TC1411/TC1411N

1A High-Speed MOSFET Drivers

Features

- Latch-Up Protected: Withstands 500 mA Reverse Current
- Input Withstands Negative Inputs Up to 5V
- Electrostatic Discharge (ESD) Protected: 2.0 kV (HBM) and 400V (MM)
- High Peak Output Current: 1A
- Wide Input Supply Voltage Operating Range: 4.5V to 16V
- High Capacitive Load Drive Capability: 1000 pF in 25 ns
- Short Delay Time: 30 ns typical
- Matched Delay Times
- Low Supply Current
 - With Logic ‘1’ Input: 500 µA
 - With Logic ‘0’ Input: 100 µA
- Low Output Impedance: 8Ω
- Available in Space-Saving 8-pin MSOP Package
- Pinout – same as TC1410/TC1412/TC1413

Applications

- Switch Mode Power Supplies
- Pulse Transformer Drive
- Line Drivers
- Relay Driver

General Description

The TC1411/TC1411N are 1A CMOS buffers/drivers. They do not latch up under any conditions within their power and voltage ratings. They are not subject to damage when up to 5V of noise spiking of either polarity occurs on the ground pin. They can accept, without damage or logic upset, up to 500 mA of current of either polarity being forced back into their output. All terminals are fully protected against Electrostatic Discharge (ESD) up to 2.0 kV (HBM) and 400V (MM).

As MOSFET drivers, the TC1411/TC1411N can easily charge a 1000 pF gate capacitance in 25 ns with matched rise and fall times. To ensure that the MOSFET’s intended state is not affected even by large transients, low enough impedance in both the ‘ON’ and ‘OFF’ states are provided. The leading and trailing edge propagation delay times are also matched to allow driving short-duration inputs with greater accuracy.

Package Types

![8-Pin MSOP/PDIP/SOIC](image)

NC = No Internal Connection

Note: For proper operation, duplicate pins must be connected together.
TC1411/TC1411N

Functional Block Diagram

Input C = 10 pF

Effective Input C = 10 pF

4.7V

GND

TC1411 Inverting Outputs

300 mV

Non-Inverting Outputs

TC1411N

Output

VDD
1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings †
Supply Voltage ...+20V
Input Voltage .. VDD + 0.3V to GND – 5.0V
Power Dissipation (TA ≤ 70°C)
 MSOP .. 340 mW
 PDIP .. 730 mW
 SOIC .. 470 mW
Storage Temperature Range -65°C to +150°C
Maximum Junction Temperature +150°C

