERIALS (BOM)

Qty	Reference	Description	Manufacturer	Part Number
1	C1	CAP 22000pF 25V CERAMIC X7R 0603 10%	AVX Corporation	0603YC104KAT2A
2	C2, C3	CAP 10uF 35V CERAMIC X7R 1210 20%	Taiyo Yuden	GMK325AB7106MM-T
2	C4, C5	CAP 22uF 6.3V CERAMIC X7R 1206 10%	Murata	GCM31CR70J226KE23L
1	L1	XFL4020 4.7uH Shielded Power Inductor	Coilcraft	XFL4020-472MEB
1	PCB	MCP16321 6V to 24V VIN, 3.3V Printed Circuit Board	Microchip Technology Inc.	104-00414
1	R1	RES 10.0 OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-0710RL
1	R2, Rbot	RES 10.0K OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-0710KL
1	Rtop	RES 23.2K OHM 1/10W 1% 0603 SMD	Yageo	RC0603FR-0723K2L
1	U1	MCP16321 High Input Buck Converter QFN16	Microchip Technology Inc.	MCP16321
4	VIN, VOUT, GND, GND	PC TEST POINT COMPACT SMT	Keystone	5016

Note 1: The components listed in this Bill of Materials are representative of the PCB assembly. The released BOM used in manufacturing uses all RoHS-compliant components.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd.

Chandler, AZ 85224-6199 Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/

support Web Address:

www.microchip.com

Atlanta Duluth, GA

Tel: 678-957-9614 Fax: 678-957-1455

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

Santa Clara

Santa Clara, CA Tel: 408-961-6444 Fax: 408-961-6445

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon Hong Kong

Tel: 852-2401-1200 Fax: 852-2401-3431

Australia - Sydney Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Hangzhou Tel: 86-571-2819-3187 Fax: 86-571-2819-3189

China - Hong Kong SAR Tel: 852-2401-1200 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460 Fax: 86-25-8473-2470

China - Qingdao Tel: 86-532-8502-7355 Fax: 86-532-8502-7205

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Wuhan Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

China - XiamenTel: 86-592-2388138
Fax: 86-592-2388130 **China - Zhuhai**

Tel: 86-756-3210040 Fax: 86-756-3210049

ASIA/PACIFIC

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631 Fax: 91-11-4160-8632

India - Pune Tel: 91-20-2566-1512

Fax: 91-20-2566-1513 **Japan - Osaka** Tel: 81-66-152-7160 Fax: 81-66-152-9310

Japan - Yokohama Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065 Fax: 63-2-634-9069

Singapore Tel: 65-6334-8870

Fax: 65-6334-8850 **Taiwan - Hsin Chu**Tel: 886-3-5778-366
Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-536-4818 Fax: 886-7-330-9305

Taiwan - Taipei Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Thailand - Bangkok Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4485-2829
France - Paris

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399 Fax: 31-416-690340

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

UK - Wokingham Tel: 44-118-921-5869 Fax: 44-118-921-5820

11/29/11

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: ADM00414