

TECHNICAL DATA

I

NPN POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/525

Devices

2N6546

2N6547

Qualified Level

JAN JANTX JANTXV

TO-3 (TO-204AA)*

*See Appendix A for Package Outline

MAXIMUM RATINGS

Ratings	Symbol	2N6546	2N6547	Units
Collector-Emitter Voltage	V _{CEO}	300 400		Vdc
Collector-Base Voltage	V _{CEX}	600 850		Vdc
Emitter-Base Voltage	V _{EBO}	8		Vdc
Base Current	I _B	10		Adc
Collector Current	I _C	15		Adc
Total Power Dissipation @ $T_C = +25^{\circ}C^{(1)}$ @ $T_C = +100^{\circ}C^{(1)}$	P _T	175 100		W W
Operating & Storage Temperature Range	T _{op} , T _{stg}	-65 to +200		⁰ C
THERMAL CHARACTERISTICS				
Characteristics	Symbol	Max.		Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	1.0		⁰ C/W

1) Between $T_C = +25^{\circ}C$ and $T_C = +200^{\circ}C$, linear derating factor (average) = 1.0 W/°C

ELECTRICAL CHARACTERISTICS

Characteristi	cs	Symbol	Min.	Max.	Unit
OFF CHARACTERISTICS					
Collector-Emitter Breakdown Voltage					
$I_C = 100 \text{ mAdc}$	2N6546	V _{(BR)CEO}	300		Vdc
	2N6547		400		
Collector-Emitter Cutoff Current					
$V_{CE} = 600 \text{ Vdc}; V_{BE} = 1.5 \text{ Vdc}$	2N6546	I _{CEX}		1.0	mAdc
$V_{CE} = 850 \text{ Vdc}; V_{BE} = 1.5 \text{ Vdc}$	2N6547			1.0	
Emitter-Base Cutoff Current		I _{EBO}			
$V_{EB} = 8 Vdc$				1.0	mAdc
6 Lake Street, Lawrence, MA 01841					120101
1-800-446-1158 / (978) 794-1666 / Fax	x: (978) 689-0803				Page 1 of 2

2N6546, 2N6547 JAN SERIES

ELECTRICAL CHARACTERISTICS (con't)

