

High-Voltage EL Lamp Driver IC

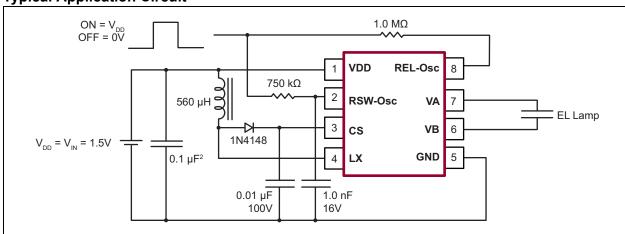
Features

- Processed with HVCMOS[®] Technology
- · 1.0 to 1.6V Operating Supply Voltage
- · DC to AC Conversion
- · Output Load of Typically up to 6.0 nF
- · Adjustable Output Lamp Frequency
- · Adjustable Converter Frequency
- · Enable Function

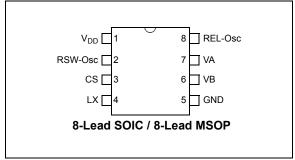
Applications

- · Pagers
- · Portable Transceivers
- · Cellular Phones
- · Remote Control Units
- Calculators

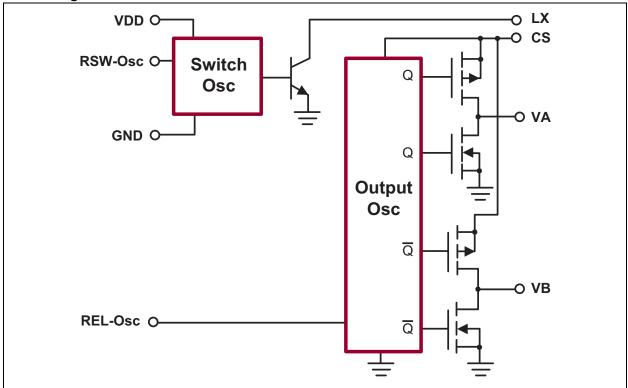
General Description

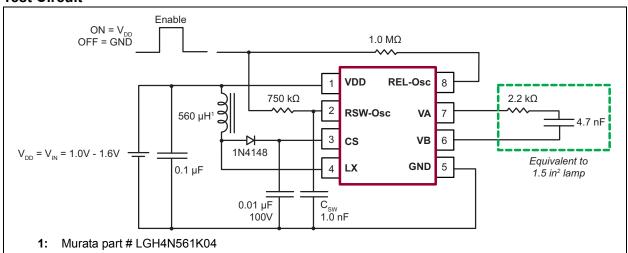

The HV825 is a high-voltage driver designed for driving EL lamps typically up to 6.0 nF. The input supply voltage range is from 1.0V to 1.6V. The device uses a single inductor and a minimum number of passive components. The typical output voltage that can be applied to the EL lamp is ±56V.

The HV825 can be enabled/disabled by connecting the R_{SW-Osc} resistor to V_{DD}/GND .


The HV825 has two internal oscillators to drive a switching bipolar junction transistor (BJT), and a high-voltage EL lamp driver. The frequency for the switching BJT is set by an external resistor connected between the R_{SW-Osc} pin and the V_{DD} supply pin. The EL lamp driver frequency is set by an external resistor connected between the R_{EL-Osc} pin and the V_{DD} pin. An external inductor is connected between the L_X and V_{DD} pins. A 0.01 to 0.1 μF , 100V capacitor is connected between the C_S pin and the GND pin. The EL lamp is connected between the V_A pin and the V_B pin.

The switching BJT charges the external inductor and discharges it into the 0.01 to 0.1 $\mu\text{F},\,100\text{V}$ capacitor at the C_S pin. The voltage at the C_S pin will start to increase. The outputs V_A and V_B are configured as an H-bridge, and are switching in opposite states to achieve a peak-to-peak voltage of two times the V_{CS} voltage across the EL lamp.


