MAX33074E Shield EV Kit

Evaluates: MAX33074E

General Description

The MAX33074E Shield evaluation kit (EV kit) is a fully assembled and tested printed circuit board (PCB) that demonstrates the functionality of the MAX33074E, a half-duplex RS-485 transceiver with \pm 65V fault protection, extended \pm 40V common-mode range, and \pm 40kV ESD Human Body Model (HBM) for A, B data lines. The EV kit features a digital isolator, which is used as a level translator between the RS-485 transceiver and the controller interface.

Features

- Easy Evaluation of the MAX33074E
- I/O Interface Compatibility from 1.71V to 5.5V
- Proven PCB Layout
- Compatible with Arm[®] Mbed[™] Platform/Arduino[®]
- Fully Assembled and Tested

EV Kit Photo

Quick Start

Required Equipment

- MAX33074E Shield EV kit
- +5V, 500mA DC Power Supply
- Signal/function generator that can generate 10MHz square wave signal
- Oscilloscope

Procedure

The EV kit is fully assembled and tested. Follow these steps to verify board operation:

- 1. Place the MAX33074E shield EV kit on a nonconductive surface to ensure that nothing on the PCB gets shorted to the workspace.
- 2. Verify all the jumpers are in their default position as shown in Table 1.
- 3. With +5V power supply disabled, connect the positive terminal to VCC_EXT and IOREF test points. Connect the negative terminal to the GND test point.
- 4. Connect the positive terminal of the function generator to D0 (pin 1 of J4) and the negative terminal to any of the GND test points on the shield EV kit.
- 5. Set the function generator to output a 10MHz square wave between 0V and 5V, and then enable function generator output.
- 6. Turn on the +5V DC power supply.
- 7. Connect an oscilloscope probe on D1 (pin 2 of J4) and verify that the D1 output signal (RO) matches the D0 input signal (DI).

Table 1. Jumper Settings

JUMPER	SHUNT POSITION	DESCRIPTION
	1-2	VCC is shorted to +5V supply from shield header
	1-3*	VCC is shorted to VCC_EXT external supply
JU1	1-4	VCC is shorted to +3.3V supply from shield header
	Open	VCC is open
	1-2*	DE is shorted to VCC
	1-3	DE is connected to level shifter output
JU2	1-4	DE is shorted to GND
	Open	DE is open
	1-2	RE is shorted to VCC
	1-3	RE is connected to level shifter output
JU3	1-4*	RE is shorted to GND
	Open	RE is open
	1-2	Connects 120Ω between A and B
JU4 and JU11	2-3*	Connects 60Ω between A and B
	Open	No load is connected between A and B
	1-2*	Connects RE to D7 of J4
JU5	Open	Disconnects RE from D7 of J4
	1-2*	Connects DE to D6 of J4
JU6	Open	Disconnects DE from D6 of J4
	1-2*	TVS Diode (DNI) connected to A
JU7	Open	TVS Diode (DNI) disconnected from A
JU8	_	See <u>Table 2</u>
	1-2*	TVS Diode (DNI) connected to B
JU9	Open	TVS Diode (DNI) disconnected from B
1140	1-2*	Connects VCC pin of U1 to supply rail
JU10	Open	Disconnects VCC pin of U1 from supply rail

*Default jumper state.

MAX33074E Shield EV Kit

Detailed Description of Hardware

The MAX33074E Shield EV kit is a fully assembled and tested circuit board for evaluating the MAX33074E, a faultprotected half-duplex RS-485 transceiver (U1) with ±65V of fault protection. The shield EV kit is designed to evaluate MAX33074E alone or in a RS-485 system. The shield enables the Arduino or Mbed platform to communicate on a RS-485 bus. The MAX14931 digital isolator is used as a level translator with a 1.71V to 5.5V supply range. Remove the 0 Ω resistor R6 to apply the transmitter input signal directly on the DI test point. Likewise, remove the 0 Ω resistor R3 to measure the receiver output signal directly on the RO test point.

If external protection is desired beyond the device's built-in protection, the shield also features footprints for TVS diodes (D1 and D2) that can be connected to the A and B lines using JU7 and JU9, respectively.

Powering the Board

This shield EV kit requires two power supplies: one 3V to 5.5V supply for the MAX33074E (U1) transceiver applied at the VCC_EXT test point, and one 1.71V to 5.5V supply for the microcontroller domain applied at the IOREF test point. When the shield EV kit is used with an Arduino/Mbed platform, the power supply for U1 can also come from the Arduino/Mbed platform's 3.3V or 5V rail. Place the shunt on 2-3 position of JU1 to connect VCC to VCC_EXT pin. Place the shunt of JU1 on 1-2 position or 1-4 position to connect the VCC of U1 to the Arduino/Mbed platform 3.3V or 5V supply rail, respectively. In this scenario, IOREF is directly taken from the Arduino/Mbed platform header.

Onboard Termination

A properly terminated RS-485 bus is terminated at each end with the characteristic impedance of the cable. For CAT5 or CAT6 cables, this is typically 120Ω on each end for a 60Ω load on the RS-485 driver. This shield EV kit features a selectable 60Ω or 120Ω load circuit between the A and B driver outputs. If the board is evaluated in a system and is connected at the end of the cable, then select the 120Ω termination. The termination resistors on the shield should be changed to 60Ω with a 100pF load to simulate a complete system load during evaluation.