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, over the operating temperature range with 4.5V ≤ VDD ≤ 16V.
Typical values are measured at TA = +25°C, VDD = 16V.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Input</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Logic ‘1’, High Input Voltage VIH</td>
<td>2.0</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Logic ‘0’, Low Input Voltage VIL</td>
<td>—</td>
<td>—</td>
<td>0.8</td>
<td>—</td>
<td>V</td>
<td></td>
</tr>
<tr>
<td>Input Current IIN</td>
<td>-1.0</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>µA</td>
<td>0V ≤ VIN ≤ VDD, TA = +25°C</td>
</tr>
<tr>
<td></td>
<td>-10</td>
<td>—</td>
<td>10</td>
<td>—</td>
<td>—</td>
<td>-40°C ≤ TA ≤ +85°C</td>
</tr>
<tr>
<td>Output</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>High Output Voltage VOH</td>
<td>VDD – 0.025</td>
<td>—</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>DC Test</td>
</tr>
<tr>
<td>Low Output Voltage VOL</td>
<td>—</td>
<td>—</td>
<td>0.025</td>
<td>—</td>
<td>V</td>
<td>DC Test</td>
</tr>
<tr>
<td>Output Resistance RO</td>
<td>—</td>
<td>8</td>
<td>11</td>
<td>—</td>
<td>Ω</td>
<td>VDD = 16V, IO = 10 mA, TA = +25°C</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>10</td>
<td>14</td>
<td>—</td>
<td>—</td>
<td>0°C ≤ TA ≤ +70°C</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>10</td>
<td>14</td>
<td>—</td>
<td>—</td>
<td>-40°C ≤ TA ≤ +85°C</td>
</tr>
<tr>
<td>Peak Output Current IPEK</td>
<td>—</td>
<td>1.0</td>
<td>—</td>
<td>—</td>
<td>A</td>
<td>VDD = 16V</td>
</tr>
<tr>
<td>Latch-Up Protection</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Withstand Reverse Current IREV</td>
<td>—</td>
<td>0.5</td>
<td>—</td>
<td>—</td>
<td>A</td>
<td>Duty cycle ≤ 2%, t ≤ 300 µs, VDD = 16V</td>
</tr>
<tr>
<td>Switching Time (Note 1)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Rise Time tR</td>
<td>—</td>
<td>25</td>
<td>35</td>
<td>—</td>
<td>ns</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>27</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>0°C ≤ TA ≤ +70°C</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>29</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>-40°C ≤ TA ≤ +85°C, Figure 4-1</td>
</tr>
<tr>
<td>Fall Time tF</td>
<td>—</td>
<td>25</td>
<td>35</td>
<td>—</td>
<td>ns</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>27</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>0°C ≤ TA ≤ +70°C</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>29</td>
<td>40</td>
<td>—</td>
<td>—</td>
<td>-40°C ≤ TA ≤ +85°C, Figure 4-1</td>
</tr>
<tr>
<td>Delay Time tD1</td>
<td>—</td>
<td>30</td>
<td>40</td>
<td>—</td>
<td>ns</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>33</td>
<td>45</td>
<td>—</td>
<td>—</td>
<td>0°C ≤ TA ≤ +70°C</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>35</td>
<td>45</td>
<td>—</td>
<td>—</td>
<td>-40°C ≤ TA ≤ +85°C, Figure 4-1</td>
</tr>
<tr>
<td>Delay Time tD2</td>
<td>—</td>
<td>30</td>
<td>40</td>
<td>—</td>
<td>ns</td>
<td>TA = +25°C</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>33</td>
<td>45</td>
<td>—</td>
<td>—</td>
<td>0°C ≤ TA ≤ +70°C</td>
</tr>
<tr>
<td></td>
<td>—</td>
<td>35</td>
<td>45</td>
<td>—</td>
<td>—</td>
<td>-40°C ≤ TA ≤ +85°C, Figure 4-1</td>
</tr>
</tbody>
</table>

† Notice: Stresses above those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only and functional operation of the device at these or any other conditions above those indicated in the operation sections of the specifications is not implied. Exposure to Absolute Maximum Rating conditions for extended periods may affect device reliability.

Note 1: Switching times ensured by design.
DC CHARACTERISTICS (CONTINUED)

Electrical Specifications: Unless otherwise noted, over the operating temperature range with $4.5V \leq V_{DD} \leq 16V$. Typical values are measured at $T_A = +25^\circ C$, $V_{DD} = 16V$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Power Supply</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Power Supply Current</td>
<td>I_S</td>
<td>—</td>
<td>0.5</td>
<td>1.0</td>
<td>mA</td>
<td>$V_{IN} = 3V$, $V_{DD} = 16V$</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0</td>
<td>0.1</td>
<td>0.15</td>
<td></td>
<td>$V_{IN} = 0V$</td>
</tr>
</tbody>
</table>

Note 1: Switching times ensured by design.

TEMPERATURE CHARACTERISTICS

Electrical Specifications: Unless otherwise noted, all parameters apply with $4.5V \leq V_{DD} \leq 16V$.

