Evaluates: MAXM17536 5V Output

General Description

The *Himalaya* series of voltage regulator ICs and power modules enable cooler, smaller, and simpler power-supply solutions. The MAXM17536EVKIT# 5V-output evaluation kit (EV kit) is a demonstration circuit of the MAXM17536 60V, 4A high-efficiency, current-mode, synchronous stepdown DC-DC switching power module. The EV kit operates over a wide input-voltage of 7V to 60V and provides up to 4A load current with a 5V-output voltage. The EV kit is programmed to switch at a frequency of 450kHz. The module is simple to use and easily configurable with minimal external components. It features cycle-by-cycle peak current-limit protection, undervoltage lockout (EN/UVLO), and thermal shutdown.

The EV kit comes with the compact 29-pin 15mm x 9mm x 4.32mm SiP package MAXM17536 module installed and is rated to operate over the full industrial -40°C to +125°C temperature range.

The MAXM17536 module data sheet provides a complete description of the part that should be read in conjunction with this data sheet prior to operating the EV kit. For full module features, benefits and parameters, refer to the MAXM17536 data sheet.

Features

- Wide 7V to 60V Input Range
- Highly Integrated Solution with Built-In Shielded Inductor
- Programmed 5V Output, Up To 4A Output Current
- 450kHz Switching frequency
- MAXM17536 Offers High 92.1% Efficiency (V_{IN} = 24V, V_{OUT} = 5V, I_{OUT} = 2.5A)
- All Ceramic Capacitors and Ultra-Compact Solution
- Selectable PWM, DCM, and PFM Modes
- Programmable 4ms Soft-Start Time and Prebias Startup
- Open-Drain RESET Output Pulled Up To 5V V_{CC}
- Programmable EN/UVLO Threshold
- Provision for External Frequency Synchronization
- Hiccup Overcurrent Protection (OCP)
- Overtemperature Protection (OTP)
- -40°C to +125°C Industrial Temperature Range
- Complies with CISPR22 (EN55022) Class B Conducted and Radiated Emissions

Quick Start

Recommended Equipment

- MAXM17536EVKIT# evaluation kit
- 7V to 60V DC, 4A power supply
- Dummy load capable of sinking 4A
- Digital voltmeter (DVM)
- 100MHz dual-trace oscilloscope

Equipment Setup and Test Procedure

The MAXM17536EVKIT# is fully assembled and tested. Follow the steps below to verify board operation. **Caution: Do not turn on the power supply until all connections are completed.**

- 1) Set the power supply at a voltage between 7V and 60V. Disable the power supply.
- 2) Connect the positive and negative terminals of the power supply to VIN and GND PCB pads, respectively.
- Connect the positive and negative terminals of the 4A load to VOUT and GND PCB pads, respectively. Set the load to 0A.
- 4) Connect the DVM across the VOUT PCB pad and the GND PCB pad.
- Verify that shunts are not installed on jumper J1 (see Table 1 for details).
- 6) Select the shunt position on jumper J2 according to the intended mode of operation (see Table 2 for details).
- 7) Enable the input power supply.
- 8) Verify that the DVM displays 5V.
- 9) Increase the load up to 4A to verify the output voltage is 5V using DVM.

Ordering Information appears at end of data sheet.

The MAXM17536EVKIT# is a proven circuit to demonstrate the high-voltage, high-efficiency, and compact solution size of the MAXM17536 synchronous step-down DC-DC power module. The output voltage is preset to 5V to operate from 7V to 60V input and provides up to 4A load current. The optimal frequency is set at 450kHz to maximize efficiency and minimize component size. The EV kit includes test points, for monitoring the $\overline{\text{RESET}}$, LX voltage, DL voltage, BST, and V_{CC} voltage.

Detailed Description of Hardware

Soft-Start Input (SS)

The MAXM17536 module implements adjustable soft-start operation to reduce inrush current. A capacitor connected from the SS pin to SGND programs the soft-start time. The selected output capacitance (C_{SEL}) and the output voltage (V_{OUT}) determine the minimum required soft-start capacitor as follows:

The soft-start time (t_{SS}) is related to the capacitor connected at SS (C_{SS}) by the following equation:

$$t_{SS} = C_{SS}/(5.55)$$

where t_{SS} is in ms and C_{SS} is in nF. For example, to program a 4ms soft-start time, a 22nF capacitor should be connected from the SS pin to SGND.

