

Note the following details of the code protection feature on Microchip devices:

- Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the
 intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our
 knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data
 Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- · Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not
 mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WAR-RANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED. WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip's products as critical components in life support systems is not authorized except with express written approval by Microchip. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights.

Trademarks

The Microchip name and logo, the Microchip logo, Accuron, dsPIC, KEELOQ, microID, MPLAB, PIC, PICmicro, PICSTART, PRO MATE, PowerSmart, rfPIC, and SmartShunt are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

AmpLab, FilterLab, Migratable Memory, MXDEV, MXLAB, PICMASTER, SEEVAL, SmartSensor and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, Application Maestro, dsPICDEM, dsPICDEM.net, dsPICworks, ECAN, ECONOMONITOR, FanSense, FlexROM, fuzzyLAB, In-Circuit Serial Programming, ICSP, ICEPIC, MPASM, MPLIB, MPLINK, MPSIM, PICkit, PICDEM, PICDEM.net, PICLAB, PICtail, PowerCal, PowerInfo, PowerMate, PowerTool, rfLAB, rfPICDEM, Select Mode, Smart Serial, SmartTel and Total Endurance are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

All other trademarks mentioned herein are property of their respective companies.

© 2005, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.

QUALITY MANAGEMENT SYSTEM
CERTIFIED BY DNV

ISO/TS 16949:2002

Microchip received ISO/TS-16949:2002 quality system certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona and Mountain View, California in October 2003. The Company's quality system processes and procedures are for its PICmicro® 8-bit MCUs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Table of Contents

Preface		1
Chapter 1. Install	ation and Operation	5
1.1	Introduction	
1.2	Evaluation Board Description	<u>5</u>
1.3	How it is used	
1.4	How it works	
Appendix A. Sch	ematic and Board Layouts	
A.1	Introduction	
A.2	Schematic	10
A.3	Top Silk-Screen Layer	11
A.4	Top Metal Layer	12
A.5	Bottom Metal Layer	
A.6	Bottom Silk-Screen Layer (Top View)	14
Appendix B. Bill-	of-Materials (BOM)	15
B.1	Introduction	15
Worldwide Sales	and Service	16

MCP1612 Evaluation Board User's Guide				
NOTES:				

Preface

NOTICE TO CUSTOMERS

All documentation becomes dated, and this manual is no exception. Microchip tools and documentation are constantly evolving to meet customer needs, so some actual dialogs and/or tool descriptions may differ from those in this document. Please refer to our web site (www.microchip.com) to obtain the latest documentation available.

Documents are identified with a "DS" number. This number is located on the bottom of each page, in front of the page number. The numbering convention for the DS number is "DSXXXXXA", where "XXXXXX" is the document number and "A" is the revision level of the document.

For the most up-to-date information on development tools, see the MPLAB[®] IDE on-line help. Select the Help menu, and then Topics to open a list of available on-line help files.

INTRODUCTION

This chapter contains general information that will be useful to know before using the MCP1612 Evaluation Board. Items discussed in this chapter include:

- · About This Guide
- Recommended Reading
- The Microchip Web Site
- Customer Support

ABOUT THIS GUIDE

Document Layout

This document describes how to use the MCP1612 Evaluation Board. The manual layout is as follows:

- Chapter 1: Installation and Operation Describes how to use the various features of the MCP1612 Evaluation Board.
- Appendix A: Schematic and Layouts Shows the schematic and Printed Circuit Board (PCB) layout diagrams for the MCP1612 Evaluation Board.
- Appendix B: Bill-of-Materials Shows the parts used to build the MCP1612 Evaluation Board.

Conventions Used in this Guide

This manual uses the following documentation conventions:

DOCUMENTATION CONVENTIONS

Description	Represents	Examples
Arial font:		
Italic characters	Referenced books	MPLAB [®] IDE User's Guide
	Emphasized text	is the <i>only</i> compiler
Initial caps	A window	the Output window
	A dialog	the Settings dialog
	A menu selection	select Enable Programmer
Quotes	A field name in a window or dialog	"Save project before build"
Underlined, italic text with right angle bracket	A menu path	<u>File>Save</u>
Bold characters	A dialog button	Click OK
	A tab	Click the Power tab
ʻb <i>nnnn</i>	A binary number where <i>n</i> is a digit	'b00100, 'b10
Text in angle brackets < >	A key on the keyboard	Press <enter>, <f1></f1></enter>
Courier font:		
Plain Courier	Sample source code	#define START
	Filenames	autoexec.bat
	File paths	c:\mcc18\h
	Keywords	_asm, _endasm, static
	Command-line options	-0pa+, -0pa-
	Bit values	0, 1
Italic Courier	A variable argument	file.o, where file can be any valid filename
0xnnnn	A hexadecimal number where <i>n</i> is a hexadecimal digit	0xffff, 0x007A
Square brackets []	Optional arguments	mcc18 [options] file [options]
Curly brackets and pipe character: { }	Choice of mutually exclusive arguments; an OR selection	errorlevel {0 1}
Ellipses	Replaces repeated text	<pre>var_name [, var_name]</pre>
	Represents code supplied by user	void main (void) { }

RECOMMENDED READING

The following Microchip documents are available and recommended as supplemental reference resources.

MCP1612 Data Sheet, "Single 1A, 1.4 MHz Synchronous Buck Regulator", DS21921

The data sheet provides detailed information regarding the MCP1612 buck regulator.

THE MICROCHIP WEB SITE

Microchip provides online support via our web site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- Product Support Data sheets and errata, application notes and sample programs, design resources, user's guides and hardware support documents, latest software releases and archived software
- General Technical Support Frequently Asked Questions (FAQs), technical support requests, online discussion groups, Microchip consultant program member listing
- Business of Microchip Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- · Distributor or Representative
- · Local Sales Office
- Field Application Engineer (FAE)
- Technical Support
- Development Systems Information Line

Customers should contact their distributor, representative or field application engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://support.microchip.com In addition, there is a Development Systems Information Line which lists the latest versions of Microchip's development systems software products. This line also provides information on how customers can receive currently available upgrade kits.

The Development Systems Information Line numbers are:

1-800-755-2345 - United States and most of Canada

1-480-792-7302 - Other International Locations

REVISION HISTORY

Revision A (January 2005)

· Initial Release of this Document.

Chapter 1. Installation and Operation

1.1 INTRODUCTION

The MCP1612 is a 1A, 1.4 MHz, fully integrated buck regulator. The output voltage is selectable from 0.8V to $V_{\rm IN}$ by use of an external resistor divider. It is available in both the 8L-MSOP and 8L-DFN packages.

The MCP1612 Evaluation Board contains two independent buck regulators featuring the 8L-MSOP and the 8L-DFN packages. The output voltage is set to one of eight different preset values (four per regulator circuit) by use of a two-position DIP switch. Each regulator circuit can supply an output current of 0 to 1A.

1.2 EVALUATION BOARD DESCRIPTION

The MCP1612 Evaluation Board consists of two separate 0 to 1A buck regulator circuits. One circuit (CKT $_1$) features the 8L-MSOP package, while the other circuit (CKT $_2$) features the 8L-DFN package. Each circuit has four different preset output voltage (V $_{OUT}$) settings.

The settings for V_{OUT} on CKT₁ are 0.8V, 1.0V, 1.2V, and 1.4V. Refer to **Section 1.3.1 "CKT₁ Operation"** for an explanation detailing how to set V_{OUT} . The input voltage (V_{IN}) of CKT₁ can be 2.7V to 5.5V for any setting of V_{OUT} .

The settings for V_{OUT} on CKT_2 are 0.8V, 1.7V, 2.4V, and 3.3V. Refer to **Section 1.3.2** " CKT_2 Operation" for an explanation detailing how to set V_{OUT} . Since the MCP1612 is a buck regulator, V_{OUT} has to be lower than V_{IN} . Therefore, it is recommended that V_{IN} for CKT_2 be greater than V_{OUT} plus 500 mV to 5.5V to ensure proper operation.

1.3 HOW IT IS USED

1.3.1 CKT₁ Operation

 Connect the 2.7V to 5.5V lab power supply to the V_{IN} (TP1) pin and the GND (TP2) pin.

Note: The MCP1612 will not operate until V_{IN} is above the 2.7V threshold.

2. Connect an electronic or resistive load between V_{OUT} (TP4) pin and GND (TP5) pin.

Note: The MCP1612 is specified to deliver 0 to 1A of load current. The internal overcurrent limit is 2.3A. However, care should be taken not to exceed the 1A current rating of the part.