<table>
<thead>
<tr>
<th>Parameters</th>
<th>Sym</th>
<th>Min</th>
<th>Typ</th>
<th>Max</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>Temperature Ranges</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (C)</td>
<td>T_A</td>
<td>0</td>
<td>—</td>
<td>+70</td>
<td>ºC</td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (E)</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+85</td>
<td>ºC</td>
<td></td>
</tr>
<tr>
<td>Specified Temperature Range (V)</td>
<td>T_A</td>
<td>-40</td>
<td>—</td>
<td>+125</td>
<td>ºC</td>
<td></td>
</tr>
<tr>
<td>Maximum Junction Temperature</td>
<td>T_J</td>
<td>—</td>
<td>—</td>
<td>+150</td>
<td>ºC</td>
<td></td>
</tr>
<tr>
<td>Storage Temperature Range</td>
<td>T_A</td>
<td>-65</td>
<td>—</td>
<td>+150</td>
<td>ºC</td>
<td></td>
</tr>
<tr>
<td>Package Thermal Resistances</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-MSOP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>211</td>
<td>—</td>
<td>ºC/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-PDIP</td>
<td>θ_{JA}</td>
<td>—</td>
<td>89.3</td>
<td>—</td>
<td>ºC/W</td>
<td></td>
</tr>
<tr>
<td>Thermal Resistance, 8L-SOIC</td>
<td>θ_{JA}</td>
<td>—</td>
<td>149.5</td>
<td>—</td>
<td>ºC/W</td>
<td></td>
</tr>
</tbody>
</table>
2.0 TYPICAL PERFORMANCE CURVES

Note: The graphs and tables provided following this note are a statistical summary based on a limited number of samples and are provided for informational purposes only. The performance characteristics listed herein are not tested or guaranteed. In some graphs or tables, the data presented may be outside the specified operating range (e.g., outside specified power supply range) and therefore outside the warranted range.

Note: Unless otherwise indicated, over operating temperature range with $4.5V \leq V_{DD} \leq 16V$.

FIGURE 2-1: Quiescent Supply Current vs. Supply Voltage.

FIGURE 2-2: Input Threshold vs. Supply Voltage.

FIGURE 2-3: High-State Output Resistance vs. Supply Voltage.

FIGURE 2-4: Quiescent Supply Current vs. Temperature.

FIGURE 2-5: Input Threshold vs. Temperature.

FIGURE 2-6: Low-State Output Resistance vs. Supply Voltage.
Note: Unless otherwise indicated, over operating temperature range with \(4.5 \text{V} \leq V_{DD} \leq 16\text{V}\).

FIGURE 2-7: Rise Time vs. Supply Voltage.

FIGURE 2-8: Propagation Delay vs. Supply Voltage.

FIGURE 2-9: Rise and Fall Times vs. Capacitive Load.

FIGURE 2-10: Fall Time vs. Supply Voltage.

FIGURE 2-11: Propagation Delay vs. Supply Voltage.

FIGURE 2-12: Propagation Delays vs. Capacitive Load.
3.0 PIN DESCRIPTIONS

The descriptions of the pins are listed in Table 3-1.

<table>
<thead>
<tr>
<th>Pin No.</th>
<th>TC1411 MSOP, PDIP, SOIC</th>
<th>TC1411N MSOP, PDIP, SOIC</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>VDD</td>
<td>VDD</td>
<td>Supply input, 4.5V to 16V</td>
</tr>
<tr>
<td>2</td>
<td>IN</td>
<td>IN</td>
<td>Control input</td>
</tr>
<tr>
<td>3</td>
<td>NC</td>
<td>NC</td>
<td>No connection</td>
</tr>
<tr>
<td>4</td>
<td>GND</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>5</td>
<td>GND</td>
<td>GND</td>
<td>Ground</td>
</tr>
<tr>
<td>6</td>
<td>OUT</td>
<td>OUT</td>
<td>CMOS push-pull output, common to pin 7</td>
</tr>
<tr>
<td>7</td>
<td>OUT</td>
<td>OUT</td>
<td>CMOS push-pull output, common to pin 6</td>
</tr>
<tr>
<td>8</td>
<td>VDD</td>
<td>VDD</td>
<td>Supply input, 4.5V to 16V</td>
</tr>
</tbody>
</table>

3.1 Supply Input (VDD)

The VDD input is the bias supply for the MOSFET driver and is rated for 4.5V to 16V with respect to the ground pin. The VDD input should be bypassed to ground with a local ceramic capacitor. The value of the capacitor is chosen based on the capacitive load that is being driven. A value of 1.0 µF is suggested.