Typical Application Circuit


Package Types

Block Diagram

Test Circuit

1.0 ELECTRICAL CHARACTERISTICS

Absolute Maximum Ratings(†)

V _{DD} pin	0.5 to 2.5V
Package Power Dissipation (MSOP-8)	300 mW
Package Power Dissipation (SO-8)	400 mW
Operating Ambient Temperature Range	25°C to +85°C
Storage Temperature Range	65°C to +150°C

† Notice: Stresses above those listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at those or any other conditions above those indicated in the operation listings of this specification is not implied. Exposure above maximum rating conditions for extended periods may affect device reliability

DC CHARACTERISTICS

Electrical Specifications: Unless otherwise specified, all specifications apply at $T_A = 25^{\circ}$ C over recommended operating conditions.

Parameters	Sym.	Min.	Тур.	Max.	Unit	Conditions				
On-resistance of switching transistor	R _{ON}	_	_	15	Ω	I = 50 mA				
V _{DD} supply current (including inductor current)	I _{IN}	_	30	38	mA	V _{DD} = 1.5V. See test circuit.				
Quiescent V _{DD} supply current	I_{DDQ}	_	_	1.0	μA	R _{SW-OSC} = GND				
Output voltage on V _{CS}	V_{CS}	52	56	62	V	V _{DD} = 1.5V. See test circuit.				
Differential output voltage across lamp	V_{A-B}	104	112	124	V	V _{DD} = 1.5V. See test circuit.				
V _{A-B} output drive frequency	f_{EL}	400	_	_	Hz	V _{DD} = 1.5V. See test circuit.				
Switching transistor frequency	f _{SW}	_	30	_	KHz	V _{DD} = 1.5V. See test circuit.				
Switching transistor duty cycle	D	_	88	_	%					
Recommended Operating Conditions										
Supply voltage	V_{DD}	1.0	_	1.6	V					
Load capacitance	C_L	0	6	_	nF					
Operating temperature	T _A	-25	_	+85	°C					
Enable/Disable Table										
Low-level input voltage to R _{SW-OSC} resistor	V_{IL}	0	_	0.2	V	V _{DD} = 1.0–1.6V				
High-level input voltage to R _{SW-OSC} resistor	V _{IH}	V _{DD} -0.5	_	V _{DD}	٧	V _{DD} = 1.0–1.6V				

Typical Thermal Resistance

Package	Θ _{ja}
8-Lead SOIC	101°C/W
8-Lead MSOP	216°C/W

2.0 APPLICATION INFORMATION

2.1 Typical Performance

Table 2-1 shows the performance of the typical application circuit.

TABLE 2-1: TYPICAL PERFORMANCE

Lamp Size	V _{IN}			f _{EL}	Brightness				
1.5 in ²	1.5V	30 mA	56V	450 Hz	3.65 ft-lm				
Note: Results use Murata part # LQH4N561K04, max DC resistance = 14.5Ω									

2.2 Diode

A fast reverse recovery diode is used (1N4148 or equivalent).

2.3 C_S Capacitor

A 0.01 to 0.1 μ F, 100V capacitor to GND is used to store the energy transferred from the inductor.

2.4 R_{EL-Osc} Resistor

The lamp frequency is controlled via the R_{EL-Osc} pin. The lamp frequency increases as R_{EL-Osc} decreases. As the lamp frequency increases, the amount of current drawn from the battery will increase and the output voltage V_{CS} will decrease. This is because the lamp will draw more current from V_{CS} when driven at higher frequencies.

In general, as the lamp size increases, a larger R_{EL-Osc} is recommended to provide higher V_{CS} . However, the color of the lamp is dependent upon its frequency and the shade of the color will change slightly with different frequencies.

2.5 R_{SW-Osc} Resistor

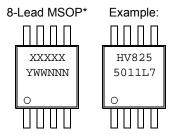
The switching frequency of the inductor is controlled via the $R_{SW\text{-}Osc}.$ The switching frequency increases as the $R_{SW\text{-}Osc}$ decreases. As the switching frequency increases, the amount of current drawn from the battery will decrease and the output voltage V_{CS} will also decrease.

