
19-6790; Rev 2; 1/15

Ordering Information appears at end of data sheet.

General Description
The MAX17841B ASCI combines an SPI port with
a universal asynchronous receiver transmitter (UART)
specially designed to interface with Maxim battery
management devices.
The UART can be configured to automatically
perform Manchester encoding/decoding, message framing,
parity, wake-up, and keep-alive signaling as required for
Maxim’s battery management UART protocol.
The UART has programmable baud rates of 0.5Mbps,
1Mbps, or 2Mbps and supports either single-ended or
differential signaling. For host efficiency, the UART
contains a 28-byte transmit buffer and a 62-byte receive
buffer with host-configurable interrupt events.

Applications
●	 Battery	Management	Systems	(BMS)
●	 Electric	and	Hybrid	Vehicles	(EV/HEV)
●	 Energy	Storage	Systems	(ESS)

Benefits and Features
●	 Supports	Maxim’s	Battery	Management	UART	

Protocol
●	 SPI	Interface	Up	to	4MHz
●	 UART	Baud	Rate	Programmable	Up	to	2Mbps
●	 3.3V	or	5V	Operation
●	 Ultra-Low	Quiescent	Current
●	 Transmit	and	Receive	Buffers	with	Programmable	

Interrupts	Allow	for	Queuing	of	UART	Messages
●	 Manchester	Encoder	and	Decoder	Reduces	Host	

Controller Burden
●	 Operating	Temperature	Range	from	-40°C	to	+105°C	

(AEC-Q100	Type	2)
●	 Supports	ASIL	Requirements

Simplified Operating Circuit

VAA

VCC

VCC

1µF

VAA

1µF

15pF

ISOLATORS

MAX17841B TXPL
MAX178xx

BATTERY
MANAGEMENT

DEVICE

TXNL

VDDL

GNDL

RXP

0.1µF

DCIN

AGND

DOUT
DIN
SCLK

VAA

5V DC
SUPPLY

100kΩ

MISO
MOSI
SCLK

SS
VCC

100kΩ

1.5kΩ

100Ω

0.01µF

CS

INT

SHDN

IRQ

GPIO

SYSTEM
µP

15pF
RXN

1.5kΩ

RXPL
RXNL

TXP
47Ω

TXN
47Ω

SLAVE(S)MASTER

MAX17841B Automotive SPI Communication Interface (ASCI)

EVALUATION KIT AVAILABLE

DCIN	to	AGND ..-0.3V	to	+6V
VAA	to	AGND...-0.3V	to	+4V
VDDL	to	GNDL ...-0.3V	to	+4V
AGND	to	GNDL..-0.3V	to	+0.3V
TXP,	TXN	to	GNDL -0.3V	to	(VDDL	+	0.3V)
DOUT	to	GNDL -0.3V	to	(VDCIN	+	0.3V)
CTG	to	AGND..-0.3V	to	+8V
SHDN	to	AGND -0.3V	to	(VDCIN	+	0.3V)
CS,	DIN,	SCLK,	INT	to	GNDL-0.3V	to	+6V
RXP,	RXN	to	GNDL ..-30V	to	+30V

Maximum Continuous Current into Any Pin20mA
Maximum	Average	Power	for	ESD	Diodes	(Note	1)14.4/√τW
Continuous	Power	Dissipation
On	Multilayer	Board	(TA	=	+70°C)
16	TSSOP	(derate	11.1mW/ºC	above	+70ºC)889mW

Operating	Temperature	Range -40°C	to	+105°C
Storage Temperature Range -55°C	to	+150°C
Junction Temperature (Continuous)+150°C
Soldering	Lead	Temperature	for	10s+300°C

Note 1: Average power for time period τ where τ is the time constant (in µs) of the transient diode current during a hot-plug event.
For, example, if τ	is	330µs,	the	maximum	average	power	is	0.793W.	Peak	current	must	never	exceed	2A.	Actual	average	
power during hot-plug must be calculated from the diode current waveform for the application circuit and compared to the
maximum rating.

(VDCIN	=	5V,	VAA = VDDL	=	3.3V,	TA = TMIN to TMAX, unless otherwise noted, where TMIN	=	-40°C	and	TMAX	=	+105°C.	Typical	values	
are at TA	=	+25°C.	Operation	is	with	the	recommended	application	circuit.)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
POWER REQUIREMENTS

Supply	Voltage VDCIN
VDCIN	=	VAA	=	VDDL	=	3.3V	nominal 3.1 3.3 3.5

V
VDCIN	=	5V	nominal;	VAA	=	VDDL 4.5 5.0 5.5

Supply Current

ISHUTDOWN VSHDN	=	0V
VDCIN	=	VAA	=	3.3V 4 10

µA
VDCIN	=	5V 1 10

ISTANDBY SHDN high, fSCLK = 0, fUART = 0 1.0 2.3 5.0

mA
IACTIVE

Continuous	SPI	writes	at	4MHz,	50pF	
TXP	load,	50pF	TXN	load,	fUART =
2Mbps, Transmit Preambles mode

1.0 4 6

REGULATOR

Output	Voltage VAA
0mA < IVAA	< 10mA,
4.5V	<	VDCIN	<	5.5V

3.13 3.30 3.46 V

Short-Circuit Current IAASC VAA =	AGND 13.0 26.0 120.0 mA

POR	Threshold
VAARESET VAA falling 2.8 2.9 3.0

V
VAAVALID VAA rising 2.9 3.0 3.1

POR	Hysteresis VAAHYS 40.0 100 mV
LOGIC INPUTS (SHDN, CS, DIN, SCLK)
Pulldown Resistance (CS) RCS VCS	=	5V 5.5 12 28.8 MΩ
Pulldown Resistance (SHDN) RSHDN VSHDN	=	5V 0.75 1.5 3.0 MΩ

Input	Leakage	Current	(DIN,	
SCLK) ILKG VDIN,	VSCLK	=	0V -1.0 +1.0 µA

Input	Low	Threshold VIL 0.3	x	VDCIN V
Input	High	Threshold	 VIH 0.7	x	VDCIN V

Absolute Maximum Ratings

Stresses beyond those listed under “Absolute Maximum Ratings” may cause permanent damage to the device. These are stress ratings only, and functional operation of the device at these
or any other conditions beyond those indicated in the operational sections of the specifications is not implied. Exposure to absolute maximum rating conditions for extended periods may affect
device reliability.

Electrical Characteristics

Maxim Integrated │ 2

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

(VDCIN	=	5V,	VAA = VDDL	=	3.3V,	TA = TMIN to TMAX, unless otherwise noted, where TMIN	=	-40°C	and	TMAX	=	+105°C.	Typical	values	
are at TA	=	+25°C.	Operation	is	with	the	recommended	application	circuit.)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
LOGIC OUTPUTS (DOUT, INT)
Output	Leakage	Current ILKG VDOUT	=	0	and	5V,	VINT	=	5V -1.0 +1.0 µA

Output	Low	Voltage	 VOL IOL	= -2mA VGNDL	+	
0.4 V

Output	High	Voltage	(DOUT) VOH IOH	= 2mA VDCIN
- 0.4 V

POWER AND GROUND FAULT DETECTION
Open	Detection	Voltage	(VDDL) VVDDLALRT VAA	=	3.3V 2.8 3.0 V
Open	Detection	Voltage	(GNDL) VGNDLALRT VAGND	=	0V 0.13 0.25 V
Open	Detection	Voltage	(AGND) VAGNDALRT VGNDL	=	0V 0.13 0.25 V
UART INPUTS (RXP, RXN)

RXP	Input	Voltage VRXP
VGNDL

- 28
VGNDL
+	28 V

RXN	Input	Voltage VRXN
VGNDL

- 28
VGNDL
+	28 V

Differential	Input	High	Threshold VTH (Note	2)
VDDL/2
-
400mV

VDDL/2 VDDL/2	+	
400mV V

Differential	Input	Zero-Crossing	
Threshold VZC (Note	2) -400 0 +400 mV

Differential	Input	Low	Threshold VTL (Note	2)
-VDDL/

2 -
400mV

-VDDL/
2

-VDDL/2
+	400mV V

Differential	Input	Hysteresis VHYST (Note	2) 25 75 150 mV

Common-Mode	Voltage	Bias VCM
VDDL/3	

- 0.1 VDDL/3
VDDL/3	
+	0.1 V

Input Capacitance CIN 2 pF
Leakage	Current ILKG -30 +30 µA
Input	Resistance	to	VCM RRXIN 1.1 MΩ
UART OUTPUTS (TXP, TXN)

Output	Low	Voltage VOL IOL	= -20mA VGNDL	+	
0.4 V

Output	High	Voltage VOH IOH	= 20mA VDDL -
0.4 V

SPI TIMING
SCLK	Frequency fSCLK 4 MHz
CS	to	SCLK	Setup	Time tCSS 250 ns
CS	High	Pulse	Width tCSWH 200 ns
SCLK	High	Time tCH 100 ns
SCLK	Low	Time tCL 100 ns

Electrical Characteristics (continued)

Maxim Integrated │ 3

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

(VDCIN	=	5V,	VAA = VDDL	=	3.3V,	TA = TMIN to TMAX, unless otherwise noted, where TMIN	=	-40°C	and	TMAX	=	+105°C.	Typical	values	
are at TA	=	+25°C.	Operation	is	with	the	recommended	application	circuit.)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
SCLK	Fall	to	DOUT	Valid tDO 30 ns
DIN	to	SCLK	Setup	Time tDS 10 ns
DIN	to	SCLK	Hold	Time tDH 30 ns
UART TIMING

Bit	Period	Except	for	Second	
STOP	Bit	(Notes	3,	4) tBIT

fUART = 2Mbps 8
1/fOSCfUART = 1Mbps 16

fUART = 0.5Mbps 32

Second	STOP	Bit	Period	
(Notes	3,	4) tSTOPBIT

fUART = 2Mbps 9
1/fOSCfUART = 1Mbps 18

fUART = 0.5Mbps 36

Rx Idle to START Setup Time
(Notes	3,	4) tRXSTSU

fUART = 2Mbps 0 8
1/fOSCfUART = 1Mbps 0 16

fUART = 0.5Mbps 0 32

Tx Idle to START Setup Time
(Notes	3,	4) tTXSTSU

fUART = 2Mbps 8
1/fOSCfUART = 1Mbps 16

fUART = 0.5Mbps 32

STOP	Hold	Time	to	Idle	
(Notes	3,	4) tSPHD 4 1/fOSC

Rx	Minimum	Idle	Time	(STOP	
Bit	to	START	Bit)	(Notes	3,	4) tRXIDLESPST

fUART = 2Mbps 8
1/fOSCfUART = 1Mbps 16

fUART = 0.5Mbps 32

Tx Minimum Idle Time
(Notes	3,	4) tTXIDLESPST 10 1/fOSC

Rx	Fall	Time	(Notes	3–5) tFALL

fUART = 2Mbps 4
1/fOSCfUART = 1Mbps 8

fUART = 0.5Mbps 16

Rx	Rise	Time	(Notes	3–5) tRISE

fUART = 2Mbps 4
1/fOSCfUART = 1Mbps 8

fUART = 0.5Mbps 16

Startup Time (SHDN	High	to	
RXP	Valid) tSTARTUP 800 2000 µs

Oscillator	Frequency fOSC 15.68 16.00 16.32 MHz
UART MESSAGE TIMING
SPI	Command	to	Tx	Valid	Delay	
(Note	6) tTX 4 x tBIT 5 x tBIT

Electrical Characteristics (continued)

Maxim Integrated │ 4

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

(VDCIN	=	5V,	VAA = VDDL	=	3.3V,	TA = TMIN to TMAX, unless otherwise noted, where TMIN	=	-40°C	and	TMAX	=	+105°C.	Typical	values	
are at TA	=	+25°C.	Operation	is	with	the	recommended	application	circuit.)