3.2 Control Input (IN)

The MOSFET driver input is a high-impedance, TTL/CMOS-compatible input. The input has 300 mV of hysteresis between the high and low thresholds that prevents output glitching even when the rise and fall time of the input signal is very slow.

3.3 CMOS Push-pull Output (OUT, OUT)

The MOSFET driver output is a low impedance, CMOS push-pull style output, capable of driving a capacitive load with 1A peak currents.

3.4 Ground (GND)

The ground pins are the return path for the bias current and for the high peak currents which discharge the load capacitor. The ground pins should be tied into a ground plane or have very short traces to the bias supply source return.

3.5 No Connect (NC)

No internal connection.
4.0 APPLICATION INFORMATION

FIGURE 4-1: Switching Time Test Circuit.

- **V_{DD} = 16V**
- **C_L = 1000 pF**
- **Input: 100 kHz, square wave, \(t_{\text{RISE}} = t_{\text{FALL}} \leq 10 \text{ ns} \)**

For the **Inverting Driver TC1411**:
- Input: +5V
- Output: 0V
- \(t_{D1}, t_{D2}, t_{R}, t_{F} \)

For the **Non-Inverting Driver TC1411N**:
- Input: +5V
- Output: 0V
- \(t_{D1}, t_{D2}, t_{R}, t_{F} \)
5.0 PACKAGING INFORMATION

5.1 Package Marking Information

8-Lead PDIP (300 mil)

Example

Legend:

<table>
<thead>
<tr>
<th>Character</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>XX...X</td>
<td>Customer-specific information</td>
</tr>
<tr>
<td>Y</td>
<td>Year code (last digit of calendar year)</td>
</tr>
<tr>
<td>YY</td>
<td>Year code (last 2 digits of calendar year)</td>
</tr>
<tr>
<td>WW</td>
<td>Week code (week of January 1 is week ‘01’)</td>
</tr>
<tr>
<td>NNN</td>
<td>Alphanumeric traceability code</td>
</tr>
<tr>
<td>(@3)</td>
<td>RoHS Compliant JEDEC designator for Matte Tin (Sn)</td>
</tr>
<tr>
<td>*</td>
<td>This package is RoHS Compliant. The RoHS Compliant JEDEC designator (@3) can be found on the outer packaging for this package.</td>
</tr>
</tbody>
</table>

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for customer-specific information.
8-Lead Plastic Micro Small Outline Package (UA) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging
TC1411/TC1411N

8-Lead Plastic Micro Small Outline Package (UA) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

![Diagram of 8-Lead Plastic Micro Small Outline Package (UA) [MSOP]]

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
<th>Dimension Limits</th>
<th>MIN</th>
<th>NOM</th>
<th>MAX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Number of Pins</td>
<td>N</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
<td>0.65 BSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
<td>-</td>
<td>-</td>
<td>1.10</td>
<td></td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
<td>0.75</td>
<td>0.85</td>
<td>0.95</td>
<td></td>
</tr>
<tr>
<td>Standoff</td>
<td>A1</td>
<td>0.00</td>
<td>-</td>
<td>0.15</td>
<td></td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
<td>4.90 BSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
<td>3.00 BSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
<td>3.00 BSC</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
<td>0.40</td>
<td>0.60</td>
<td>0.80</td>
<td></td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
<td>0.95 REF</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Foot Angle</td>
<td>(\varphi)</td>
<td>0°</td>
<td>-</td>
<td>8°</td>
<td></td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
<td>0.08</td>
<td>-</td>
<td>0.23</td>
<td></td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
<td>0.22</td>
<td>-</td>
<td>0.40</td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
3. Dimensioning and tolerancing per ASME Y14.5M.
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing C04-111C Sheet 2 of 2
8-Lead Plastic Micro Small Outline Package (UA) [MSOP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