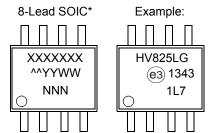
2.6 L_X Inductor

The inductor L_X is used to boost the low input voltage. When the internal switch is on, the inductor is being charged. When the internal switch is off, the charge in the inductor will be transferred to the high voltage capacitor C_S . The energy stored in the capacitor is connected to the internal H-bridge and therefore to the lamp. In general, smaller value inductors, which can handle more current, are more suitable to drive larger lamps. As the inductor value decreases, the switching frequency of the inductor (controlled by R_{SW-Osc}) should be increased to avoid saturation.

The test circuit uses a Murata (LQH4N561) 560 μ H inductor. Using different inductor values or inductors from different manufacturers will affect the performance.

As the inductor value decreases, smaller R_{SW-Osc} values should be used. This will prevent inductor saturation. An inductor with the same inductance value (560 μ H) but lower series resistance will charge faster.


The R_{SW-Osc} resistor value needs to be decreased to prevent inductor saturation and high current consumption.


2.7 C_{SW} Capacitor

A 1 nF capacitor is recommended from the R_{SW-Osc} pin to GND. This capacitor is used to shunt any switching noise that may couple into the R_{SW-Osc} pin. A C_{SW} larger than 1 nF is not recommended.

3.0 PACKAGING INFORMATION

3.1 **Package Marking Information**

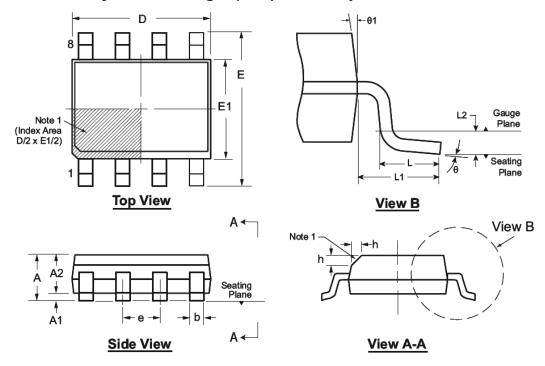
Legend: XX...X Product Code or Customer-specific information

> Year code (last digit of calendar year) ΥY Year code (last 2 digits of calendar year) WW Week code (week of January 1 is week '01') NNN

Alphanumeric traceability code

(e3) Pb-free JEDEC® designator for Matte Tin (Sn)

This package is Pb-free. The Pb-free JEDEC designator (@3)


can be found on the outer packaging for this package.

Note: In the event the full Microchip part number cannot be marked on one line, it will be carried over to the next line, thus limiting the number of available characters for product code or customer-specific information. Package may or not include the corporate logo.

© 2015 Microchip Technology Inc.

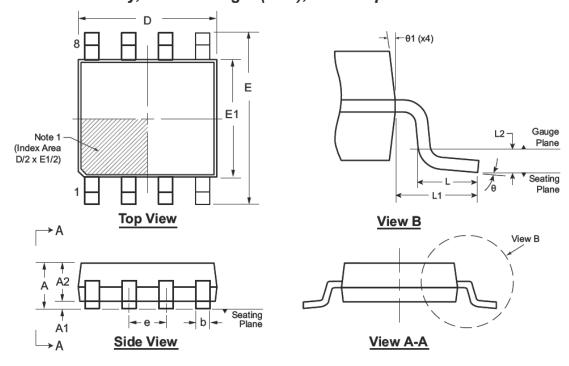
8-Lead SOIC (Narrow Body) Package Outline (LG/TG)

4.90x3.90mm body, 1.75mm height (max), 1.27mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging

Note:

This chamfer feature is optional. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.


Symbo	ı	Α	A1	A2	b	D	E	E1	е	h	L	L1	L2	θ	θ1
	MIN	1.35*	0.10	1.25	0.31	4.80*	5.80*	3.80*		0.25	0.40			0 o	5 °
Dimension (mm)	NOM	-	-	-	-	4.90	6.00	3.90	1.27 BSC	-	-	1.04 REF	0.25 BSC	-	-
()	MAX	1.75	0.25	1.65*	0.51	5.00*	6.20*	4.00*		0.50	1.27			8º	15°

JEDEC Registration MS-012, Variation AA, Issue E, Sept. 2005.
* This dimension is not specified in the JEDEC drawing.