Note 2:	 Differential	signal	(VRXP	-	VRXN)	where	VRXP,	VRXN	do	not	exceed	a	common-mode	voltage	range	of	±25V.
Note 3: All parameters measured based on differential signal.
Note 4:	 Guaranteed	by	design	and	not	production	tested.
Note 5: Fall time measured 90% to 10%, rise time measured 10% to 90%.
Note 6:	 Measured	from	falling	edge	of	8th	SCLK	cycle	of	the	WR_NXT_LD_Q	SPI	command	byte	(B0h).
Note 7: tPROP is the maximum propagation delay through a slave device in a given direction. Refer to the UART slave device data

sheet for the actual delay. The number of UART slave devices is denoted by n.
Note 8: Measured from end of 12th bit of stop character.
Note 9: Parameter tREGWR	is the minimum amount of time needed to write a register in the nth slave device of the daisy-chain. It is

measured	from	the	start	of	the	SPI	transaction	WR_NXT_LD_Q	(B0h)	that	initiates	transmission	of	a	WRITEALL	message	
to	when	the	nth	device	receives	a	valid	WRITEALL	message.	For	example,	for	4MHz	SPI	frequency,	2Mbps	UART	baud	
rate, n = 10 and tPROP	=	3	x	tBIT, tREGWR	=	2μs	+	65μs	+	15μs	=	82μs.

Note 10: Computation of tREGWR consists of three terms: 1) duration of the SPI transaction, 2) partial duration of the UART
message,	and	3)	propagation	delay	of	the	UART	message.	The	first	term	equals	the	number	of	bits	in	the	SPI	transaction	
(8) x the SPI bit time (1 / fSCLK).	The	second	term	equals	the	time	from	the	start	of	the	WRITEALL	message	to	the	first	
STOP	bit	of	the	last	PEC	nibble.	The	last	PEC	nibble	is	the	11th	character	in	the	message.	With	each	character	lasting	12	
UART	bit	times,	there	are	11	x	12	=	132	bit	times	from	the	start	of	the	message	to	the	end	of	the	last	PEC	nibble.	Since	the	
write	occurs	just	before	the	two	STOP	bits	of	the	11th	character,	the	term	is	actually	130	x	tBIT. The third term is the propa-
gation	delay	required	for	the	WRITEALL	message	to	get	to	the	nth	device.

Figure 1. SPI Timing Diagram (Example of Reading Register 0x1B with Data 80h and Transaction Terminated Prematurely)

PARAMETER SYMBOL CONDITIONS MIN TYP MAX UNITS
Tx	Valid	to	Rx	Valid	Up	Stack	
Delay	(Note	7) tRXUP

n x
tPROP

Tx	Valid	to	Rx	Valid	Down	Stack	
Delay	(Note	7) tRXDN

n x
tPROP

End	of	STOP	Character	to	
RX_Stop_INT	Flag	True	
(Note	8)

tINT 2 x tBIT

SPI START to UART Slave
Device	Register	Write	Delay	
(Notes	9,	10)

tREGWR

8 / fSCLK	+	
130	x	tBIT	+	
n x tPROP

Electrical Characteristics (continued)

1 2 3 4 5 6 7 8 9 10

tCSSO

tCH

tDS tDH

tDO

tCL

tCSWH

CS

SCLK

DIN

DOUT

Maxim Integrated │ 5

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Figure 3. Transmit UART Timing

Figure 4. UART Message Timing

Figure 2. Receive UART Timing

t TXSTSU
tSTOPBIT tTXIDLESPST

10
TXP-TXN

S 0S2 3 4 5 6 7 E P P P P

tTXSTSU

CS

DIN
WR_NXT_LD_Q

(BOh) WRITE DATA

PREAMBLE MESSAGE STOP

PREAMBLE MESSAGE STOP

IDLE

IDLE

tTX

tRXUP
tRXDN

tINT

TXP-TXN

RXP-RXN

INT

tRXSTSU
t FALL

tRISE tSPHD

t BIT

t RXIDLESPSTt BIT

10
RXP-RXN

S 0S2 3 4 5 6 7 E P P P P

Maxim Integrated │ 6

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

PIN NAME FUNCTION DESCRIPTION

1 VAA Power
Power	Output	for	LDO	Regulator	(5V	Mode	Only)	and	Supply	for	Oscillator.	For	5V	mode,	
connect	to	VDDL.	For	3.3V	mode,	connect	this	pin	to	3.3V	supply.	Decouple	per	application	
circuit.

2 AGND Ground Analog	Ground.	Connect	to	the	power	supply	ground.

3 DCIN Power Power	Input	for	LDO	Regulator	and	SPI	Port.	For	5V	mode,	connect	to	5V	supply.	For	3.3V	
mode,	connect	this	pin	to	3.3V	supply.	Decouple	per	application	circuit.

4 SHDN Input
Active-Low	Shutdown	Input.	Connect	to	host	GPIO.	Assert	to	place	device	in	shutdown	
mode.	In	this	mode,	the	regulator	is	disabled	and	the	device	is	reset.	This	pin	has	a	1.5MΩ	
internal	pulldown.	5V	tolerant.

5 CS Input Active-Low	SPI	Chip-Select	Input.	Connect	to	the	Slave_Select	output	of	the	SPI	master.	
Assert	to	enable	the	SPI	port.	This	pin	has	a	12MΩ	internal	resistor	to	ground.	5V	tolerant.

6 DIN Input SPI	Data	Input.	Connect	to	DOUT/MOSI	output	of	SPI	master.	5V	tolerant.

7 DOUT Output
SPI	Data	Output.	Connect	to	DIN/MISO	input	of	SPI	master.	This	output	is	three-stated	
when CS is deasserted. When CS	is	asserted,	this	pin	is	driven	between	DCIN	and	AGND	
supplies.

8 SCLK Input SPI	Clock	Input.	Connect	to	SCLK	output	of	SPI	master.	5V	tolerant.

9 INT Output Active-Low,	Open-Drain	Interrupt	Output.	Connect	a	pullup	resistor	to	this	pin	per	application	
requirements.	This	pin	is	asserted	if	any	interrupt	flag	is	set.

10 CTG Ground Reserved	for	factory	use.	Connect	to	AGND.	

11 TXN Output UART	Transmitter	Negative	Output.	Connect	to	Rx	port	negative	input	circuit	of	UART	slave	
device	per	application	circuit.	This	pin	is	driven	between	the	VDDL	and	GNDL	supplies.

12 TXP Output UART	Transmitter	Positive	Output.	Connect	to	Rx	port	positive	input	circuit	of	UART	slave	
device	per	application	circuit.	This	pin	is	driven	between	the	VDDL	and	GNDL	supplies.

13 VDDL Power 3.3V	Digital	and	UART	Port	Power.	Connect	to	VAA.	Decouple	per	application	circuit.
14 GNDL Ground Digital	and	UART	Port	Ground.	Connect	to	AGND.

Pin Description

Pin Configuration

16

15

14

13

12

11

10

1

2

3

4

5

6

7

RXP

RXN

GNDL

VDDLSHDN

DCIN

AGND

TOP VIEW

MAX17841B

TXP

TXN

CTGDOUT

DIN

98 INTSCLK

CS

TSSOP

+
VAA

Maxim Integrated │ 7

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Detailed Description
The MAX17841B allows any host controller with an SPI
port to communicate with one or more battery manage-
ment slave devices that use Maxim’s battery manage-
ment UART protocol.

Together with the host controller, the ASCI is the mas-
ter for communications with the slave devices. Figure 5
shows the functional block diagram. Table 1 shows how
power is distributed inside the device.

Serial Peripheral Interface (SPI)
The SPI port is a synchronous data link that the host uses
to read and write the ASCI registers and the UART com-
munication buffers.

SPI Transactions
An SPI transaction is initiated when the host drives the CS
pin low. The host always transmits data most-significant
bit (MSB) first to the ASCI. After the first byte, it can termi-

Pin Description (continued)

Table 1. Internal Power Distribution

Figure 5. Functional Diagram

PIN NAME FUNCTION DESCRIPTION

15 RXN Output UART	Receiver	Negative	Input.	Connect	to	Tx	port	negative	output	of	UART	slave	device	
per application circuit.

16 RXP Output UART Receiver Positive Input. Connect to Tx port positive output of UART slave device per
application circuit.

BLOCK SUPPLY
Oscillator VAA
SPI	Port	and	LDO	Regulator DCIN
Digital,	UART,	and	Control VDDL

DOUT

INT

RXN

RXP

TXP

TXN

VDDL

GNDLREGISTERSCONTROLLERDCIN

VDD

3.3V

SPI SLAVE
CONTROLLER

CS

SCLK

DIN

RECEIVE
BUFFER

UART
DECODER

DCIN

AGND VAA

SHDN

RECEIVER

16MHz
OSCILLATOR

3.3V LDO
REGULATOR

TRANSMIT
BUFFER

MAX17841B

FILL BYTE
GENERATOR

UART
ENCODER TRANSMITTER

Maxim Integrated │ 8

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

nate the transaction (single-byte transaction), continue to
clock data out (write transaction), or start clocking data in
(read	transaction).	However,	it	does	not	send	and	receive	
data at the same time (half-duplex operation).

Register Transactions
For register transactions, the host first sends a single-byte
register address. Register addresses are either read-only
(odd addresses) or write-only (even addresses). For a
read transaction, the second byte is the read data sent by
the ASCI to the host. For a write transaction, the second
byte is the write data sent by the host to the ASCI. Multiple
data bytes are allowed as long as CS remains active-
low—the ASCI automatically selects the next read-only
register address (for reads) or the next write-only address
(for writes). The SPI transaction is terminated when the
host drives CS high.

Buffer Transactions
Buffer transactions can consist of only a command byte,
a command byte followed by one or more read bytes, or
a command byte followed by one or more write bytes. All
allowed transactions are specified in Table 9.

SPI Timing
The	ASCI	 is	only	compatible	with	SPI	mode	0	 (CPOL	=	
0/CPHA	=	0).	In	this	mode,	data	is	always	driven	on	the	
falling	edge	of	SCLK	and	is	always	sampled	on	the	rising	
edge	of	SCLK.	
For	reads,	the	ASCI	starts	driving	DOUT	on	the	first	fall-
ing	 edge	 of	 SCLK	 immediately	 after	 the	ASCI	 samples	
the	 least-significant	 bit	 (LSB)	 of	 the	 command/address	
byte.	DIN	is	a	“don’t	care”	while	reading.	Reads	attempted	
beyond	the	address	space	return	zero.
For writes, registers are written on the falling edge of
SCLK,	after	the	last	bit	is	sampled.	However,	if	CS goes
high	before	the	last	bit’s	falling	edge	of	SCLK,	that	register	
is not written.