 The values of V_{OUT} are predetermined and are selectable by a two-position DIP switch (S1). Table 1-1 lists the switch settings and V_{OUT}.

TABLE 1-1: S1 SWITCH SETTINGS AND VOUT

S1, Position 1	S1, Position 2	V _{OUT}
Off	Off	V8.0
On	Off	1.0V
Off	On	1.2V
On	On	1.4V

- 4. With V_{IN} applied, verify that V_{OUT} agrees with the switching settings listed above.
- 5. A resistor pulls the shutdown (SHDN), pin up to V_{IN}, making the circuit always enabled. The circuit can be disabled by pulling the SHDN (TP3) pin to ground.

1.3.2 CKT₂ Operation

 Connect the 2.7V to 5.5V power supply to the V_{IN} (TP9) pin and the GND (TP10) pin.

Note 1: The MCP1612 will not operate until V_{IN} is above the 2.7V threshold.

- 2: Since the MCP1612 is a buck regulator, V_{OUT} has to be lower than V_{IN}. Therefore, it is recommended to ensure proper operation that V_{IN} be greater than V_{OUT} plus 500 mV to 5.5V.
- Connect an electronic or resistive load between V_{OUT} (TP7) pin and GND (TP6) pin.

Note: The MCP1612 is specified to deliver 0 to 1A of load current. The internal overcurrent limit is 2.3A. However, care should be taken not to exceed the 1A current rating of the part.

 The values of V_{OUT} are predetermined and are selectable by a two-position DIP switch (S2). Table 1-2 lists the switch settings and V_{OUT}.

TABLE 1-2:	S2 SWITCH SETTING AND V _{OUT}
------------	--

S2, Position 1	S2, Position 2	V _{OUT}
Off	Off	V8.0
On	Off	1.7V
Off	On	2.4V
On	On	3.3V

- 4. With V_{IN} applied, verify that V_{OUT} agrees with the switching settings listed above.
- 5. A resistor pulls the shutdown (SHDN) pin up to V_{IN}, making the circuit always enabled. The circuit can be disabled by pulling the SHDN (TP8) pin to ground.

1.4 HOW IT WORKS

1.4.1 MCP1612 Functions

The MCP1612 is a fixed 1.4 MHz synchronous buck regulator that has integrated switching and synchronous MOSFETs. Other features integrated into the device include shutdown control, soft start, undervoltage lockout, overcurrent and overtemperature protection. The high switching frequency allows the use of a smaller inductor and filter capacitors which ultimately lead to a space-saving design. The output voltage is set by a simple resistor divider network and compensation is accomplished by a series resistor capacitor to ground.

1.4.2 Power Topology and Output Regulation

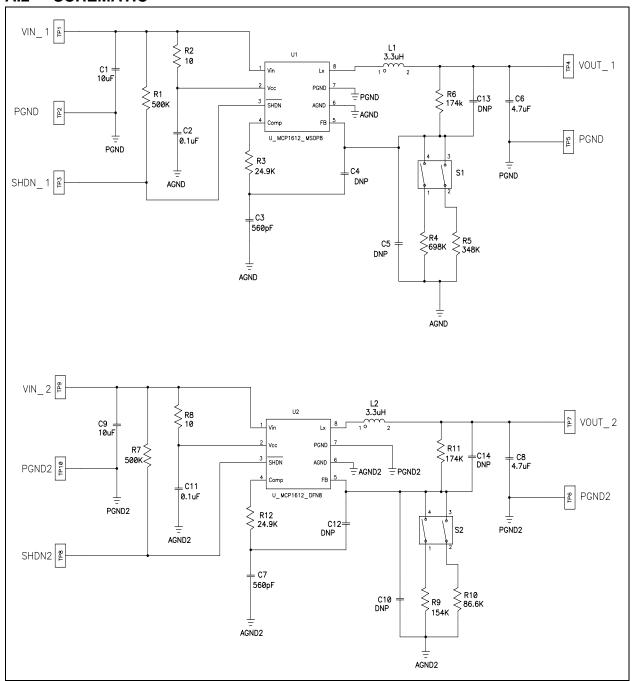
The MCP1612 is a buck regulator with integrated switching and synchronous MOSFETs. Under normal operation, current ramps up in the buck inductor when the P-channel MOSFET is on. This current is sensed and compared to the output of the error amplifier. The error amplifier output is the difference between the internal 0.8V reference and the divided down V_{OUT}. When the sensed inductor current ramps up to the point that is equal to the amplifier error signal, the P-channel MOSFET is turned off and the N-channel synchronous MOSFET is turned on until the beginning of the next switching cycle.