RECOMMENDED LAND PATTERN

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension</td>
<td>MIN</td>
<td>NOM</td>
<td>MAX</td>
<td></td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
<td>0.65 BSC</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
<td>4.40</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Overall Width</td>
<td>Z</td>
<td>5.85</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
<td>0.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
<td>1.45</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>G1</td>
<td>2.95</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Distance Between Pads</td>
<td>GX</td>
<td>0.20</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Notes:
1. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2111A
TC1411/TC1411N

8-Lead Plastic Dual In-Line (PA) – 300 mil Body [PDIP]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Dimensions

<table>
<thead>
<tr>
<th>Units</th>
<th>INCHES</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Top to Seating Plane</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Base to Seating Plane</td>
<td>A1</td>
</tr>
<tr>
<td>Shoulder to Shoulder Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Tip to Seating Plane</td>
<td>L</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Upper Lead Width</td>
<td>b1</td>
</tr>
<tr>
<td>Lower Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Overall Row Spacing §</td>
<td>eB</td>
</tr>
</tbody>
</table>

Notes:

1. Pin 1 visual index feature may vary, but must be located with the hatched area.
2. § Significant Characteristic.
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed .010” per side.
4. Dimensioning and tolerancing per ASME Y14.5M.

BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing C04-018B
8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Microchip Technology Drawing No. C04-057C Sheet 1 of 2
8-Lead Plastic Small Outline (OA) - Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Dimension Limits</td>
</tr>
<tr>
<td>Number of Pins</td>
<td>N</td>
</tr>
<tr>
<td>Pitch</td>
<td>e</td>
</tr>
<tr>
<td>Overall Height</td>
<td>A</td>
</tr>
<tr>
<td>Molded Package Thickness</td>
<td>A2</td>
</tr>
<tr>
<td>Standoff</td>
<td>§</td>
</tr>
<tr>
<td>Overall Width</td>
<td>E</td>
</tr>
<tr>
<td>Molded Package Width</td>
<td>E1</td>
</tr>
<tr>
<td>Overall Length</td>
<td>D</td>
</tr>
<tr>
<td>Chamfer (Optional)</td>
<td>h</td>
</tr>
<tr>
<td>Foot Length</td>
<td>L</td>
</tr>
<tr>
<td>Footprint</td>
<td>L1</td>
</tr>
<tr>
<td>Foot Angle</td>
<td>φ</td>
</tr>
<tr>
<td>Lead Thickness</td>
<td>c</td>
</tr>
<tr>
<td>Lead Width</td>
<td>b</td>
</tr>
<tr>
<td>Mold Draft Angle Top</td>
<td>α</td>
</tr>
<tr>
<td>Mold Draft Angle Bottom</td>
<td>β</td>
</tr>
</tbody>
</table>

Notes:
1. Pin 1 visual index feature may vary, but must be located within the hatched area.
2. § Significant Characteristic
3. Dimensions D and E1 do not include mold flash or protrusions. Mold flash or protrusions shall not exceed 0.15mm per side.
4. Dimensioning and tolerancing per ASME Y14.5M
 BSC: Basic Dimension. Theoretically exact value shown without tolerances.
 REF: Reference Dimension, usually without tolerance, for information purposes only.

Microchip Technology Drawing No. C04-057C Sheet 2 of 2
TC1411/TC1411N

8-Lead Plastic Small Outline (OA) – Narrow, 3.90 mm Body [SOIC]

Note: For the most current package drawings, please see the Microchip Packaging Specification located at http://www.microchip.com/packaging

Recommended Land Pattern

<table>
<thead>
<tr>
<th>Units</th>
<th>MILLIMETERS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Dimension Limits</td>
<td>MIN</td>
</tr>
<tr>
<td>Contact Pitch</td>
<td>E</td>
</tr>
<tr>
<td>Contact Pad Spacing</td>
<td>C</td>
</tr>
<tr>
<td>Contact Pad Width (X8)</td>
<td>X1</td>
</tr>
<tr>
<td>Contact Pad Length (X8)</td>
<td>Y1</td>
</tr>
</tbody>
</table>

Notes:

1. Dimensioning and tolerancing per ASME Y14.5M
2. BSC: Basic Dimension. Theoretically exact value shown without tolerances.