Regulator Enable/Undervoltage-Lockout Level (EN/UVLO)

The EV kit offers an adjustable input undervoltage-lockout level by resistor-dividers connecting between the IN, EN/UVLO, and GND pins. For normal operation, a shunt

should not be installed across pins 1-2 on J1 to enable the output through an internal pullup $3.32 M\Omega$ resistor from the EN/UVLO pin to the IN pin. To disable the output, install the shunt across pins 1-2 on J1 to pull the EN/UVLO pin to GND. See Table 1 for J1 setting details. The EV kit also provides an R3 resistor to program a UVLO threshold voltage at which an input-voltage level device turns on. The R3 resistor can be calculated by the following equation:

Evaluates: MAXM17536 5V Output

$$R3 = 3320 \times 1.215/(V_{INIJ} - 1.215)$$

where V_{INU} is the input voltage at which the device is required to turn on, and R3 is in $k\Omega$.

MODE/SYNC Selection (MODE)

The device's MODE pin can be used to select among the PWM, PFM, or DCM modes of operation. The logic state of the MODE pin is latched when the V_{CC} and EN/UVLO voltages exceed the respective UVLO rising thresholds and all internal voltages are ready to allow LX switching. State changes on the MODE pin are ignored during normal operation. Refer to the MAXM17536 module data sheet for more information on the PWM, PFM, and DCM modes of operation.

Table 2 lists J2 jumper settings that can be used to configure the desired mode of operation. The internal oscillator of the device can be synchronized to an external clock signal on the SYNC pin. The external synchronization clock frequency must be between 1.1 x f_{SW} and 1.4 x f_{SW} , where f_{SW} is the frequency of operation set by R4. The minimum external clock high pulse width should be greater than 50ns, while the minimum external clock low pulse width should be greater than 160ns.

Table 1. EN/UVLO Enable/Disable Configuration (J1)

SHUNT POSITION	EN PIN	MAXM17536_OUTPUT
1-2	Connected to GND	Disabled
Not installed*	Connected to the center node of resistor-divider $3.32 M\Omega$ and R3	Enabled, UVLO level set through the 3.32MΩ and R3 resistors

^{*}Default position

Table 2. MODE Description (J2)

SHUNT POSITION	MODE PIN	MAXM17536_MODE
Not installed	Not installed Unconnected PFM mode of operat	
1-2	Connected to V _{CC} DCM mode of operation	
2-3*	Connected to GND	PWM mode of operation

^{*}Default position

EXTVCC Linear Regulator

Powering V_{CC} of the IC from EXTVCC increases the efficiency of the power converter at higher input voltages. If the applied EXTVCC voltage is greater than 4.7V (typ), V_{CC} is powered from EXTVCC. If EXTVCC is lower than 4.7V (typ), V_{CC} is powered from V_{IN}. Refer to the MAXM17536 module data sheet for further information. To connect EXTVCC to V_{OUT} place the shunt across pins 2-3 of jumper J3. Refer to Table 3 for summary of EXTVCC jumper configurations.

Electro-Magnetic Interference (EMI)

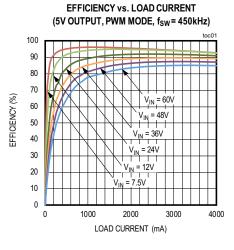
Compliance to conducted emissions (CE) standards requires an EMI filter at the input of a switching power converter. The EMI filter attenuates high-frequency cur¬rents drawn by the switching power converter, and limits the noise injected back into the input power source.

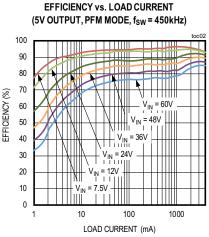
Use of EMI filter components, as shown in the EV kit schematic, results in lower conducted emissions below

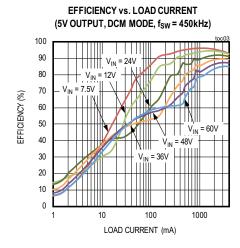
CISPR22 Class B limits. The MAXM17536EVKIT# PCB layout is also designed to limit radiated emissions from switching nodes of the power converter resulting in radiated emissions below CISPR22 Class B limits. Further, capacitors 150pF/100V and 0.1µF/100V placed near the input of the board helps in attenuating high-frequency noise.