Characteristics	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (3)	~;~-			
Forward-Current Transfer Ratio				
$I_C = 1$ Adc; $V_{CE} = 2$ Vdc		15		
$I_C = 5$ Adc; $V_{CE} = 2$ Vdc	$h_{\rm FE}$	13	60	
$I_C = 10$ Adc; $V_{CE} = 2$ Vdc		6	00	
Base-Emitter Saturated Voltage		0		
$I_B = 2.0 \text{ Adc}; I_C = 10 \text{ Adc}$	V _{BE(sat)}		1.6	Vdc
Collector-Emitter Saturated Voltage			1.0	
$I_B = 2.0 \text{ Adc}; I_C = 10 \text{ Adc}$	V _{CE(sat)}		1.5	Vdc
$I_{B} = 3.0 \text{ Adc}; I_{C} = 15 \text{ Adc}$	• CE(sat)		5.0	vuc
DYNAMIC CHARACTERISTICS			5.0	
Magnitude of Common-Emitter Small-Signal Short-Circuit				
Forward Current Transfer Ratio	h _{fe}			
$I_C = 0.5$ Adc, $V_{CE} = 10$ Vdc, $f = 1$ MHz	II _{fe}	6.0	30	
$\frac{1}{10000000000000000000000000000000000$		0.0		
$V_{CB} = 10 \text{ Vdc}, I_E = 0, 0.1 \text{ MHz} \le f \le 1.0 \text{ MHz}$	C _{obo}		500	pF
SWITCHING CHARACTERISTICS			500	
Turn-On Time			T	
	ton		1.0	μs
$\frac{V_{CC} = 250 \text{ Vdc; } I_C = 10 \text{ Adc; } I_{B1} = I_{B2} = 2 \text{ Adc}}{\text{Turn-Off Time}}$				
$V_{CC} = 250 \text{ Vdc}; I_C = 10 \text{ Adc}; I_{B1} = I_{B2} = 2 \text{ Adc}$	toff		4.7	μs
$\mathbf{v}_{CC} = 250 \text{ vac}, \mathbf{n}_{C} = 10 \text{ Auc}, \mathbf{n}_{B1} = \mathbf{n}_{B2} = 2 \text{ Auc}$ SAFE OPERATING AREA				
DC Tests				
	(25)			
$T_{C} = +25^{0}C$; $t_{p} = 1$ s; 1 cycle (See Figure 3 of MIL-PRF-19500/5 Test 1	(25)			
$V_{CE} = 11.7 \text{ Vdc}; I_C = 15 \text{ Adc}$ Test 2				
$V_{CE} = 20 \text{ Vdc}; I_C = 8.75 \text{ Adc}$ Test 3				
$V_{CE} = 250 \text{ Vdc}; I_C = 45 \text{ mAdc}$ 2N6546				
$V_{CE} = 250$ Vdc, $I_C = 45$ mAdc 210540 $V_{CE} = 350$ Vdc; $I_C = 30$ mAdc $2N6547$				
Unclamped Inductive IOAD				
$T_{\rm C}$ = +25 ⁰ C; duty cycle \leq 10%; $R_{\rm S}$ = 0.1 Ω ; $t_{\rm r}$ = $t_{\rm f} \leq$ 500 η s (See	Figure 4 of MIL DDE 1	0500/525)		
$1_{C} = +2.5$ C, duty cycle $\le 10\%$, $R_{S} = 0.1$ S2, $t_{r} = t_{f} \le 500$ Hs (See Test 1	rigule 4 of MIL-I KI-I	9500/525)		
Tp = 5 ms; (vary to obtain I_C); $R_{BB1} = 15 \Omega$; $V_{BB}1 = 38.5$ Vdc; H	$P_{} = 50 \Omega_{1}$			
$V_{BB2} = -4 \text{ Vdc}; V_{CC} = 20 \text{ Vdc}; \text{ IC} = 15 \text{ Adc}; \text{ L} = 10 \mu\text{H}$	$x_{BB2} = 50.52,$			
$v_{BB2} = -4$ vuc, $v_{CC} = 20$ vuc, $iC = 15$ Auc, $L = 10 \mu H$ Test 2				
Tp = 5 ms; (vary to obtain I _C); $R_{BB1} = 15 \Omega$; $V_{BB}1 = 38.5$ Vdc; H	$P_{\rm DDA} = 50 \Omega$			
$V_{BB2} = -4 \text{ Vdc}; V_{CC} = 20 \text{ Vdc}; \text{ IC} = 100 \text{ mAdc}; \text{ L} = 1 \text{ mH}$	(BB2 - 50.52)			
$v_{BB2} = 4$ vac, $v_{CC} = 20$ vac, $i_{CC} = 100$ m/adc, $L = 1$ mm Clamped Inductive Load				
$T_A = +25^{0}$ C; duty cycle $\leq 5\%$; Tp = 1.5 ms; (vary to obtain I _C); V	$V_{\rm ec} = 20$ Vdc: $I_{\rm e} = 8$ Ad	c· I. – 180 u	н	
(See Figure 5 of MIL-PRF-19500/525)	cc = 20 via, $cc = 0$ Au	$c, L = 100 \mu$		
Clamped Voltage = 350 Vdc 2N6546				
Clamped Voltage = 450 Vdc 2N6547				
Clamped Voltage = 450 Vdc 2100547				

3.) Pulse Test: Pulse Width = $300\mu s$, Duty Cycle $\leq 2.0\%$.

6 Lake Street, Lawrence, MA 01841 1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

Jantx2N6547 JANTX2N6546T1 JANTX2N6547T1 JANTXV2N6546T1 JANTXV2N6547T1