UART Interface
Slave devices that use Maxim’s battery management
UART protocol can be connected in daisy-chain fashion to
manage a multiple battery-cell stack. In a BMS, or Battery
Management System, the BMS controller is the host for
all slave devices and initiates all communication. The data
flow always starts from the host, goes up the daisy-chain
and back down to the host as represented in Figure 6.

Table 2. SPI Communication Summary

Figure 6. System Data Flow

PARAMETER VALUE
Communication Mode Half-duplex
Maximum Clock Frequency 4MHz
Bit	Order Most-significant	bit	first

Clock	Polarity	(CPOL) 0 (leading clock edge is
rising edge)

Clock	Phase	(CPHA) 0 (data sampled on leading
clock edge)

CHOOSE
INTERNAL OR

EXTERNAL
LOOPBACK

RXUP RXUN TXUP TXUN

TXLP TXLN RXLP RXLN

DEVICE (n)

RXUP RXUN TXUP TXUN

TXLP TXLN RXLP RXLN

DEVICE (n-1)

RXUP RXUN TXUP TXUN

TXLP TXLN RXLP RXLN

DEVICE 1

BMS

ISOLATION

MAX17841B

µC

BATTERY
PACK n

BATTERY
PACK (n - 1)

BATTERY
PACK 1

 OPTIONAL
SERVICE

DISCONNECT

Maxim Integrated │ 9

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Battery Management UART Protocol
The ASCI uses a UART protocol specifically designed for
Maxim battery management devices. This protocol uses
the	 following	 features	 to	 maximize	 the	 integrity	 of	 the	
communications:
●	 All	 transmitted	 data	 are	 Manchester-encoded	 where	

each data bit is transmitted twice with the second bit
inverted	(G.E.	Thomas	convention).

●	 Every	 transmitted	 character	 contains	 12	 bits	 that	
include	a	START	bit,	a	parity	bit,	and	two	STOP	bits.

●	 Each	 message	 contains	 a	 CRC-8	 packet	 error-
checking	(PEC)	byte

●	 Each	message	is	framed	by	a	preamble	character	and	
stop character.

●	 Each	 received	 message	 contains	 a	 data-check	 byte	
for verifying the integrity of the transmission.

The	 protocol	 is	 also	 designed	 to	 minimize	 power	 con-
sumption by allowing slave devices to shut down if the
data link is idle for a specified period of time. To prevent
the unintentional shutdown of slave devices, the host
should	enable	the	ASCI’s	Keep-Alive	mode	to	periodically	
transmit stop characters. The time period between stop
characters is configurable by the host.

UART Messages
A message is defined as a sequence of UART characters.
The message starts with a preamble character, followed
by data characters, and ending with a stop character.
Each	character	consists	of	the	following	12	bits:
●	 One	START	bit
●	 Eight	data	bits	(LSB	first)
●	 One	parity	bit	(even)
●	 Two	STOP	bits

Each	data	byte	is	transmitted	and	received	as	two	sepa-
rate characters, one 12-bit character for each 4-bit data
nibble.	Each	Manchester-encoded	nibble	actually	requires	
eight data bits: four true bits and four inverted bits.
In its default configuration, when the ASCI transmits a mes-
sage, it automatically performs the following functions:
●	 Frames	the	message	with	the	required	preamble	char-

acter at the beginning of the message.
●	 Manchester	encodes	each	data	nibble	and	 transmits	

each encoded nibble with the required START, parity,
and	STOP	bits.

●	 Transmits	the	message	at	the	configured	baud	rate	of	
0.5Mbps, 1Mbps, or 2Mbps.

●	 Frames	the	message	with	the	required	stop	character	
at the end of the message.

These automatic functions can be disabled by enabling
the following special transmit modes:
●	 Transmit	 No	 Preamble	 mode	 (eliminates	 preamble	

characters)
●	 Transmit	No	Stop	mode	(eliminates	stop	characters)
●	 Transmit	 Raw	 Data	 mode	 (transmits	 data	 with	 no	

Manchester encoding)
●	 Receive	 Raw	 Data	 mode	 (receives	 data	 as	 not	

Manchester encoded)

Preamble Character
The preamble is a framing character that the UART
generates to signal the beginning of a message. It is
transmitted	as	an	unencoded	15h,	but	is	still	a	DC-balanced	
character.	 If	any	bit(s)	other	 than	 the	STOP	bits	deviate	
from the unique preamble sequence, the character is
not interpreted as a valid preamble, but rather as a data
character.

Figure 7. UART Timing for a Preamble

OPTIONAL
IDLE

S 1 0 1 0 1 0 0 0 E = 1 P P

IDLE
DISABLE

OPTIONAL
IDLE

IDLE
ENABLE

Maxim Integrated │ 10

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Stop Character
The stop character is a framing character that the UART
generates to signal the end of a message. It is transmit-
ted	 as	 an	 unencoded	 54h,	 but	 it	 is	 still	 a	 DC-balanced	
character.

Manchester Encoding
Each	 data	 byte	 is	 transmitted	 as	 two	 separate	 nibbles	
(four bits) that are Manchester-encoded. For each data
bit, the first bit represents the information and the
second bit is its complement. The parity is even so its
value should always result in an even number of high
bits. Since the data is Manchester-encoded and there are
two	STOP	bits,	the	parity	bit	for	data	characters	(but	not	
framing	characters)	should	always	be	zero.

Figure 8. UART Timing for a Stop Character

Figure 9. UART Timing for a Manchester-Encoded Data Nibble 0h

OPTIONAL
IDLE S 0 0 1 0 1 0 1 0 E = 1 P P

IDLE
DISABLE

OPTIONAL
IDLE

IDLE
ENABLE

OPTIONAL
IDLE S 0 1 0 1 0 1 0

0 0 0 0

1 E = 0 P P

IDLE
DISABLE

OPTIONAL
IDLE

DATA NIBBLE = 0h

IDLE
ENABLE

Maxim Integrated │ 11

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Data Types
Maxim’s battery management UART protocol supports
several different data types as described in Table	3. The
ASCI does not interpret the significance of any of these
data types. It is up to the host to both compose the data
being transmitted and interpret the data being received.
For	 example,	 the	 host	 must	 compute	 the	 proper	 PEC	
value for each transmitted message and must verify the
PEC	value	on	each	received	message.

Assigning Slave Device Addresses
The battery management UART protocol requires that the
host assign a unique and contiguous address between 0
and	31	 to	each	UART	slave	device	so	 that	 the	host	 can	
address each slave device individually as desired. The host
performs this assignment by specifying a seed address
in	 the	HELLOALL	command	sequence.	As	 the	command	
propagates up the daisy-chain, each slave device assigns
its	own	address.	The	HELLOALL	sequence	returns	a	value	
from which the host can determine the number of devices
in the daisy-chain as well as the device addresses.

Table 3. Message Data Types

Table 4. Common Commands

DATA TYPE DESCRIPTION
Command Defines	the	type	of	message,	either	a	write	command	or	a	read	command.
Address Register address to be read or written.
Data Register data being read or written.
PEC CRC-8	packet	error-checking	byte;	sent	and	returned	with	every	message.
Data-Check Error	status	provided	by	the	slave	devices;	returned	only	on	reads.

Alive-Counter Used to verify the number of devices responding to a transmitted message. This byte is optional but is
recommended for error-checking purposes.

Fill
Bytes	with	values	C2h	or	D3h	transmitted	as	a	part	of	read	commands	so	that	the	total	number	of	bytes	sent	
equals	the	number	of	bytes	received.	However,	these	bytes	are	not	returned	to	receiver	with	their	original	
values;	instead	each	slave	device	replaces	the	fill	bytes	with	the	register	data	being	requested	by	the	host.

COMMAND BYTE VALUE DESCRIPTION
HELLOALL 57h Assigns a unique device address to each device in the daisy-chain.
WRITEALL 02h Writes	a	specific	register	in	all	devices.
READALL 03h Reads	a	specific	register	from	all	devices.

Maxim Integrated │ 12

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

UART Operation
The UART is the subsystem that transmits messages to
the UART slave devices and receives them back. The
host uses SPI buffer transactions to store unencoded
outgoing messages in the transmit buffer and also to read
decoded incoming messages out of the receive buffer as
shown in Figure 10. Table 5	shows	the	size	and	organiza-
tion of the UART buffers.

UART Interrupts
There are 12 different UART events that can cause an
interrupt (refer to the Register Table for details). For each
event, there is a status bit, an enable bit, and a flag bit.
The status bit is the real-time status of the event and can only
be set or cleared by the UART. The enable bit determines

whether or not the event causes an interrupt. Interrupt flags
(except	the	POR_Flag)	are	edge-triggered	in	that	they	are	set	
only when the interrupt enable bit is true and the correspond-
ing	status	bit	 transitions	 from	a	 logic-zero	state	 to	 logic-one	
state. Interrupt flags can only be cleared by the host.
If the flag enable is set when its corresponding status bit
is true, the flag is not set until the status bit transitions
from	a	 logic-zero	state	 to	a	 logic-one	state.	 If	 the	 flag	 is	
cleared when the corresponding status bit is true, the flag
does not set again until the status bit transitions from a
logic-zero	state	to	a	logic-one	state.
When any flag is true, the UART asserts the INT pin. All
flags must be cleared for the INT pin to be deasserted.
The	only	exception	is	the	POR_Flag,	which	has	no	effect	
on INT.

Table 5. UART Buffers

Figure 10. UART Data Flow

PARAMETER TRANSMIT BUFFER RECEIVE BUFFER
Organization 4 x 7 bytes 1 x 62 bytes
Size 28 bytes 62 bytes
Message Capacity 4 messages Variable
Host	Access Read and Write Read	Only

HOST SPI
PORT

SLAVE
DEVICE(S)

RECEIVE
BUFFER

UART
DECODER RECEIVER

TRANSMIT
BUFFER

FILL BYTE
GENERATOR

UART
ENCODER TRANSMITTER

Maxim Integrated │ 13

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Table 6. UART Operational Modes
MODE DESCRIPTION

Shutdown Asserting SHDN	resets	all	ASCI	registers	and	buffer	data	to	their	default	state,	stops	sending	and	receiving	
UART	communication,	and	disables	the	3.3V	regulator.	

Transmit
Preambles

Transmits	preambles	continuously	(no	idle	state).	Used	to	wake	up	the	UART	slave	devices	and	initialize	the	
UART baud rate of each slave device. This mode takes precedence over all transmit modes except Transmit
Pause mode.

Keep-Alive

Periodically sends a stop character to prevent UART slave devices from shutting down during periods of no
communication	(idle	state).	The	idle	time	in	between	the	periodic	stop	characters	is	programmable	from	zero	
to	10.24ms	through	the	Keep-Alive	[3:0]	configuration.	The	default	setting	is	infinite	(mode	disabled).	The	
Transmit	Pause,	Transmit	Preambles,	and	the	Transmit	Queue	modes	take	precedence	over	this	mode.