Microchip Technology Drawing No. C04-2057A
APPENDIX A: REVISION HISTORY

Revision E (June 2013)
The following is the list of modifications:
• Updated the values for Electrostatic Discharge (ESD) in the Features and General Description columns.
• Updated the Pin Description table in Section 3.0, Pin Descriptions.
• Updated package marking information and drawings in Section 5.0, Packaging Information.
• Minor grammatical and spelling corrections.

Revision D (September 2006)
• Added -40°C to +125°C temperature range to Temperature Characteristics table and Product Information System page.
• Added disclaimer to package outline drawings.

Revision C (March 2003)
• Added 8-Lead MSOP Package.

Revision B (May 2002)
• Converted TELCOM data sheet for Embedded Control Handbook

Revision A (March 2001)
• Original Release of this Document.
TC1411/TC1411N

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

Table: Part Numbering System

<table>
<thead>
<tr>
<th>PART NO.</th>
<th>X</th>
<th>/XX</th>
</tr>
</thead>
<tbody>
<tr>
<td>Device</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Temperature Range</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Package</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Device:
- TC1411: 1 A Single MOSFET Driver, Inverting
- TC1411N: 1 A Single MOSFET Driver, Non-Inverting

Temperature Range:
- **C**: 0°C to +70°C
- **E**: -40°C to +85°C
- **V**: -40°C to +125°C

Package:
- **OA**: Plastic SOIC, (150 mil Body), 8-lead (Tape and Reel)
- **OA713**: Plastic SOIC, (150 mil Body), 8-lead (Tape and Reel)
- **UA**: Plastic Micro Small Outline (MSOP), 8-lead *
- **UA713**: Plastic Micro Small Outline (MSOP), 8-lead *
- **PA**: Plastic DIP (300 mil Body), 8-lead

* MSOP package is only available in E-Temp.

Examples:

- **a)** TC1411COA: 1 A Single MOSFET driver, 8LD SOIC package, 0°C to +70°C.
- **b)** TC1411CPA: 1 A Single MOSFET driver, 8LD PDIP package, 0°C to +70°C.
- **c)** TC1411EUA713: Tape and Reel, 1 A Single MOSFET driver, 8LD MSOP package, -40°C to +85°C.
- **d)** TC1411VOA713: Tape and Reel, 1 A Single MOSFET driver, 8LD SOIC package, -40°C to +125°C.

- **a)** TC1411NCPA: 1 A Single MOSFET driver, 8LD PDIP package, 0°C to +70°C.
- **b)** TC1411NEPA: 1 A Single MOSFET driver, 8LD PDIP package, -40°C to +85°C.
- **c)** TC1411NEUA: 1 A Single MOSFET driver, 8LD MSOP package, -40°C to +85°C.
- **d)** TC1411NVPA: 1 A Single MOSFET driver, 8LD PDIP package, -40°C to +125°C.
THE MICROCHIP WEB SITE

Microchip provides online support via our WWW site at www.microchip.com. This web site is used as a means to make files and information easily available to customers. Accessible by using your favorite Internet browser, the web site contains the following information:

- **Product Support** – Data sheets and errata, application notes and sample programs, design resources, user’s guides and hardware support documents, latest software releases and archived software
- **General Technical Support** – Frequently Asked Questions (FAQ), technical support requests, online discussion groups, Microchip consultant program member listing
- **Business of Microchip** – Product selector and ordering guides, latest Microchip press releases, listing of seminars and events, listings of Microchip sales offices, distributors and factory representatives

CUSTOMER CHANGE NOTIFICATION SERVICE

Microchip’s customer notification service helps keep customers current on Microchip products. Subscribers will receive e-mail notification whenever there are changes, updates, revisions or errata related to a specified product family or development tool of interest.