Drawings are not to scale.

8-Lead MSOP Package Outline (MG)

3.00x3.00mm body, 1.10mm height (max), 0.65mm pitch

Note: For the most current package drawings, see the Microchip Packaging Specification at www.microchip.com/packaging.

Note:

1. A Pin 1 identifier must be located in the index area indicated. The Pin 1 identifier can be: a molded mark/identifier; an embedded metal marker; or a printed indicator.

Symbo	ol	Α	A1	A2	b	D	Е	E1	е	L	L1	L2	θ	θ1
	MIN	0.75*	0.00	0.75	0.22	2.80*	4.65*	2.80*		0.40			0 o	5º
Dimension (mm)	NOM	-	-	0.85	-	3.00	4.90	3.00	0.65 BSC	0.60	0.95 REF	0.25 BSC	-	-
()	MAX	1.10	0.15	0.95	0.38	3.20*	5.15*	3.20*		0.80			8º	15º

JEDEC Registration MO-187, Variation AA, Issue E, Dec. 2004.

Drawings are not to scale.

^{*} This dimension is not specified in the JEDEC drawing.

HV825

APPENDIX A: REVISION HISTORY

Revision A (November 2015)

• Initial release of this document in the Microchip format. This replaces version CO72913.

PRODUCT IDENTIFICATION SYSTEM

To order or obtain information, e.g., on pricing or delivery, refer to the factory or the listed sales office.

PART NO. Device	XX Package Options	- X Environmental	_ X Media Type	Examples: a) HV825LG-G:	High Voltage EL Lamp Driver IC 8-lead SOIC package, 2500/reel
Device:	HV825	= High Voltage EL L	amp Driver IC	b)HV825MG-G:	High Voltage EL Lamp Driver IC 8-lead MSOP package, 2500/reel
Package:	LG MG	= 8-lead SOIC = 8-lead MSOP			
Environmental:	G	= Lead (Pb)-free/R	OHS-compliant Package		
Media Type:	(blank)	= 2500/Reel for LG	and MG packages		

NOTES:

Note the following details of the code protection feature on Microchip devices:

- · Microchip products meet the specification contained in their particular Microchip Data Sheet.
- Microchip believes that its family of products is one of the most secure families of its kind on the market today, when used in the intended manner and under normal conditions.
- There are dishonest and possibly illegal methods used to breach the code protection feature. All of these methods, to our knowledge, require using the Microchip products in a manner outside the operating specifications contained in Microchip's Data Sheets. Most likely, the person doing so is engaged in theft of intellectual property.
- Microchip is willing to work with the customer who is concerned about the integrity of their code.
- Neither Microchip nor any other semiconductor manufacturer can guarantee the security of their code. Code protection does not mean that we are guaranteeing the product as "unbreakable."

Code protection is constantly evolving. We at Microchip are committed to continuously improving the code protection features of our products. Attempts to break Microchip's code protection feature may be a violation of the Digital Millennium Copyright Act. If such acts allow unauthorized access to your software or other copyrighted work, you may have a right to sue for relief under that Act.

Information contained in this publication regarding device applications and the like is provided only for your convenience and may be superseded by updates. It is your responsibility to ensure that your application meets with your specifications. MICROCHIP MAKES NO REPRESENTATIONS OR WARRANTIES OF ANY KIND WHETHER EXPRESS OR IMPLIED, WRITTEN OR ORAL, STATUTORY OR OTHERWISE, RELATED TO THE INFORMATION, INCLUDING BUT NOT LIMITED TO ITS CONDITION, QUALITY, PERFORMANCE, MERCHANTABILITY OR FITNESS FOR PURPOSE. Microchip disclaims all liability arising from this information and its use. Use of Microchip devices in life support and/or safety applications is entirely at the buyer's risk, and the buyer agrees to defend, indemnify and hold harmless Microchip from any and all damages, claims, suits, or expenses resulting from such use. No licenses are conveyed, implicitly or otherwise, under any Microchip intellectual property rights unless otherwise stated.