Transmit	Queue
(default mode)

Starts	transmission	of	the	message	loaded	in	the	transmit	queue	if	1)	there	is	sufficient	space	in	the	receive	
buffer	for	the	message	(RX_Full_Status	is	false)	or	2)	the	limitations	on	message	length	are	removed	
(TX_Unlimited	is	set).	Default	is	enabled.

Transmit Unlimited
In this mode, the transmit queue automatically limits the message length to 255 bytes instead of the default
62-byte limit, and the message transmission is permitted even if the message length is greater than the
available	write	space	in	the	receive	buffer.

Transmit Pause
Places	the	transmitter	into	idle	state	once	the	UART	has	finished	transmitting	the	current	byte,	however,	the	
TX_Busy_Status	and	TX_Idle_Status	bits	remain	unchanged.	Transmission	resumes	when	this	bit	is	cleared.	
This mode takes precedence over all other transmit modes.

Transmit	Odd	
Parity

Transmits characters with odd parity. Since the battery management UART protocol uses even parity, this
mode	can	be	used	to	test	the	system’s	ability	to	detect	parity	errors.	Even	parity	is	default.

Transmit	No	Stop
Transmits	messages	without	a	stop	character.	By	sending	subsequent	messages	with	the	No	Preamble	bit,	
a	framed	message	of	indefinite	length	can	be	constructed.	The	TX_Unlimited	bit	must	be	set	for	messages	
greater than 62 bytes.

Transmit	No	
Preamble

Transmits	messages	without	a	preamble.	By	first	sending	a	message	in	which	the	TX_No_Stop	bit	is	set,	and	
then	sending	messages	with	this	bit	set,	a	framed	message	of	indefinite	length	can	be	constructed.	However,	
if the preceding message was terminated with a stop character (end of frame), then the data sent in this
mode	is	unframed	(without	preamble)	and	is	not	stored	in	the	receive	buffer.	

Transmit	Raw	Data Disables	Manchester	encoding	of	transmitted	data.	In	this	mode,	each	data	byte	is	transmitted	as	one	
character (instead of two characters).

Receive	Raw	Data Disables	Manchester	decoding	of	the	received	data.	In	this	mode,	there	is	one	data	byte	stored	for	every	
character received (instead of every two received).

Maxim Integrated │ 14

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Transmit Buffer
The transmit buffer memory map is shown below. It con-
sists of four fixed-length queues, which the host uses to
store outgoing messages. At any time, one of the queues
is designated as the load queue (the queue being loaded)
and one of the queues is designated as the transmit
queue (the queue being unloaded). The load queue is
selected	 by	 the	 two-bit	 register	 LD_Q	 and	 the	 transmit	
queue	 is	 selected	 by	 the	 two-bit	 register	 TX_Q.	 Each	
queue consists of seven bytes.

Transmit Buffer Queues
In each queue, location 0 is reserved for the message
length and the remaining six locations are for specific
message data. The default state of each queue is as
shown in Table 7.

Clearing the Transmit Buffer
During	 UART	 initialization,	 it	 is	 recommended	 that	 the	
host	 reset	 the	 transmit	 buffer	 by	 issuing	 the	 CLR_TX_BUF	
SPI transaction (20h). This resets the transmit buffer as follows:
●	 TX_Q	[1:0]	=	00b
●	 LD_Q	[1:0]	=	00b
●	 Data	 in	 transmit	 buffer	 (28	 bytes)	 is	 reset	 to	 default	

state per Table 7.

Message Length
Before composing any message, the host should
compute the message’s length (in bytes, not characters)
based on both the type of command (read or write) and
the device count. The message length should include any
required fill bytes (but not preamble and stop characters).
The host writes the message length into location 0 of the
load queue, but if the specified message length is greater
than	 62d,	 only	 62d	 (3Eh)	 is	 actually	 written.	 If	 the	TX_
Unlimited = 1, then the maximum message length written
is increased to 255d (FFh), but the host must service the
receive buffer accordingly to avoid any possible overflow.

If the specified message length is greater than 6 bytes, the
UART	 automatically	 appends	 alternating	 fill	 bytes	 (D3h,	
C2h) as required by the battery management UART proto-
col during the latter portion of the message transmission.

Figure 11. Transmit Buffer Memory Map

Table 7. Queue Memory Map

LOCATION DESCRIPTION DEFAULT
VALUE

MAXIMUM DEFAULT PERMITTED
TX_UNLIMITED = 0 TX_UNLIMITED = 1

0 Message length 00h 3Eh FFh
1

Data	bytes	and/or	fill	
bytes

D3h

FFh FFh

2 C2h
3 D3h
4 C2h
5 D3h
6 C2h

 Tx BUFFER MEMORY MAP

0 0 1 0 1

QUEUE 0
TRANSMIT QUEUE

DATA TO UART (Tx)

8 BITSQ
00

BYTE
000

01 000

10 000

11 000

11 110

7 BYTES

QUEUE 1
(LD COMPLETE

Tx PENDING)
7 BYTES

QUEUE 2
(LOAD QUEUE)

DATA TO/FROM HOST
7 BYTES

QUEUE 3
(EMPTY) 7 BYTES

TX_POINTER

UART CONTROLS
INCREMENT

LD_POINTER

HOST CONTROLS
INCREMENT THROUGH SPI

TX_Q [1:0]
READ ONLY

LOCATION [2:0]
INTERNAL

1 0 0 1 0

LD_Q [1:0]
READ ONLY

LOCATION [2:0]
INTERNAL

QUEUE 0 IS THE TRANSMIT QUEUE IN THIS EXAMPLE
QUEUE 2 IS THE LOAD QUEUE IN THIS EXAMPLE

TRANSMIT BUFFER ADDRESSING

Maxim Integrated │ 15

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Writing the Load Queue
A	message,	not	 including	 fill	bytes,	consists	of	 three	 (3)	
to	six	(6)	bytes.	The	HELLOALL	sequence,	for	example,	
is	 three	bytes:	57h,	00h,	00h	 (first	address	set	 to	zero).	
Since no fill bytes are required, the total message length
is	3	bytes.	Therefore,	the	host	should	write	the	load	queue	
with the following data in Table 8.
The host can write the load queue starting at any location
within the queue by using appropriate SPI commands
listed in SPI transaction Table 9.	 However,	 if	 the	 host	
attempts to write beyond location 6 of the queue, the
additional data is ignored.
The UART never attempts to transmit the queue selected
by	 LD_Q	 because	 the	 host	 may	 be	 in	 the	 process	 of	
loading it or, even if it has finished loading, may need to
verify (read) the contents of the load queue by using the
RD_LD_Q	 transaction	 (C1h).	 The	 host	 can	 then	 select	
the next queue in sequence for loading by performing the
WR_NXT_LD_Q	transaction	(B0h),	which	increments	the	
LD_Q	value.	It	is	only	when	this	increment	occurs	that	the	
UART starts transmitting the data in the previously loaded
queue.	For	both	LD_Q[1:0]	and	TX_Q[1:0],	values	of	3h	
increment to 0h.

Filling the Transmit Buffer
The	host	can	load	all	available	queues	until	LD_Q	=	TX_Q	
-	1.	In	this	state,	the	transmit	buffer	is	full	(TX_Full_Status	
true). In this condition, the host cannot start loading the
transmit queue because the UART may still be unloading/
transmitting data. If the transmit buffer is full and the host
attempts	 to	 perform	 a	WR_NXT_LD_Q	 transaction	 and	
thus attempts to load the transmit queue, the increment
does not occur and an overflow condition is indicated
(TX_Overflow_Status	 true).	 The	 only	 time	 the	 host	 can	
write the transmit queue is when the transmit buffer is

empty	 (TX_Q	=	 LD_Q),	which	 is	 the	 default	 state.	This	
state can also occur when the UART finishes sending the
last loaded message and thus creates an empty transmit
buffer.

Message Transmission
Whenever	 LD_Q	=	TX_Q,	 the	 transmit	 buffer	 is	 consid-
ered	 empty	 (TX_Empty_Status	 is	 true)	 because	 either	
the host has not yet finished loading the selected queue
or the host has written but not yet verified the queue.
However,	once	the	host	is	finished	servicing	the	queue,	it	
performs	a	WR_NXT_LD_Q	transaction	to	select	the	next	
queue.	Once	this	occurs,	the	transmit	buffer	is	no	longer	
considered	empty	because	LD_Q	≠	TX_Q.
The UART unloads/transmits the transmit queue if the fol-
lowing conditions are met:
●	 The	UART	is	in	Transmit_Queue	mode	(TX_Queue	bit	

is set)
●	 The	 transmit	 buffer	 has	 at	 least	 one	 loaded	 queue	

(TX_Empty_Status	is	false)
●	 There	 is	sufficient	space	 in	 the	 receive	buffer	 for	 the	

message	(RX_Space_	≥	Message	Length)
Note:	The	limitation	on	available	space	in	the	receive	buf-
fer	can	be	removed	by	setting	the	TX_Unlimited	bit.
Once	 the	 transmit	 conditions	 are	 met,	 the	 UART	 auto-
matically starts unloading the transmit queue until the
entire message, including any required fill bytes, has
been transmitted. After the transmission is complete, the
contents of the transmit queue are reset to their default
values and the queue is once again available to the host
for loading.

Receive Buffer
The receive buffer is a 62-byte circular buffer that the
host can read with the SPI, but can only be loaded by
the	UART	as	it	receives	data.	It	utilizes	three	pointers	as	
shown in the receive buffer memory map (Figure 12).
●	 RX_RD_POINTER:	Read	pointer	or	buffer	location	to	

be read by host (default 00h, read-only)
●	 RX_WR_POINTER:	Write	pointer	or	buffer	location	to	

be written by UART (default 01h, read-only)
●	 RX_NXT_MSG_POINTER:	Buffer	location	that	is	start	

of next unread message (default 00h, read-only)
In the default state, where the read pointer is one less
than the write pointer, the receive buffer is considered
empty	(RX_Empty_Status	is	true).	Any	receive	buffer	data	
read	in	this	condition	will	be	zero.