	MCP1612 Evaluation Board User's Guide				
NOTES:					

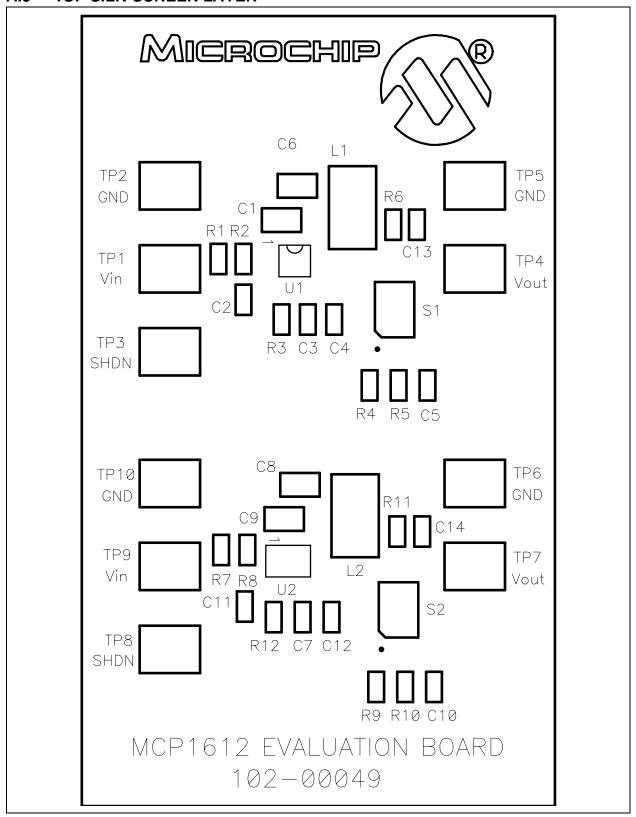
Appendix A. Schematic and Board Layouts

A.1 INTRODUCTION

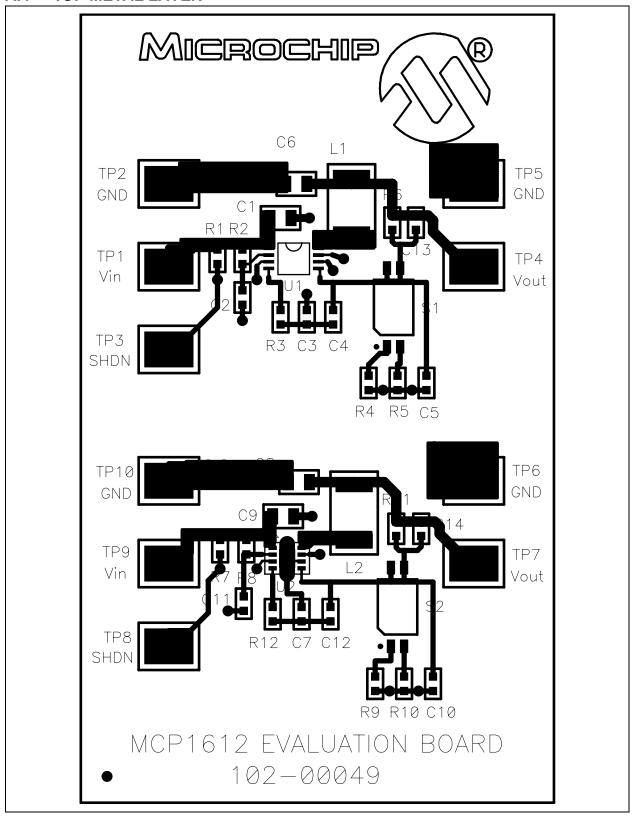
This appendix contains the schematic and Printed Circuit Board (PCB) layout diagrams for the MCP1612 Evaluation Board.