Evaluates: MAXM17536 5V Output

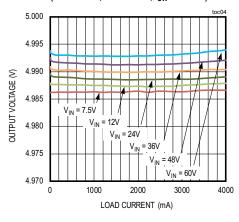
Hot-Plug-In and Long Input Cables

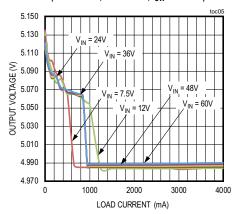

The MAXM17536EVKIT# PCB provides an electrolytic capacitor (C24, 47µF/80V) to dampen input voltage peaks and oscillations that can arise during hot-plug-in and/or due to long input cables. This capacitor limits the peak voltage at the input of the MAXM17536 power module, when the EV kit is powered directly from a precharged capacitive source or an industrial backplane PCB. Long input cables, between input power source and the EV kit circuit can cause input-voltage oscillations due to the inductance of the cables. The equivalent series resistance (ESR) of the electrolytic capacitor helps damp out the oscillations caused by long input cables.

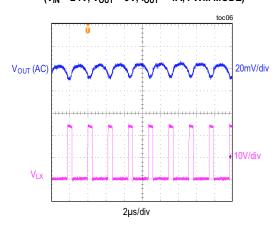

Table 3. EXTVCC Configuration (J3)

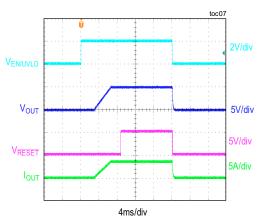

SHUNT POSITION	EXTVCC PIN	EXTVCC FUNCTION	
Not installed	Unconnected	$V_{\hbox{\scriptsize CC}}$ Powered by $V_{\hbox{\scriptsize IN}}$	
1-2	Connected to GND V _{CC} Powered by V _{IN}		
2-3*	Connected to V _{OUT}	V _{CC} Powered by V _{OUT}	

^{*}Default position

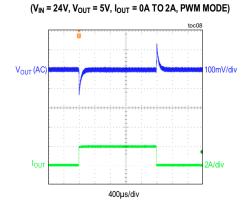

MAXM17536EVKIT# Performance Report

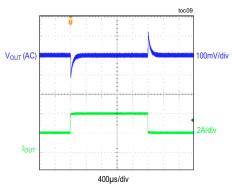


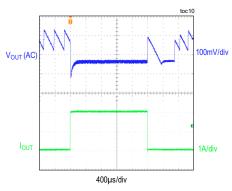

OUTPUT VOLTAGE vs. LOAD CURRENT (5V OUTPUT, PWM MODE, f_{SW} = 450kHz)

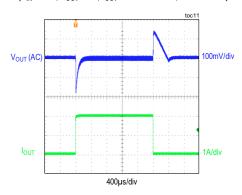

OUTPUT VOLTAGE vs. LOAD CURRENT (5V OUTPUT, PFM MODE, f_{SW} = 450kHz)

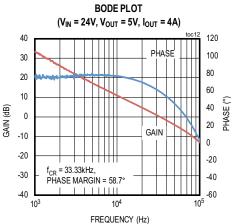
STEADY-STATE SWITCHING WAVEFORMS $(V_{IN} = 24V, V_{OUT} = 5V, I_{OUT} = 4A, PWM MODE)$

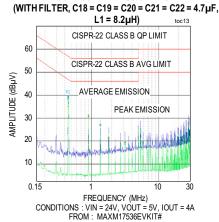

POWER-UP AND DOWN THROUGH EN/UVLO ($V_{\rm IN}$ = 24V, $V_{\rm OUT}$ = 5V, $I_{\rm OUT}$ = 4A, PWM MODE)

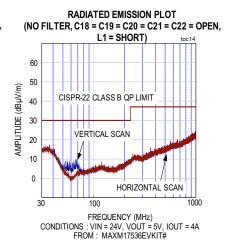

Evaluates: MAXM17536 5V Output


MAXM17536EVKIT# Performance Report (continued)