Table 8. Example of Queue Loaded with
Message HELLOALL

LOCATION VALUE DESCRIPTION
0 03h Message length
1 57h Command byte
2 00h Address byte
3 00h Data	byte
4 C2h Not	written
5 D3h Not	written
6 C2h Not	written

Maxim Integrated │ 16

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Clearing the Receive Buffer
During	UART	initialization,	it	is	recommended	that	the	host	
clear	the	receive	buffer	by	issuing	the	CLR_RX_BUF	SPI	
transaction	(E0h).	This	resets	the	receive	buffer	as	follows:	
●	 RX_RD_Pointer:	00h
●	 RX_WR_Pointer:	01h
●	 RX_NXT_MSG_POINTER:	00h
●	 Data	in	receive	buffer	(62	bytes)	is	cleared	to	00h
If the receive buffer is cleared during Transmit Preambles
mode, the state of the buffer cannot be guaranteed.
Therefore, after disabling the Transmit Preambles mode,
the host should wait until all transmitted preambles have
been received before clearing the buffer. Since the first
keep-alive stop character received after the last preamble
results in a null message, the host can simply wait until
the	 buffer	 is	 no	 longer	 empty	 (RX_Empty_Status	 =	 0)	
before clearing the buffer.
The RX Clear Buffer command acts an an asynchronous
reset not only for the RX Buffer, but also for the UART
receiver logic. When the UART receiver logic is reset, it
must	 resynchronize	 to	 the	 incoming	UART	 signal	 before	
bytes can be properly processed. This is accomplished
by receiving either a preamble byte or an idle state
lasting at least one UART byte period. The preamble used to
resynchronize	 the	 data	 stream	 should	 not	 be	 the	 same	
preamble that is at the beginning of the next transmitted
message. The application should make sure that one of
these conditions is met following an RX buffer clear prior to
sending the next message from the MAX17841B.

Receiving Messages
UART messages are framed with the preamble and stop
characters. If the UART receiver decodes a valid pream-
ble, it prepares to receive a message but it does not store
the	preamble	in	the	receive	buffer.	Once	data	is	received,	
the	buffer	is	no	longer	empty	(RX_Empty_Status	=	0)	and	
the UART sequentially stores decoded data bytes in the
receive buffer until either a stop character or another pre-
amble is received. When the stop character is received at
the end of a message, the UART stores it in the receive
buffer	as	a	null	byte	(00h)	and	sets	the	RX_Stop_Status	
bit.	 The	 RX_Stop_Status	 bit	 is	 subsequently	 cleared	
when all unread messages have been read (buffer empty)
or the next preamble is detected. The host can set the
RX_Stop_INT_Enable	bit	and	monitor	the	interrupt	line	to	
determine when to service the receive buffer.
When the host services the receive buffer, three bits in the
RX_Byte	 register	 indicate	 specific	 information	about	 the	

byte	being	read	(the	byte	addressed	by	RX_RD_Pointer),	
which is useful for error checking:
●	 First_Byte	bit:	 Indicates	 that	 the	byte	 is	 the	 first	data	

byte in a message (the corresponding character was
preceded by preamble character).

●	 Byte_Error	 bit:	 Indicates	 that	 the	 byte	 may	 contain	
an error (the corresponding character contained a
Manchester and/or parity error). This bit drives the
RX_Error	interrupt.

●	 Last_Byte	bit:	Indicates	that	the	byte	is	the	last	byte	in	
a message (the corresponding character was a stop
character and was stored as a null byte).

Message Exceptions
If a message is not framed with a valid preamble, then the
UART ignores the data and does not store it.
If a message is not framed with a stop character, then
the preamble of the next message serves to delineate
between	the	two	messages.	However,	 the	first	message	
has no stop character stored.
If the UART receives a preamble followed by a stop
character it stores a null message in the receive buffer
consisting of a single null byte (00h). This occurs when
a keep-alive stop character is received after Transmit
Preambles mode is disabled. In this use case, the receive

Figure 12. Receive Buffer Memory Map

RECEIVE BUFFER MEMORY MAP

EACH MESSAGE IS
VARIABLE LENGTH

AVAILABLE
(EMPTY)

FIRST BYTE OF MESSAGE 2

DATA TO HOSTRX_RD_POINTER

RX_NXT_MESSAGE

RX_WR_POINTER FIRST BYTE OF MESSAGE 3

DATA FROM UART

AVAILABLE
(EMPTY)

1 1 1 1 1 0

0 0 0 0 0 0

MESSAGE 1
(ALREADY READ)

8 BITS

MESSAGE 2
(BEING READ)

PART OF
MESSAGE 3
(BEING LOADED
BY UART)

Maxim Integrated │ 17

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

buffer is not empty. The host should dispense of the null
message by either clearing the receive buffer or by simply
reading the null message and discarding it.
A receive buffer overflow occurs when the UART receives
data but there is no more space to store it. This could
potentially	 occur	 if	 TX_Unlimited	was	 set	 or	 if	 there	was	
sufficient latency in the daisy-chain. The UART cannot
overtake the read pointer and overwrite the data being

read so the last address that can be written is the one just
behind the read pointer. If more data is received after the
last address is written, the UART simply overwrites the last
address	 and	 then	 sets	 the	 RX_Overflow_Status	 bit.	 The	
RX_Overflow_Status	bit	is	cleared	when	the	receive	buffer	
is read, thereby creating more write space. To detect any
overflow, the status must be checked before servicing the
receive buffer. After servicing the receive buffer, the status

Table 9. SPI Transactions
REGISTER TRANSACTIONS

ADDRESS NAME DESCRIPTION
0x01 to 0x1B and 0x95 to 0x9B See the Register Table Reads	or	writes	the	specified	ASCI	register
BUFFER TRANSACTIONS
COMMAND START LOCATION DESCRIPTION

0x20 — CLR_TX_BUF	Command:	Resets	the	transmit	buffer	to	its	default	state	and	clears	
TX_Q	and	LD_Q.

0x91 RX_RD_
Pointer

RD_MSG	Command:	Reads	the	receive	buffer	starting	at	the	address	RX_RD_
Pointer. Automatically increments the read pointer after the byte is read but does
not increment the read pointer into the next message.

0x93 RX_NXT_MSG_
Pointer

RD_NXT_MSG	Command:	Reads	the	receive	buffer	starting	at	the	address	RX_
NXT_MSG_Pointer	(oldest	unread	message).	Automatically	increments	the	read	
pointer after the byte is read but does not increment the read pointer into the next
message.

0xB0 LD_Q	Location	0

WR_NXT_LD_Q	Command:	Increments	LD_Q,	then	writes	the	transmit	buffer	
load queue. The increment occurs whether the host loads the data or not. The
command	byte	defines	the	first	location	to	be	written	(locations	0	to	6).	For	
example, 0xB0 starts writing at location 0 and continues through location 6. Writes
beyond	location	6	have	no	effect.	

0xB2 LD_Q	Location	1
0xB4 LD_Q	Location	2
0xB6 LD_Q	Location	3
0xB8 LD_Q	Location	4
0xBA LD_Q	Location	5
0xBC LD_Q	Location	6
0xC0 LD_Q	Location	0

WR_LD_Q	Command:	Writes	the	transmit	buffer	load	queue.	The	command	byte	
defines	the	first	byte	written	(locations	0	to	6).	For	example,	0xC0	starts	writing	
at location 0 and continues through location 6. Writes beyond location 6 have no
effect.

0xC2 LD_Q	Location	1
0xC4 LD_Q	Location	2
0xC6 LD_Q	Location	3
0xC8 LD_Q	Location	4
0xCA LD_Q	Location	5
0xCC LD_Q	Location	6
0xC1 LD_Q	Location	0

RD	_LD_Q	Command:	Reads	transmit	buffer	load	queue.	The	command	byte	
defines	the	first	byte	read	(locations	0	to	6).	For	example,	0xC1	starts	reading	
at location 0 and continues through location 6. Reading beyond location 6 reads
zeros.

0xC3 LD_Q	Location	1
0xC5 LD_Q	Location	2
0xC7 LD_Q	Location	3
0xC9 LD_Q	Location	4
0xCB LD_Q	Location	5
0xCD LD_Q	Location	6

0xE0 — CLR_RX_BUF	Command:	Resets	the	receive	buffer	and	the	receive	buffer	
pointers to their default state.

Maxim Integrated │ 18

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

should be checked again for data errors (e.g., parity errors)
prior to initiating transmission of the next message.
If multiple messages are received without being read,
then	an	overflow	can	occur	and	the	UART	sets	the	RX_
Overflow_Status	 bit.	This	 occurs	when	 the	write	 pointer	
has incremented until it is one less than the read pointer,
at which point the UART no longer increments it. In this
case, the last data byte is overwritten.

Reading Messages
The host can use two different SPI transactions to read
the receive buffer:
●	 RD_RX_BUF	(91h):	Starts	reading	at	the	current	read	

pointer location
●	 RD_NXT_MSG	(93h):	Starts	reading	at	the	start	of	the	

next unread message
During	any	read	transaction,	the	host	may	continue	read-
ing data until the end of the message, after which the data
read will be 00h. The host cannot continue reading into
the next message, if there is one.
During	 any	 read	 transaction,	 the	 UART	 increments	 the	
read pointer after the data byte is read so that if the SPI
transaction is prematurely terminated in the middle of
the byte, then the same location is resent on the next
RD_MSG	SPI	transaction.	This	allows	the	host	to	stop	a	
read	and	 restart	 it	without	 losing	data.	Each	byte	 in	 the	
buffer is cleared after it is read and is eventually available
to the UART for storing incoming data.

Applications Information
Transaction Sequence for UART Initialization
In the example shown in Table 10,	the	host	initializes	com-
munication with two UART slave devices. SHDN must be
deasserted	first.	Transactions	to	poll	RX_STATUS	regis-
ter are repeated until the poll is successful or times out.
It is recommended that all writes to configuration registers
be verified by reading back the register data. Transmit
buffer data can be verified by reading the buffer contents
or by reading the transmitted data in the receive buffer.

Transaction Sequence for UART Write and
Read
In the example shown in Table 11, the host communicates
with two UART slave devices to:
●	 Write	the	value	B2B1h	to	the	device	register	address	

0x12	 for	 all	 slave	 devices	 using	 a	WRITEALL	 com-
mand sequence

●	 Read	back	 the	value	B2B1h	 from	the	device	register	
address	 0x12	 for	 all	 slave	 devices	 using	 READALL	
command sequence.

This example assumes that the slave devices have been
configured with the alive counter enabled. To execute
these two command sequences, the host performs the
SPI transactions listed in Table 11.

Table 10. UART Daisy-Chain Initialization Sequence
DIN DOUT DESCRIPTION

TRANSACTION 1 Enable	Keep-Alive	mode	(prior	to	the	UART	slave	wake-up	to	prevent	shutdown)
10h xxh Write	Configuration	3	register
05h xxh Set keep-alive period to 160µs

TRANSACTION 2 Enable	Rx	Interrupt	flags	for	RX_Error	and	RX_Overflow
04h xxh Write	RX_Interrupt_Enable	register
88h xxh Set	the	RX_Error_INT_Enable	and	RX_Overflow_INT_Enable	bits

TRANSACTION 3 Clear	receive	buffer
E0h xxh Clear	receive	buffer

TRANSACTION 4 Wake-up UART slave devices (transmit preambles)
0Eh xxh Write	Configuration	2	register
30h xxh Enable	Transmit	Preambles	mode	

TRANSACTION 5 Wait	for	all	UART	slave	devices	to	wake	up	(poll	RX_Busy_Status	bit)
01h xxh Read	RX_Status	register	(RX_Busy_Status	and	RX_Empty_Status	should	be	true)
xxh 21h If	RX_Status	=	21h,	continue.	Otherwise,	repeat	transaction	until	true	or	timeout.