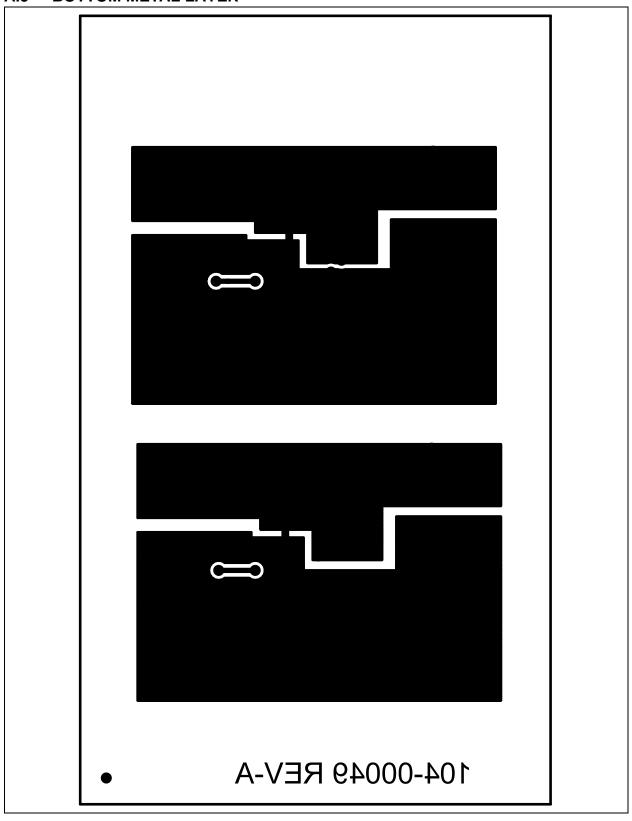

A.1.1 Highlights

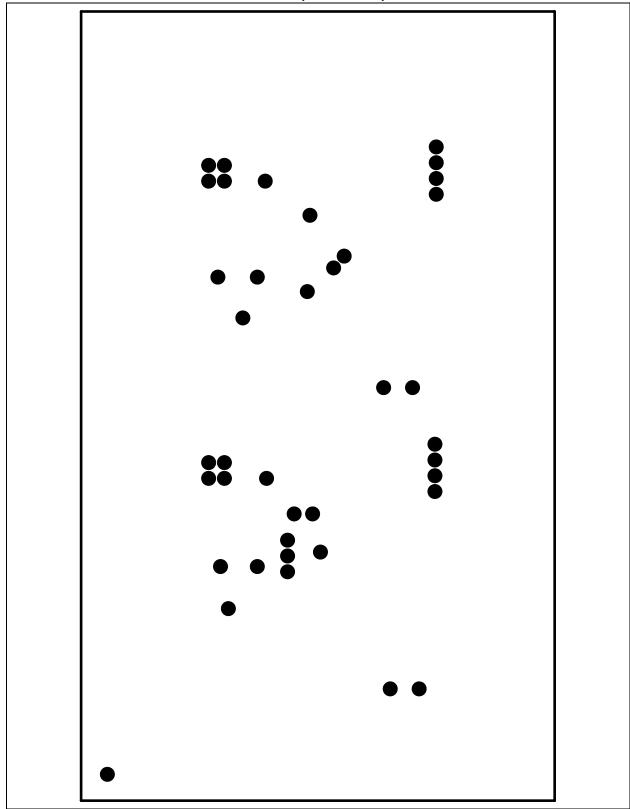
The MCP1612 Evaluation Board is constructed using a two-layer PCB. The top and bottom layers are for components and traces.


Diagrams included in this appendix:

- Schematic
- Top Silk-Screen Layer
- Top Metal Layer
- · Bottom Metal Layer
- Bottom Silk-Screen Layer


A.2 SCHEMATIC


A.3 TOP SILK-SCREEN LAYER


A.4 TOP METAL LAYER

A.5 BOTTOM METAL LAYER

Appendix B. Bill-of-Materials (BOM)

TABLE B-1: BILL-OF-MATERIALS (BOM)