To register, access the Microchip web site at www.microchip.com. Under “Support”, click on “Customer Change Notification” and follow the registration instructions.

CUSTOMER SUPPORT

Users of Microchip products can receive assistance through several channels:

- Distributor or Representative
- Local Sales Office
- Field Application Engineer (FAE)
- Technical Support

Customers should contact their distributor, representative or Field Application Engineer (FAE) for support. Local sales offices are also available to help customers. A listing of sales offices and locations is included in the back of this document.

Technical support is available through the web site at: http://microchip.com/support
Note the following details of the code protection feature on Microchip devices:

• Microchip products meet the specification contained in their particular Microchip Data Sheet.

• Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.

• There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip’s Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.

• Microchip is willing to work with the customer who is concerned about the integrity of their code.

• Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as “unbreakable.”

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip’s code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, Keeloq, Keeloq logo, MPLAB, PIC, PICmicro, PICSTART, PIC32 logo, rPIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

FilterLab, Hampshire, Hi-TECH C, Linear Active Thermistor, MTP, SEEVAL and The Embedded Control Solutions Company are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Incorporated in other countries.

Analog-for-the-Digital Age, Application Maestro, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, dsPICworks, dsSPEAK, ECAN, ECONOMONITOR, FanSense, HI-TIDE, In-Circuit Serial Programming, ICSP, Mindi, MiWi, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, mTouch, Omnicent Code Generation, PICC, PICC-18, PICDEM, PICDEM.net, PICkit, PICtail, REAL ICE, rLAB, Select Mode, SQI, Serial Quad I/O, Total Endurance, TSHARC, UniWinDriver, WiperLock, ZENA and Z-Scale are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

SQTP is a service mark of Microchip Technology Incorporated in the U.S.A.

GestIC and ULPP are registered trademarks of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2001-2013, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

Printed on recycled paper.
ISBN: 978-1-62077-244-7

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company’s quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, Keeloq® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip’s quality system for the design and manufacture of development systems is ISO 9001:2000 certified.
Worldwide Sales and Service

AMERICAS
Corporate Office
2355 West Chandler Blvd.
Chandler, AZ 85224-6199
Tel: 480-792-7200
Fax: 480-792-7277
Technical Support:
http://www.microchip.com/support
Web Address:
www.microchip.com

- **Atlanta**
 Duluth, GA
 Tel: 678-957-9614
 Fax: 678-957-1455
- **Boston**
 Westborough, MA
 Tel: 774-760-0087
 Fax: 774-760-0088
- **Chicago**
 Itasca, IL
 Tel: 630-285-0071
 Fax: 630-285-0075
- **Cleveland**
 Independence, OH
 Tel: 216-447-0464
 Fax: 216-447-0643
- **Dallas**
 Addison, TX
 Tel: 972-818-7423
 Fax: 972-818-2924
- **Detroit**
 Farmington Hills, MI
 Tel: 248-538-2250
 Fax: 248-538-2260
- **Indianapolis**
 Noblesville, IN
 Tel: 317-773-8323
 Fax: 317-773-5453
- **Los Angeles**
 Mission Viejo, CA
 Tel: 949-462-9523
 Fax: 949-462-9608
- **Santa Clara**
 Santa Clara, CA
 Tel: 408-961-6444
 Fax: 408-961-6445
- **Toronto**
 Mississauga, Ontario, Canada
 Tel: 905-673-0699
 Fax: 905-673-6509

ASIA/PACIFIC
Asia Pacific Office
Suites 3707-14, 37th Floor
Tower 6, The Gateway
Harbour City, Kowloon
Hong Kong
Tel: 852-2401-1200
Fax: 852-2401-3431