TRANSACTION 6 End	of	UART	slave	device	wake-up	period
0Eh xxh Write	Configuration	2	register
10h xxh Disable	Transmit	Preambles	mode

Maxim Integrated │ 19

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Table 10. UART Daisy-Chain Initialization Sequence (continued)
DIN DOUT DESCRIPTION

TRANSACTION 7 Wait	for	null	message	to	be	received	(poll	RX_Empty_Status	bit)
01h xxh Read	RX_Status	register

TRANSACTION 8 Clear	transmit	buffer
20h xxh Clear	transmit	buffer

TRANSACTION 9 Clear	receive	buffer
E0h xxh Clear	receive	buffer

TRANSACTION 10 Load	the	HELLOALL	command	sequence	into	the	load	queue
C0h xxh WR_LD_Q	SPI	command	byte	(write	the	load	queue)
03h xxh Message length
57h xxh HELLOALL	command	byte
00h xxh Register address (0x00)
00h xxh Initialization	address	of	HELLOALL

TRANSACTION 11 Verify	contents	of	the	load	queue
C1h xxh RD_LD_Q	SPI	command	byte
xxh 03h OK
xxh 57h OK
xxh 00h OK
xxh 00h OK

TRANSACTION 12 Transmit	HELLOALL	sequence
B0h xxh WR_NXT_LD_Q	SPI	command	byte	(write	the	next	load	queue)

TRANSACTION 13 Poll	RX_Stop_Status	bit
01h xxh Read	RX_Status	register
xxh 12h If	RX_Status[1]	is	true,	continue.	If	false,	then	repeat	transaction	until	true.

TRANSACTION 14 Service	receive	buffer.	Read	the	HELLOALL	message	that	propagated	through	the	daisy-chain	and	was	
returned back to the ASCI. The host should verify the device count.

93h xxh RD_NXT_MSG	SPI	transaction
xxh 57h Sent	command	byte	(HELLOALL)
xxh 00h Sent address = 00h
xxh 02h Returned address = 02h

TRANSACTION 15 Check	for	receive	buffer	errors
09h xxh Read	RX_Interrupt_Flags	register
xxh 00h If	no	errors,	continue.	Otherwise,	clear	and	go	to	error	routine.

Maxim Integrated │ 20

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Table 11. Transaction Sequence for UART Write and Read
SPI DIN SPI DOUT DESCRIPTION

TRANSACTION 1 		Load	the	WRITEALL	command	sequence	into	the	load	queue
C0h xxh WR_LD_Q	SPI	command	byte
06h xxh Message length = 6
02h xxh WRITEALL	command	byte
12h xxh Register address of the device
B1h xxh LS	byte	of	register	data	to	be	written
B2h xxh MS byte of register data to be written
C4h xxh PEC	byte	for	02h,	12h,	B1h,	B2h
00h xxh Alive-counter byte (seed value = 0)
TRANSACTION 2 		Start	transmitting	the	WRITEALL	sequence	from	the	transmit	queue
B0h xxh WR_NXT_LD_Q	SPI	command	byte
TRANSACTION 3 Check	if	a	message	has	been	received	into	the	receive	buffer
01h xxh Read	RX_Status	register
xxh 12h If	RX_Status[1]	is	true,	continue.	Otherwise,	repeat	until	true	or	timeout.
TRANSACTION 4 Read	receive	buffer	to	verify	the	sent	WRITEALL	message
93h xxh RD_NXT_MSG	SPI
xxh 02h Sent	command	byte	(WRITEALL)
xxh 12h Sent address
xxh B1h Sent	LS	byte
xxh B2h Sent MS byte
xxh C4h Sent	PEC
xxh 02h Alive-counter	byte	(=	sent	seed	+	2,	if	alive	counter	enabled)
TRANSACTION 5 Check	for	receive	buffer	errors
09h xxh Read	RX_Interrupt_Flags	register
xxh 00h If	no	errors,	continue.	Otherwise,	clear	and	go	to	error	routine.
TRANSACTION 6 Load	the	READALL	command	sequence	into	the	load	queue
C0h xxh WR_NXT_LD_Q	SPI	command	byte
09h xxh Message	length	(5	+	2	x	n	=	9)
03h xxh READALL	command	byte
12h xxh Register address
00h xxh Data-check	byte	(seed	value	=	00h)
CBh xxh PEC	byte	for	bytes	03h,	12h,	00h
00h xxh Alive-counter byte (seed value = 00h)
TRANSACTION 7 Start	transmitting	the	READALL	sequence
B0h xxh WR_NXT_LD_Q	SPI	command	byte
TRANSACTION 8 Check	if	a	message	has	been	received	into	the	receive	buffer
01h xxh Read	the	RX_Status	register
xxh 12h If	RX_Status[1]	is	true,	continue.	Otherwise,	repeat	until	true	or	timeout.

Maxim Integrated │ 21

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Error Checking
It	is	highly	recommended	that	the	host	utilize	the	various	
error checking features available in both the ASCI and the
battery management UART protocol to ensure the integ-
rity of the data being received. The host should implement
the following verifications:
●	 Verification	 of	 write	 data	 received	 (matching	 values,	

number of bytes)
●	 Verification	 of	 read	 data	 received	 (allowed	 values,	

ranges, number of bytes)
●	 Verification	 of	 the	 received	 PEC,	 data-check,	 and	

alive-counter bytes
●	 Verification	of	ASCI	FMEA	register
●	 Verification	 of	 the	 ASCI	 status	 bits	 (RX_Error_

Status,	 RX_Overflow_Status,	 TX_Overflow_Status,	
POR_Flag)

Corrupted Preamble Character
If the preamble for a message is corrupted, none of the
message is entered into the receive buffer. To detect
this failure mode, the host should always verify that any
message that it transmitted was also received into the
receive buffer. In the case where the host is polling a
register (identical messages) then the host can uniquely

identify each message sent by sending up to 256 different
seed values for the alive-counter byte. The host should
increment the seed value every time a message is sent
by the host so that its propagation through the daisy chain
can be verified in the received data. The alive-counter
byte	is	sent	after	the	PEC	byte	and	therefore	the	PEC	is	
not affected.

Corrupted Message Content
Manchester,	 parity,	 and	 PEC	 errors	 are	 indications	 that	
the data in the message may have been corrupted. For
each UART message received, the host should perform
the appropriate computations on any error-checking bytes
that may be available in the received message:
●	 Data-Check	 byte:	 Error	 status	 provided	 by	 the	 slave	

device(s);	sent	and	returned	on	reads	of	slave	device	
data as described in the slave device data sheet.

●	 PEC	byte:	CRC-8	packet	error-checking	byte	provided	
by	 the	 slave	device(s);	 sent	 and	 returned	with	 every	
message as described in the slave device data sheet.

●	 Alive-Counter	 byte:	 Used	 to	 verify	 the	 number	 of	
devices	responding	to	a	transmitted	message;	can	be	
sent and received with every message as described in
the slave device data sheet.

Table 11. Transaction Sequence for UART Write and Read (continued)
SPI DIN SPI DOUT DESCRIPTION

TRANSACTION 9 Read	the	receive	buffer	and	verify	that	the	device	register	data	is	what	was	written	during	the	
WRITEALL	sequence

93h xxh RD_NXT_MSG	SPI	command	byte
xxh 03h Sent	command	byte	(READALL)
xxh 12h Sent register address
xxh B1h LS	byte	of	device	1
xxh B2h MS byte of device 1
xxh B1h LS	byte	of	device	0
xxh B2h MS byte of device 0
xxh 00h Data-check	byte	(=	00h	if	all	status	bits	have	been	cleared)
xxh 67h PEC	(for	the	previous	7	bytes)
xxh 02h Alive-counter	byte	(=	sent	seed	+	2,	if	alive	counter	is	enabled)

TRANSACTION 10 Check	for	receive	buffer	errors
09h xxh Read	RX_Interrupt_Flags	register
xxh 00h If	no	errors,	continue.	Otherwise,	clear	and	go	to	error	routine.

Maxim Integrated │ 22

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

The	host	should	also	set	the	ASCI’s	RX_Error_INT_Enable	
bit. If, in the course of reading the receive buffer, the ASCI
sets	the	RX_Error_INT_Flag,	it	means	that	the	UART	had	
detected a Manchester and/or parity error in at least one
of the received characters in the message. Because
Manchester and parity errors can be introduced anywhere
in	the	UART	data	stream,	the	errors	denoted	by	the	RX_
Error_INT_Flag	are	not	necessarily	 reflected	 in	 the	error-
checking bytes returned by the slave device(s). Therefore,
the host should check and clear this flag after (but not
before) reading each message in the receive buffer.

Corrupted or Missing Stop Character
If a stop character is corrupted or missing, there is no data
loss because the message is still framed either by a sub-
sequent valid stop character (that is automatically sent in
Keep-Alive	mode)	or	by	the	preamble	of	the	next	UART	mes-
sage. A corrupted stop character can be interpreted as a data
character and would be stored as such in error. In this case,
if a valid stop character is eventually received before the next
preamble, the message length is one byte too long. The host
should check for this condition by computing the received
message length and comparing it to the expected message
length.
Before reading the next message, the host should also check
the	RX_Byte	register	to	verify	that	the	last	character	received	
was a valid stop character, in which case all of the following
are true:
1) The last byte in the message is a null byte (00h).
2)	 The	Last_Byte	bit	is	set.
3)	 The	Byte_Error	bit	is	cleared.
If	a	stop	character	was	not	 received	 then	 the	Last_Byte	
bit is not set.

Unintended Preamble
The presence of an unintended preamble in the middle
of a message creates an unintended message in the
receive buffer. If the unintended preamble is the result of a

corrupted data character within a message, then the mes-
sage is prematurely terminated and a second, unexpected
message is created. This event can be detected by
comparing the number of received bytes in the message
to the expected number.

Unintended Stop Character
The presence of an unintended stop character prema-
turely terminates the message. This is detected by com-
paring the number of received bytes in the message to the
expected number.

UART Physical Layer
Single-Ended Mode
By default, UART ports are configured for differential
communication. For single-ended operation, the host can
set	the	Single_Ended_Mode	configuration	bit.	This	mode	
enables the UART to receive a single-ended signal by
shifting	the	input	threshold	negative	so	that	zero	differen-
tial voltage is a logic one. The RXP input is connected to
ground	and	 the	RXN	 input	 receives	 the	 inverted	 signal,	
just as it does for differential mode. In this mode, the Tx
port operates the same as in differential mode.

Figure 13. Single-Ended Mode

1.5kΩ

RXP

RXN

GNDL

15pF

Maxim Integrated │ 23

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

UART Transformer Coupling
The UART signals can be transformer-coupled because
of	the	DC-balanced	signaling.	Placing	an	isolation	trans-
former between the UART’s transmitter and the slave
device’s receiver provides common-mode isolation for
the case where the slave device is operating at a different
voltage level.
When no data is being transmitted (idle state), the trans-
mitter drives both outputs to a logic low level to prevent
any current flow through the transformer winding.

A common-mode noise filter can be implemented by
capacitively coupling the center tap of the transformer on
the transmitter side to the UART ground. Any common-
mode noise that passes through the transformer is effec-
tively shunted to ground.