LOAD TRANSIENT







CONDUCTED EMISSION PLOT

Evaluates: MAXM17536 5V Output

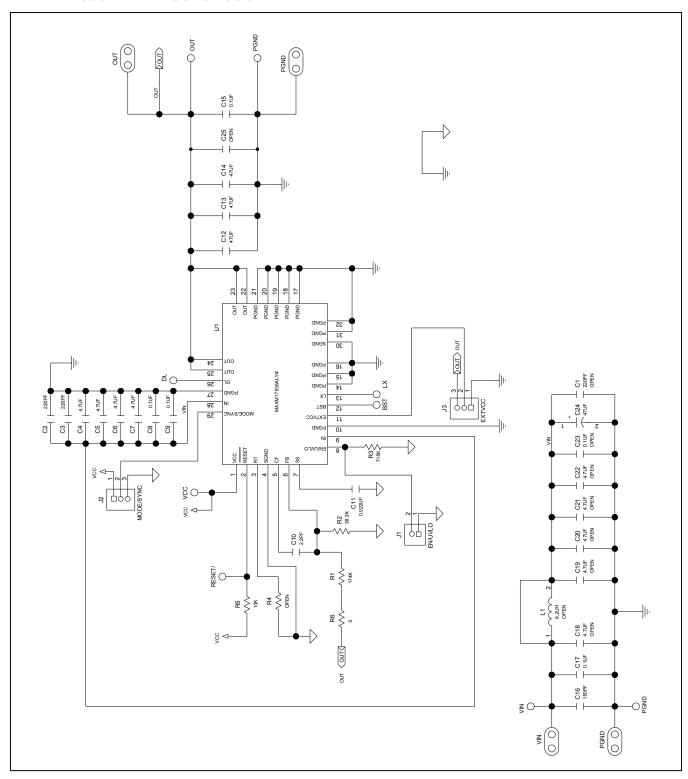
Ordering Information

PART	TYPE
MAXM17536EVKIT#	EV Kit

#Denotes RoHS compliant.

Component Suppliers

SUPPLIER	WEBSITE	
TDK Corp.	www.tdk.com	
Murata Americas	www.murata.com	
Panasonic Corp.	www.panasonic.com	
Vishay	www.vishay.com	


Note: Indicate that you are using the MAXM17536 when contacting these component suppliers.

Evaluates: MAXM17536 5V Output

MAXM17536EVKIT# Bill of Materials

ITEM	QTY	REF DES	MFG PART #	DESCRIPTION
1	2	C2, C3	TDK C1608C0G2A221J080AA	220pF ± 5%, 100V, Ceramic Cap, C0G, NP0 (0603)
2	4	C4-C7	MURATA GRM31CZ72A475KE11	4.7μF ± 10%, 100V, X7R, CAP (1206)
3	4	C8, C9, C15, C17	MURATA GCJ188R72A104KA01D	0.1µF ± 10%, 100V, Ceramic Cap, X7R (0603)
4	1	C10	MURATA GRM1885C1H2R2CA01D	2.2pF ± 0.1pF, 50V, Ceramic CAP (0603)
5	1	C11	MURATA GCJ188R71H223KA01D	0.022µF ± 10%, 50V, Ceramic Cap, X7R (0603)
6	3	C12-C14	MURATA GRM32ER71A476KE15	47μF ± 10%, 10V, Ceramic Cap, X7R (1210)
7	1	C16	TDK C1005C0G2A151J050BA	150pF ± 5%, 100V, Ceramic Cap, C0G, NP0 (0402)
8	1	C24	PANASONIC EEE-FK1K470P	47μF ± 20%, 80V, Aluminium Electrolytic
9	1	R1	PANASONIC ERJ-3EKF1743	174 kΩ ± 1%, 0.1W, Resistor (0603)
10	1	R2	PANASONIC ERJ-3EKF3832	38.3 kΩ ± 1%, 0.1W, Resistor (0603)
11	1	R3	VISHAY DALE CRCW0603715KFK	715 kΩ ± 1%, 0.1W, Resistor (0603)
12	1	R5	VISHAY DALE CRCW060310K0FK	10 kΩ ± 1%, 0.1W, Resistor (0603)
13	1	R6	VISHAY DALE CRCW06030000ZS	0 Ω ± 1%, 0.1W, Resistor (0603)
14	1	U1	MAXM17536ALY#	MAXM17536 DC-DC Module
15	1	C1	TDK C1608C0G2A221J080AA	OPTIONAL : 220pF ± 5% 100V, Ceramic Cap, C0G, NP0 (0603)
16	5	C18-C22	MURATA GRM31CZ72A475KE11	OPTIONAL : 4.7μF ± 10%, 100V, X7R ceramic cap (1206)
17	1	C23	MURATA GCJ188R72A104KA01	OPTIONAL : 0.1µF ± 10%, 100V, X7R ceramic cap (0603)
18	1	L1	COILCRAFT XAL5050-822ME	OPTIONAL : 8.2μH ± 20%, Inductor
19	1	R4		OPTIONAL : OPEN (0603)
20	1	C25		OPTIONAL : OPEN (1210)