Trademarks

The Microchip name and logo, the Microchip logo, dsPIC, FlashFlex, flexPWR, JukeBlox, KEELoQ, KEELoQ logo, Kleer, LANCheck, MediaLB, MOST, MOST logo, MPLAB, OptoLyzer, PIC, PICSTART, PIC³² logo, RightTouch, SpyNIC, SST, SST Logo, SuperFlash and UNI/O are registered trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

The Embedded Control Solutions Company and mTouch are registered trademarks of Microchip Technology Incorporated in the U.S.A.

Analog-for-the-Digital Age, BodyCom, chipKIT, chipKIT logo, CodeGuard, dsPICDEM, dsPICDEM.net, ECAN, In-Circuit Serial Programming, ICSP, Inter-Chip Connectivity, KleerNet, KleerNet logo, MiWi, motorBench, MPASM, MPF, MPLAB Certified logo, MPLIB, MPLINK, MultiTRAK, NetDetach, Omniscient Code Generation, PICDEM, PICDEM.net, PICkit, PICtail, RightTouch logo, REAL ICE, SQI, Serial Quad I/O, Total Endurance, TSHARC, USBCheck, VariSense, ViewSpan, WiperLock, Wireless DNA, and ZENA are trademarks of Microchip Technology Incorporated in the U.S.A. and other countries.

 $\ensuremath{\mathsf{SQTP}}$ is a service mark of Microchip Technology Incorporated in the U.S.A.

Silicon Storage Technology is a registered trademark of Microchip Technology Inc. in other countries.

GestIC is a registered trademark of Microchip Technology Germany II GmbH & Co. KG, a subsidiary of Microchip Technology Inc., in other countries.

All other trademarks mentioned herein are property of their respective companies.

© 2015, Microchip Technology Incorporated, Printed in the U.S.A., All Rights Reserved.

ISBN: 978-1-5224-0001-1

QUALITY MANAGEMENT SYSTEM CERTIFIED BY DNV = ISO/TS 16949=

Microchip received ISO/TS-16949:2009 certification for its worldwide headquarters, design and wafer fabrication facilities in Chandler and Tempe, Arizona; Gresham, Oregon and design centers in California and India. The Company's quality system processes and procedures are for its PIC® MCUs and dsPIC® DSCs, KEELOQ® code hopping devices, Serial EEPROMs, microperipherals, nonvolatile memory and analog products. In addition, Microchip's quality system for the design and manufacture of development systems is ISO 9001:2000 certified.

Worldwide Sales and Service

AMERICAS

Corporate Office 2355 West Chandler Blvd. Chandler, AZ 85224-6199

Tel: 480-792-7200 Fax: 480-792-7277 Technical Support:

http://www.microchip.com/support

Web Address: www.microchip.com

Atlanta

Duluth, GA Tel: 678-957-9614 Fax: 678-957-1455

Austin, TX Tel: 512-257-3370

Boston

Westborough, MA Tel: 774-760-0087 Fax: 774-760-0088

Chicago Itasca, IL

Tel: 630-285-0071 Fax: 630-285-0075

Cleveland

Independence, OH Tel: 216-447-0464 Fax: 216-447-0643

Dallas

Addison, TX Tel: 972-818-7423 Fax: 972-818-2924

Detroit Novi, MI

Tel: 248-848-4000

Houston, TX Tel: 281-894-5983

Indianapolis Noblesville, IN

Tel: 317-773-8323 Fax: 317-773-5453

Los Angeles

Mission Viejo, CA Tel: 949-462-9523 Fax: 949-462-9608

New York, NY Tel: 631-435-6000

San Jose, CA Tel: 408-735-9110

Canada - Toronto Tel: 905-673-0699 Fax: 905-673-6509

ASIA/PACIFIC

Asia Pacific Office

Suites 3707-14, 37th Floor Tower 6, The Gateway Harbour City, Kowloon

Hong Kong

Tel: 852-2943-5100 Fax: 852-2401-3431

Australia - Sydney

Tel: 61-2-9868-6733 Fax: 61-2-9868-6755

China - Beijing

Tel: 86-10-8569-7000 Fax: 86-10-8528-2104

China - Chengdu Tel: 86-28-8665-5511 Fax: 86-28-8665-7889

China - Chongqing Tel: 86-23-8980-9588 Fax: 86-23-8980-9500

China - Dongguan Tel: 86-769-8702-9880

China - Hangzhou Tel: 86-571-8792-8115 Fax: 86-571-8792-8116

China - Hong Kong SAR Tel: 852-2943-5100 Fax: 852-2401-3431

China - Nanjing Tel: 86-25-8473-2460

Fax: 86-25-8473-2470 **China - Qingdao**Tel: 86-532-8502-7355

Fax: 86-532-8502-7205 China - Shanghai

Tel: 86-21-5407-5533 Fax: 86-21-5407-5066

China - Shenyang Tel: 86-24-2334-2829 Fax: 86-24-2334-2393

China - Shenzhen Tel: 86-755-8864-2200

Fax: 86-755-8203-1760 **China - Wuhan**

Tel: 86-27-5980-5300 Fax: 86-27-5980-5118

China - Xian Tel: 86-29-8833-7252 Fax: 86-29-8833-7256

ASIA/PACIFIC

China - Xiamen

Tel: 86-592-2388138 Fax: 86-592-2388130

China - Zhuhai Tel: 86-756-3210040 Fax: 86-756-3210049

India - Bangalore Tel: 91-80-3090-4444 Fax: 91-80-3090-4123

India - New Delhi Tel: 91-11-4160-8631

Fax: 91-11-4160-8632 India - Pune Tel: 91-20-3019-1500

Japan - Osaka Tel: 81-6-6152-7160

Fax: 81-6-6152-9310

Japan - Tokyo

Tel: 81-3-6880- 3770 Fax: 81-3-6880-3771

Korea - Daegu Tel: 82-53-744-4301 Fax: 82-53-744-4302

Korea - Seoul Tel: 82-2-554-7200 Fax: 82-2-558-5932 or 82-2-558-5934

Malaysia - Kuala Lumpur Tel: 60-3-6201-9857 Fax: 60-3-6201-9859

Malaysia - Penang Tel: 60-4-227-8870 Fax: 60-4-227-4068

Philippines - Manila Tel: 63-2-634-9065

Fax: 63-2-634-9069 Singapore

Tel: 65-6334-8870 Fax: 65-6334-8850

Taiwan - Hsin Chu Tel: 886-3-5778-366 Fax: 886-3-5770-955

Taiwan - Kaohsiung Tel: 886-7-213-7828

Taiwan - Taipei Tel: 886-2-2508-8600

Fax: 886-2-2508-0102 Thailand - Bangkok

Tel: 66-2-694-1351 Fax: 66-2-694-1350

EUROPE

Austria - Wels

Tel: 43-7242-2244-39 Fax: 43-7242-2244-393

Denmark - Copenhagen Tel: 45-4450-2828

Fax: 45-4450-2828

France - Paris Tel: 33-1-69-53-63-20

Fax: 33-1-69-30-90-79

Germany - Dusseldorf Tel: 49-2129-3766400

Germany - Karlsruhe Tel: 49-721-625370

Germany - Munich Tel: 49-89-627-144-0 Fax: 49-89-627-144-44

Italy - Milan Tel: 39-0331-742611 Fax: 39-0331-466781

Italy - Venice Tel: 39-049-7625286

Netherlands - Drunen Tel: 31-416-690399

Fax: 31-416-690340

Poland - Warsaw Tel: 48-22-3325737

Spain - Madrid Tel: 34-91-708-08-90 Fax: 34-91-708-08-91

Sweden - Stockholm Tel: 46-8-5090-4654

UK - Wokingham Tel: 44-118-921-5800 Fax: 44-118-921-5820

07/14/15

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Microchip:

HV825LG-G HV825MG HV825LG HV825MG-G