UART Supplemental ESD Protection
The UART transmitter and receiver, with supplemental
protection diodes as shown in the application circuits, can
be	used	for	enhanced	ESD	protection.	The	diodes	should	
be placed as close as possible to the external connector.

Figure 14. Transformer Coupling of UART Signals

Figure 15. Supplemental ESD Protection for UART Transmitter Figure 16. Supplemental ESD Protection for UART Receiver
(Shown with Capacitive Coupling)

RXLP

MAX178XX
BATTERY MANAGEMENT
DEVICE

MAX17841B

1.5kΩ47Ω

47Ω

1.5kΩ

15pF

15pF

RXLN

GNDL

TXP

TXN

GNDL

10nF

TXP
47Ω

47Ω
TXN

GNDL

PESD1CAN

RXP
1.5kΩ

1.5kΩ

100kΩ100kΩ

1nF
600V

15pF
50V

15pF
50V

1nF
600V

RXN

GNDL
PESD1CAN

Maxim Integrated │ 24

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Figure 17. ESD Diode Diagram

AGND

SHDN

DCIN

DOUT

VAA

GNDL

CTG

TXP, TXN

VDDL

RXP, RXN

CS, SCLK,
DIN, INT

ALL DIODES ARE RATED FOR ESD CLAMPING CONDITIONS. THEY ARE NOT INTENDED
TO ACCURATELY CLAMP DC VOLTAGE. ALL DIODES SHOWN HAVE A PARASITIC
PN DIODE FROM THEIR CATHODE TO AGND THAT IS OMITTED FOR CLARITY.
THIS PARASITIC DIODE HAS ITS ANODE AT AGND.

MAX17841B ESD DIODES

Internal ESD Protection

Maxim Integrated │ 25

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

READ ADDRESS WRITE ADDRESS DEFAULT VALUE NAME
0x01 NA 11h RX_Status
0x03 NA 13h TX_Status	
0x05 0x04 00h RX_Interrupt_Enable
0x07 0x06 00h TX_Interrupt_Enable	
0x09 0x08 00h RX_Interrupt_Flags
0x0B 0x0A 80h TX_Interrupt_Flags
0x0D 0x0C 60h Configuration_1
0x0F 0x0E 10h Configuration_2
0x11 0x10 0Fh Configuration_3
0x13 NA 00h FMEA
0x15 NA 84h Model
0x17 NA 12h Version
0x19 NA 01h RX_Byte
0x1B NA 3Eh RX_Space
0x95 NA 00h TX_Queue_Selects
0x97 NA 00h RX_Read_Pointer
0x99 NA 01h RX_Write_Pointer
0x9B NA 00h RX_Next_Message

RX_STATUS REGISTER
ADDRESS BITS DEFAULT NAME DESCRIPTION

0x01
(Read)
(Note	1)

7 0 RX_Error_Status

The	data	byte	at	location	RX_RD_Pointer	may	
contain an error (the corresponding character
contained a Manchester and/or parity error). This
bit is set when the byte is read, not when the byte is
received or written.

6 0 Reserved Always	reads	logic	zero.
5 0 RX_Busy_Status The UART is busy receiving data.
4 1 RX_Idle_Status The UART is not receiving data.

3 0 RX_Overflow_Status

The	data	byte	at	location	RX_WR_POINTER	in	the	
receive	buffer	was	overwritten	because	the	receive	
buffer	was	full.	Cleared	when	the	receive	buffer	is	not	
full	(when	the	buffer	is	read).

2 0 RX_Full_Status
The	number	of	empty	bytes	in	the	receive	buffer	is	
less than the length of the message in the transmit
queue.

1 0 RX_STOP_Status

The	UART	has	finished	receiving	a	properly	framed	
message (stop character) and it is ready to be read.
The UART clears this bit after all unread messages
have been read or if the UART detects a new
preamble character. The UART does not set this bit if
the	buffer	is	empty	and	it	receives	a	stop	character.

0 1 RX_Empty_Status The	receive	buffer	is	cleared	and	contains	no	unread	
data	(RX_RD_Pointer	=	RX_WR_Pointer	-	1).

Register Table

Maxim Integrated │ 26

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

TX_STATUS REGISTER
ADDRESS BITS DEFAULT NAME DESCRIPTION

0x03
(Read)
(Note	1)

7 0 Reserved Always	reads	logic	zero.
6 0 Reserved Always	reads	logic	zero.
5 0 TX_Busy_Status The UART is busy transmitting data.
4 1 TX_Idle_Status The UART is not transmitting data.

3 0 TX_Overflow_Status
LD_Q	could	not	be	incremented	because	the	next	
queue contained untransmitted data. Any writes in
this state overwrite the load queue.

2 0 TX_Full_Status All	queues	in	the	transmit	buffer	are	full	except	the	
load	queue	(LD_Q	=	TX_Q	-	1).

1 1 TX_Available_Status One	or	more	queues	in	the	transmit	buffer	are	
available	for	loading	(TX_Full_Status	is	false).

0 1 TX_Empty_Status All	the	queues	in	the	Transmit	Buffer	are	cleared	and	
available	for	loading	(LD_Q	=	TX_Q).

RX_INTERRUPT_ENABLE REGISTER

0x04 (Write)
0x05 (Read)

7 0 RX_Error_INT_Enable Interrupt	enable	for	RX_Error_Status
6 0 Reserved Always	reads	logic	zero.
5 0 RX_Busy_INT_Enable Interrupt	enable	for	RX_Busy_Status
4 0 RX_Idle_INT_Enable Interrupt	enable	for	RX_Idle_Status
3 0 RX_Overflow_INT_Enable Interrupt	enable	for	RX_Overflow_Status
2 0 RX_Full_INT_Enable Interrupt	enable	for	RX_Full_Status
1 0 RX_Stop_INT_Enable Interrupt	enable	for	RX_Stop_Status
0 0 RX_Empty_INT_Enable Interrupt	enable	for	RX_Empty_Status

TX_INTERRUPT_ENABLE REGISTER

0x06 (Write)
0x07 (Read)

7:6 00 Reserved Always	reads	logic	zero.
5 0 TX_Busy_INT_Enable Interrupt	enable	for	TX_Busy_Status
4 0 TX_Idle_INT_Enable Interrupt	enable	for	TX_Idle_Status
3 0 TX_Overflow_INT_Enable Interrupt	enable	for	TX_Overflow_Status
2 0 TX_Full_INT_Enable Interrupt	enable	for	TX_Full_Status
1 0 TX_Available_INT_Enable Interrupt	enable	for	TX_Not_Full_Status
0 0 TX_Empty_INT_Enable Interrupt	enable	for	TX_Empty_Status

Register Table (continued)

Maxim Integrated │ 27

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

RX_INTERRUPT_FLAG REGISTER
ADDRESS BITS DEFAULT NAME DESCRIPTION

0x08 (Write)
0x09 (Read)
(Notes	2,	3)

7 0 RX_Error_INT_Flag Interrupt	flag	for	RX_Error_Status
6 0 Reserved Always	reads	logic	zero.
5 0 RX_Bus_	INT_Flag Interrupt	flag	for	RX_Busy_Status
4 0 RX_Idle_INT_Flag Interrupt	flag	for	RX_Idle_Status
3 0 RX_Overflow_INT_Flag Interrupt	flag	for	RX_Overflow_Status
2 0 RX_Full_INT_Flag Interrupt	flag	for	RX_Full_Status
1 0 RX_Stop_INT_	Flag Interrupt	flag	for	RX_Stop_Status
0 0 RX_Empty_INT_Flag Interrupt	flag	for	RX_Empty_Status

TX_INTERRUPT_FLAG REGISTER

0x0A (Write)
0x0B (Read)
(Notes	2,	3)

7 1 POR_Flag
Set by power-on-reset event and cleared only by
writing	to	logic	zero.	Has	no	effect	on	state	of	the	INT
pin.

6 0 Reserved Always	reads	logic	zero.
5 0 TX_Busy_INT_Flag Interrupt	flag	for	TX_Busy_Status
4 0 TX_Idle_INT_Flag Interrupt	flag	for	TX_Idle_Status
3 0 TX_Overflow_INT_Flag Interrupt	flag	for	TX_Overflow_Status
2 0 TX_Full_INT_Flag Interrupt	flag	for	TX_Full_Status
1 0 TX_Available_INT_Flag Interrupt	flag	for	TX_Available_Status
0 0 TX_Empty_INT_Flag Interrupt	flag	for	TX_Empty_Status

CONFIGURATION_1 REGISTER

0x0C (Write)
0x0D	(Read)

7 0 Single_Ended_Mode

Enables	the	UART	to	receive	a	single-ended	
signal	by	shifting	the	input	threshold	negative	(zero	
differential	voltage	is	a	logic	one).	In	this	mode,	the	
RXP input should be connected to ground and the
RXN	input	should	receive	the	inverted	signal,	same	
as	for	differential	mode.	In	this	mode,	the	Tx	port	
operates	the	same	as	in	differential	mode.	Default	is	
differential	mode.

6:5 11 Baud_Rate	[1:0]

Configures	the	UART	baud	rate	as	follows:
00 = 500kbps
01 = 500kbps
10 = 1Mbps
11 = 2Mbps (default)

4:0 0 Device_Count	[4:0] Not	used	by	the	ASCI.	Can	be	used	by	the	host	to	
store the device count or for general-purpose use.

Register Table (continued)

Maxim Integrated │ 28

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

CONFIGURATION_2 REGISTER
ADDRESS BITS DEFAULT NAME DESCRIPTION

0x0E	(Write)
0x0F (Read)

7 0 RX_Raw_Data

Receive	Raw	Data	Mode:	Disables	Manchester	
decoding of the received data. In this mode, there is
one data byte stored for every one character received
(instead of every two received).

6 0 TX_Raw_Data

Transmit	Raw	Data	Mode:	Disables	Manchester	
encoding of transmitted data. In this mode, each data
byte is transmitted as one character (instead of two
characters).

5 0 TX_Preambles
Transmit Preambles Mode: Transmits preambles
continuously. This mode takes precedence over all
transmit modes except Transmit Pause mode.

4 1 TX_Queue

Transmit	Queue	Mode:	Enables	transmission	of	the	
message	loaded	in	the	Transmit	Queue	IF	1)	there	is	
sufficient	space	in	the	Receive	Buffer	for	the	message	
(RX_Full_Status	is	false)	OR	2)	the	limitations	on	
message	length	are	removed	(TX_Unlimited	is	set).	

3 0 TX_Odd_Parity

Transmit	Odd	Parity	Mode:	Transmits	characters	with	
odd parity. Since the UART protocol uses even parity,
this mode can be used to test the system’s ability to
detect	parity	errors.	Even	parity	is	default.

2 0 TX_Pause

Transmit Pause Mode: Places the transmitter into
idle	state	once	the	UART	has	finished	transmitting	
the	current	byte,	however,	the	TX_Busy_Status	and	
TX_Idle_Status	bits	remain	unchanged.	Transmission	
resumes	when	this	bit	is	cleared.	Note:	This	mode	
takes precedence over all other transmit modes
(Transmit	Preambles,	Transmit	Queue,	and	Keep-
Alive modes).