MAXM17536EVKIT# Schematic

Evaluates: MAXM17536 5V Output

MAXM17536EVKIT# PCB Layout Diagrams

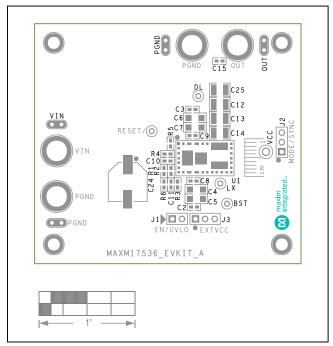
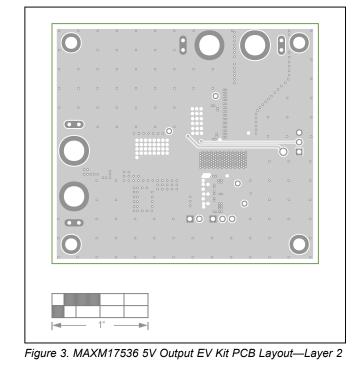



Figure 1. MAXM17536 5V Output EV Kit PCB Layout—Top Silkscreen

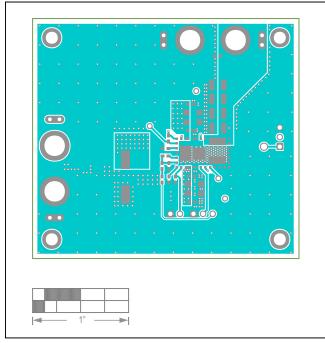


Figure 2. MAXM17536 5V Output EV Kit PCB Layout—Top Layer

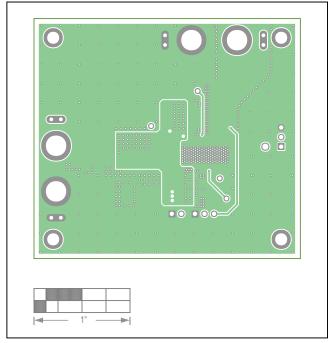


Figure 4. MAXM17536 5V Output EV Kit PCB Layout—Layer 3

Evaluates: MAXM17536 5V Output

MAXM17536EVKIT# PCB Layout Diagrams (continued)

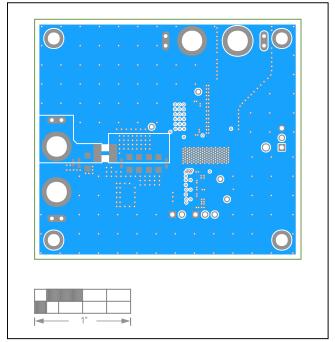


Figure 5. MAXM17536 5V Output EV Kit PCB Layout—Layer 4

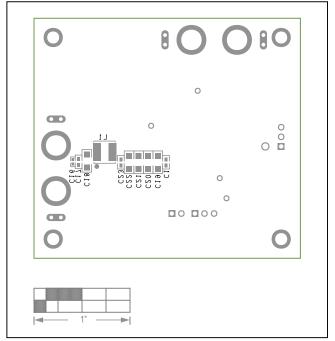


Figure 6. MAXM17536 5V Output EV Kit PCB Layout—Bottom Silkscreen

Evaluates: MAXM17536 5V Output

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	PAGES CHANGED
0	9/19	Initial release	_

For pricing, delivery, and ordering information, please visit Maxim Integrated's online storefront at https://www.maximintegrated.com/en/storefront/storefront.html.

Maxim Integrated cannot assume responsibility for use of any circuitry other than circuitry entirely embodied in a Maxim Integrated product. No circuit patent licenses are implied. Maxim Integrated reserves the right to change the circuitry and specifications without notice at any time.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated:

MAXM17536EVKIT#