Qty	Reference	Description	Manufacture	Manufacture P/N
2	C2, C11	Capacitor, 0.1 µF, 0603	KEMET Electronics®	C0603C104J4RACTU
2	C6, C8	Capacitor, 4.7 µF, 0805	Panasonic - ECG	ECJ-2FB1C475K
2	C1, C9	Capacitor, 10 µF, 0805	MuRata Electronics®	GRM21BR61A106KE19L
2	C3, C7	Capacitor, 560 pF, 0603	TDK Electronics Co., LTD	C1608C0G1H561J
4	C4, C5, C10, C12, C13, C14	Do Not Populate	_	-
2	L1, L2	3.3 µH Inductor	Coilcraft [®]	DO1608C-332
1	U2	MCP1612 DFN	Microchip Technology Inc.	MCP1612-ADJI/MF
1	U1	MCP1612 MSOP	Microchip Technology Inc.	MCP1612-ADJI/MS
2	R2, R8	Resistor, 10Ω, 0603	Yageo America	9C06031A10R0FKHFT
2	R3, R12	Resistor, 24.9 kΩ, 0603	Yageo America	9C06031A2492FKHFT
1	R10	Resistor, 86.6 kΩ, 0603	Yageo America	9C06031A8662FKHFT
1	R9	Resistor, 154 kΩ, 0603	Yageo America	9C06031A1543FKHFT
2	R6, R11	Resistor, 174 kΩ, 0603	Yageo America	9C06031A1743FKHFT
1	R5	Resistor, 348 kΩ, 0603	Yageo America	9C06031A3483FKHFT
2	R1, R7	Resistor, 500 kΩ, 0603	Yageo America	9C06031A5003FKHFT
1	R4	Resistor, 698 kΩ, 0603	Yageo America	9C06031A6983FKHFT
2	S1, S2	DIP Switch	ITT Industries, C&K Div.	TDA02H0SK1
10	TP1, TP2, TP3, TP4, TP5, TP6, TP7, TP8, TP9, TP10	SMT Test Point	Keystone Electronics®	5016

WORLDWIDE SALES AND SERVICE

AMERICAS

Corporate Office

2355 West Chandler Blvd. Chandler, AZ 85224-6199 Tel: 480-792-7200

Fax: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://support.microchip.com

Web Address: www.microchip.com

Atlanta

Alpharetta, GA Tel: 770-640-0034 Fax: 770-640-0307

Boston

Westford, MA Tel: 978-692-3848 Fax: 978-692-3821

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit

Farmington Hills, MI Tel: 248-538-2250 Fax: 248-538-2260

Kokomo

Kokomo, IN Tel: 765-864-8360 Fax: 765-864-8387

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

San Jose

Mountain View, CA Tel: 650-215-1444 Fax: 650-961-0286

Toronto

Mississauga, Ontario,

Canada

Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8528-2100 Fax: 86-10-8528-2104

China - Chengdu

Tel: 86-28-8676-6200 Fax: 86-28-8676-6599

China - Fuzhou

Tel: 86-591-8750-3506 Fax: 86-591-8750-3521

China - Hong Kong SAR

Tel: 852-2401-1200 Fax: 852-2401-3431

China - Shanghai Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang

Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen

Tel: 86-755-8203-2660 Fax: 86-755-8203-1760

China - Shunde

Tel: 86-757-2839-5507 Fax: 86-757-2839-5571

China - Qingdao

Tel: 86-532-502-7355 Fax: 86-532-502-7205

ASIA/PACIFIC

India - Bangalore

Tel: 91-80-2229-0061 Fax: 91-80-2229-0062

India - New Delhi

Tel: 91-11-5160-8631 Fax: 91-11-5160-8632

Japan - Kanagawa

Tel: 81-45-471- 6166 Fax: 81-45-471-6122

Korea - Seoul

Tel: 82-2-554-7200 Fax: 82-2-558-5932 or

82-2-558-5934

Singapore Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Kaohsiung

Tel: 886-7-536-4818 Fax: 886-7-536-4803

Taiwan - Taipei

Tel: 886-2-2500-6610 Fax: 886-2-2508-0102

Taiwan - Hsinchu

Tel: 886-3-572-9526 Fax: 886-3-572-6459

EUROPE

Austria - Weis

Tel: 43-7242-2244-399 Fax: 43-7242-2244-393 **Denmark - Ballerup**

Tel: 45-4450-2828 Fax: 45-4485-2829

France - Massy

Tel: 33-1-69-53-63-20 Fax: 33-1-69-30-90-79

Germany - Ismaning

Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan

Tel: 39-0331-742611 Fax: 39-0331-466781

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340 England - Berkshire

Tel: 44-118-921-5869 Fax: 44-118-921-5820

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip: MCP1612EV