1 0 TX_No_Stop

Transmit	No	Stop	Mode:	Transmits	messages	without	
a stop character. By sending subsequent messages
with	the	TX_No_Preamble	bit	set,	a	framed	message	
of	indefinite	length	can	be	constructed.	The	
TX_Unlimited	bit	must	be	set	for	messages	greater	
than 62 bytes.

0 0 TX_No_Preamble

Transmit	No	Preamble	Mode:	Transmits	messages	
without	a	preamble.	By	first	sending	a	message	in	
which	the	TX_No_Stop	bit	is	set	and	then	sending	
messages with this bit set, a framed message of
indefinite	length	can	be	constructed.	However,	if	
the preceding message is terminated with a stop
character (end of frame), then the data sent in this
mode is unframed (no preamble) and is not stored in
the	receive	buffer.	

Register Table (continued)

Maxim Integrated │ 29

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Register Table (continued)
CONFIGURATION_3 REGISTER

ADDRESS BITS DEFAULT NAME DESCRIPTION

0x10 (Write)
0x11

(Read

7 0 Reserved Always	reads	logic	zero.
6 0 Reserved Always	reads	logic	zero.

5 0 TX_Unlimited

In this mode, the transmit queue automatically limits
the message length to 255 bytes instead of the
default 62-byte limit, and the message transmission is
permitted even if the message length is greater than
the	available	write	space	in	the	receive	buffer.

4 0 DOUT_Enable	 SPI	Output	Enable:	Asserts	DOUT	pin.	Default	is	
three-stated.

3:0 1111 Keep_Alive	[3:0]

Keep-Alive	Mode:	Periodically	sends	a	stop	character	
to prevent slave devices from shutting down during
periods of no communication (idle state). The idle
time in between the periodic stop characters is based
on	the	4-bit	value	below.	The	default	setting	is	infinite	
(mode	disabled).	Note:	the	Transmit	Pause,	Transmit	
Preambles,	and	the	Transmit	Queue	modes	take	
precedence over this mode.
0000 = 0µs
0001 = 10µs
0010 = 20µs
0011 = 40µs
0100 = 80µs
0101 = 160µs
0110	=	320µs
0111 = 640µs
1000 = 1.28ms
1001 = 2.56ms
1010 = 5.12ms
1011 = 10.24ms
1111	=	Infinite	delay/disabled	(default)

FMEA REGISTER

0x13	(Read)

7:3 00000 Reserved Always reads logic 0.
2 0 AGND_Alert Indicates	VAGND	-	VGNDL	>	0.2V
1 0 VDDL_Alert	 Indicates	VAA	-	VDDL	>	0.3V
0 0 GNDL_Alert Indicates	VGNDL	-	VAGND	>	0.2V

MODEL REGISTER
0x15 (Read) 7:0 10000100 Model	[11:4] First	two	digits	of	the	Model	Number	(84h)

VERSION REGISTER

0x17 (Read)
7:4 0001 Model	[3:0] Last	digit	of	the	Model	Number	(1h)
3:0 0010 Version	[3:0] Mask revision (2)

Maxim Integrated │ 30

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

Note 1: A status bit is set when its corresponding condition is true and is cleared when the condition is false.
Note 2:	 An	interrupt	flag	(except	the	POR_Flag)	is	set	only	when	its	interrupt	enable	bit	is	true	and	its	corresponding	status	bit	goes	

from	a	logic	zero	state	to	logic	one	state.	The	flag	can	only	be	cleared	by	writing	it	to	a	logic	zero.		If	the	status	bit	is	true	
when the flag enable is set or when the flag is cleared, the flag remains cleared until the status bit transitions from a logic
zero	state	to	a	logic	one	state.

Note 3:	 If	any	interrupt	flag	(except	the	POR_Flag)	is	set,	then	the	INT pin is asserted (active low).

Register Table (continued)
RX_BYTE REGISTER

ADDRESS BITS DEFAULT NAME DESCRIPTION

0x19 (Read)

7:3 00000 Reserved Always	reads	logic	zero.

2 0 First_Byte
The	byte	at	location	RX_RD_Pointer	is	the	first	data	
byte in a message (the corresponding character was
preceded by preamble character).

1 0 Byte_Error

The	byte	at	location	RX_RD_Pointer	may	contain	
an error (the corresponding character contained a
Manchester and/or parity error). This bit drives the
RX_Error	interrupt.

0 0 Last_Byte
The	byte	at	location	RX_RD_Pointer	is	the	last	byte	in	
a message (the corresponding character was a stop
character and was stored as a null byte).

RX_SPACE REGISTER

0x1B (Read) 7:0 00111110 RX_Space	[7:0] Number	of	available	bytes	in	the	receive	buffer.	
Default	is	62	bytes	(3Eh).

TX_QUEUE_SELECTS REGISTER

0x95 (Read)

7:4 0000 Reserved Always	reads	logic	zero.

3:2 00 TX_Q	[1:0]
Transmit	Queue	Select:	Addresses	one	of	four	
queues	in	the	transmit	buffer	that	the	UART	has	
selected for message transmission (sending).

1:0 00 LD_Q	[1:0]
Load	Queue	Select:	Addresses	one	of	four	queues	
in	the	transmit	buffer	that	the	host	has	selected	for	
message loading (writing).

RX_READ_POINTER REGISTER

0x97 (Read) 7:0 00h RX_RD_Pointer	[7:0]
Receive	Buffer	Read	Pointer:	The	location	in	the	
receive	buffer	that	the	host	is	to	read.	The	UART	
automatically increments this pointer.

RX_WRITE_POINTER REGISTER

0x99 (Read) 7:0 01h RX_WR_Pointer	[7:0]
Receive	Buffer	Write	Pointer:	The	location	in	the	
receive	buffer	that	is	written	by	the	UART	as	it	
receives data.

RX_NEXT_MESSAGE REGISTER

0x9B (Read) 7:0 00h RX_NXT_MSG_
Pointer	[7:0]

Receive	Buffer	Next	Message	Pointer:	The	start	of	
the	next	unread	message	in	the	receive	buffer.	The	
RX_RD_Pointer	is	loaded	with	this	value	by	the	
RD_NXT_MSG	SPI	transaction.

Maxim Integrated │ 31

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

+Denotes a lead(Pb)-free/RoHS-compliant package.
/V denotes an automotive qualified part.

PACKAGE
TYPE

PACKAGE
CODE

OUTLINE
NO.

LAND
PATTERN NO.

16	TSSOP U16+1 21-0066 90-0117

Ordering Information
PART TEMP RANGE PIN-PACKAGE

MAX17841BGUE+ -40°C	to	+105°C 16	TSSOP
MAX17841BGUE/V+ -40°C	to	+105°C 16	TSSOP

Package Information
For the latest package outline information and land patterns
(footprints), go to www.maximintegrated.com/packages.	Note	
that	a	“+”,	“#”,	or	“-”	in	the	package	code	indicates	RoHS	status	
only. Package drawings may show a different suffix character, but
the	drawing	pertains	to	the	package	regardless	of	RoHS	status.

Maxim Integrated │ 32

MAX17841B Automotive SPI Communication Interface (ASCI)

www.maximintegrated.com

http://pdfserv.maximintegrated.com/package_dwgs/21-0066.PDF
http://pdfserv.maximintegrated.com/land_patterns/90-0117.PDF
http://www.maximintegrated.com/packages

Revision History
REVISION
NUMBER

REVISION
DATE DESCRIPTION PAGES

CHANGED
0 9/13 Initial release —
1 2/14 Added MAX17842B to data sheet 1–33
2 1/15 Deleted	MAX17842B	from	data	sheet 1–33

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses
are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time. The parametric values (min and max limits)
shown in the Electrical Characteristics table are guaranteed. Other parametric values quoted in this data sheet are provided for guidance.

Maxim Integrated and the Maxim Integrated logo are trademarks of Maxim Integrated Products, Inc.

MAX17841B Automotive SPI Communication Interface (ASCI)

© 2015 Maxim Integrated Products, Inc. │ 33

For information on other Maxim Integrated products, visit Maxim Integrated’s website at www.maximintegrated.com.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Maxim Integrated:

 MAX17841BGUE/V+

https://www.mouser.com/maxim-integrated
https://www.mouser.com/access/?pn=MAX17841BGUE/V+

	General Description
	Applications
	Benefits and Features
	Simplified Operating Circuit
	Absolute Maximum Ratings
	Electrical Characteristics
	Pin Configuration
	Pin Description
	Detailed Description
	Serial Peripheral Interface (SPI)
	SPI Transactions
	Register Transactions
	Buffer Transactions
	SPI Timing

	UART Interface
	Battery Management UART Protocol
	UART Messages
	Preamble Character
	Stop Character
	Manchester Encoding
	Data Types
	Assigning Slave Device Addresses

	UART Operation
	UART Interrupts
	Transmit Buffer
	Transmit Buffer Queues
	Clearing the Transmit Buffer
	Message Length
	Writing the Load Queue
	Filling the Transmit Buffer
	Message Transmission
	Receive Buffer
	Clearing the Receive Buffer
	Receiving Messages
	Message Exceptions
	Reading Messages

	Applications Information
	Transaction Sequence for UART Initialization
	Transaction Sequence for UART Write and Read
	Error Checking
	Corrupted Preamble Character
	Corrupted Message Content
	Corrupted or Missing Stop Character
	Unintended Preamble
	Unintended Stop Character

	UART Physical Layer
	Single-Ended Mode
	UART Transformer Coupling
	UART Supplemental ESD Protection

	Internal ESD Protection

	Register Table
	Ordering Information
	Package Information
	Revision History
	LIST OF FIGURES
	Figure 1. SPI Timing Diagram (Example of Reading Register 0x1B with Data 80h and Transaction Terminated Prematurely)
	Figure 2. Receive UART Timing
	Figure 3. Transmit UART Timing
	Figure 4. UART Message Timing
	Figure 5. Functional Diagram
	Figure 6. System Data Flow
	Figure 7. UART Timing for a Preamble
	Figure 8. UART Timing for a Stop Character
	Figure 9. UART Timing for a Manchester-Encoded Data Nibble 0h
	Figure 10. UART Data Flow
	Figure 11. Transmit Buffer Memory Map
	Figure 12. Receive Buffer Memory Map
	Figure 13. Single-Ended Mode
	Figure 14. Transformer Coupling of UART Signals
	Figure 15. Supplemental ESD Protection for UART Transmitter
	Figure 16. Supplemental ESD Protection for UART Receiver (Shown with Capacitive Coupling)
	Figure 17. ESD Diode Diagram

	LIST OF TABLES
	Table 1. Internal Power Distribution
	Table 2. SPI Communication Summary
	Table 3. Message Data Types
	Table 4. Common Commands
	Table 5. UART Buffers
	Table 6. UART Operational Modes
	Table 7. Queue Memory Map
	Table 8. Example of Queue Loaded with Message HELLOALL
	Table 9. SPI Transactions
	Table 10. UART Daisy-Chain Initialization Sequence
	Table 11. Transaction Sequence for UART Write and Read