- **Australia - Sydney**
 Tel: 61-2-9868-6733
 Fax: 61-2-9868-6755
- **China - Beijing**
 Tel: 86-10-8569-7000
 Fax: 86-10-8528-2104
- **China - Chongqing**
 Tel: 86-23-8980-9588
 Fax: 86-23-8980-9500
- **China - Hangzhou**
 Tel: 86-571-2819-3187
 Fax: 86-571-2819-3189
- **China - Hong Kong SAR**
 Tel: 852-2943-5100
 Fax: 852-2401-3431
- **China - Nanjing**
 Tel: 86-25-8473-2460
 Fax: 86-25-8473-2470
- **China - Qingdao**
 Tel: 86-532-8502-7355
 Fax: 86-532-8502-7205
- **China - Shanghai**
 Tel: 86-21-5407-5533
 Fax: 86-21-5407-5066
- **China - Shenzhen**
 Tel: 86-755-8864-2200
 Fax: 86-755-8203-1760
- **China - Wuhan**
 Tel: 86-27-5980-5300
 Fax: 86-27-5980-5118
- **China - Xian**
 Tel: 86-29-8833-7252
 Fax: 86-29-8833-7256
- **China - Xi’an**
 Tel: 86-912-3388138
 Fax: 86-912-3388130
- **China - Zhuhai**
 Tel: 86-756-3210040
 Fax: 86-756-3210049

ASIA/PACIFIC
India - Bangalore
Tel: 91-80-3090-4444
Fax: 91-80-3090-4123
- **India - New Delhi**
 Tel: 91-11-4160-8631
 Fax: 91-11-4160-8632
- **India - Pune**
 Tel: 91-20-2566-1512
 Fax: 91-20-2566-1513
- **Japan - Osaka**
 Tel: 81-6-6152-7160
 Fax: 81-6-6152-9310
- **Japan - Tokyo**
 Tel: 81-3-6880-3770
 Fax: 81-3-6880-3771
- **Korea - Daegu**
 Tel: 82-53-744-4301
 Fax: 82-53-744-4302
- **Korea - Seoul**
 Tel: 82-2-554-7200
 Fax: 82-2-558-5932 or 82-2-558-5934
- **Malaysia - Kuala Lumpur**
 Tel: 60-3-6201-9857
 Fax: 60-3-6201-9859
- **Malaysia - Penang**
 Tel: 60-4-227-8870
 Fax: 60-4-227-4068
- **Philippines - Manila**
 Tel: 63-2-634-9065
 Fax: 63-2-634-9069
- **Singapore**
 Tel: 65-6334-8870
 Fax: 65-6334-8850
- **Taiwan - Hsin Chu**
 Tel: 886-3-5778-366
 Fax: 886-3-5770-955
- **Taiwan - Kaohsiung**
 Tel: 886-7-213-7828
 Fax: 886-7-330-9305
- **Taiwan - Taipei**
 Tel: 886-2-2508-8600
 Fax: 886-2-2508-0102
- **Thailand - Bangkok**
 Tel: 66-2-694-1351
 Fax: 66-2-694-1350

EUROPE
Austria - Wels
Tel: 43-7242-2244-39
Fax: 43-7242-2244-393
- **Denmark - Copenhagen**
 Tel: 45-4450-2828
 Fax: 45-4485-2829
- **France - Paris**
 Tel: 33-1-69-53-63-20
 Fax: 33-1-69-30-90-79
- **Germany - Munich**
 Tel: 49-89-627-144-0
 Fax: 49-89-627-144-44
- **Italy - Milan**
 Tel: 39-0331-742611
 Fax: 39-0331-466781
- **Netherlands - Drunen**
 Tel: 31-416-690399
 Fax: 31-416-690340
- **Spain - Madrid**
 Tel: 34-91-708-08-90
 Fax: 34-91-708-08-91
- **UK - Wokingham**
 Tel: 44-118-921-5869
 Fax: 44-118-921-5820