DI and RO Configuration

Digital Channels of DI and RO are selected through JU8. It consists of three columns and 16 rows. The columns labled DI and RO are connected to MAX33074E through digital isolator (MAX14931FASE+ (U2)). The middle column contains the digital I/O pins (D0 to D15) from the Arduino/Mbed platform header. This provides flexibility for the user to select different resources from the microcontroller to transmit and receive signals to and from the RS-485 transceiver. <u>Table 2</u> shows the list of JU8 jumper options.

MAX33074E Shield EV Kit

Table 2.	DI and RO	Jumper Settings
----------	-----------	-----------------

JUMPER	SHUNT POSITION	DESCRIPTION	
	1-2*	Connects DI to D0	
	4-5	Connects DI to D1	
	7-8	Connects DI to D2	
	10-11	Connects DI to D3	
	13-14	Connects DI to D4	
	16-17	Connects DI to D5	
	19-20	Connects DI to D6	
	22-23	Connects DI to D7	
	25-26	Connects DI to D8	
	28-29	Connects DI to D9	
	31-32	Connects DI to D10	
	34-35	Connects DI to D11	
	37-38	Connects DI to D12	
	40-41	Connects DI to D13	
	43-44	Connects DI to D14	
11.10	46-47	Connects DI to D15	
JU8	2-3	Connects RO to D0	
	5-6*	Connects RO to D1	
	8-9	Connects RO to D2	
	11-12	Connects RO to D3	
	14-15	Connects RO to D4	
	17-18	Connects RO to D5	
	20-21	Connects RO to D6	
	23-24	Connects RO to D7	
	26-27	Connects RO to D8	
	29-30	Connects RO to D9	
	32-33	Connects RO to D10	
	35-36	Connects RO to D11	
	38-39	Connects RO to D12	
	41-42	Connects RO to D13	
	44-45	Connects RO to D14	
	47-48	Connects RO to D15	

*Default jumper state.

Flexible Interface Options

The shield EV kit allows multiple points of connection to the MAX33074E transceiver. This shield board could be placed on an Arduino/Mbed platform compatible board to connect all the digital pins (DI, DE, RO, \overline{RE}) through the J3, J4 headers. These signals could also be connected directly at their respective test points on the board, bypassing the digital isolator (U2). The A, B signals are connected to a terminal block (J5) to easily connect to a twisted pair cable. Alternately, the A, B test points can be used.

PCB Layout for Thermal Dissipation

PCB layout can affect the performance of the transceiver in conditions with high common-mode voltage at high ambient temperature. The layout of the shield EV kit is designed to maximize thermal performance in such cases. Larger copper pads are used for all the pins. The GND pad is connected to exposed pad with vias to bottom side of the shield. A thick trace from the VCC pad to JU10 allows for greater heat dissipation at the VCC pin.

Ordering Information

TYPE
EV Kit

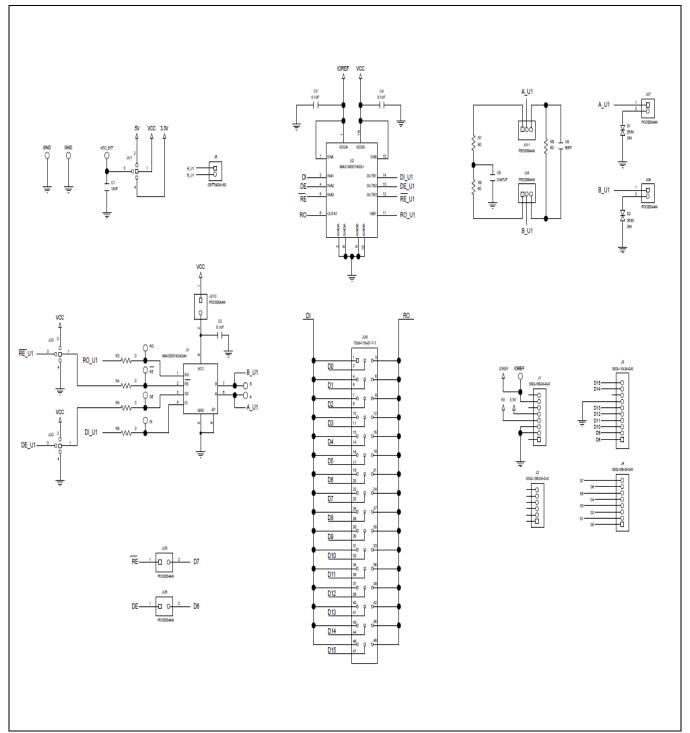
#Denotes RoHS-compliant.

MAX33074E Shield EV Kit

MAX33074E Shield EV Kit Bill of Materials

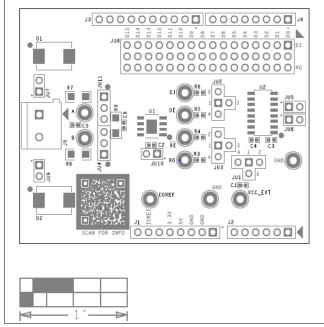
REF_DES	QTY	MFG PART#	VALUE	DESCRIPTION	
А, В	2	5127	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BLUE; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH	
C1	1	GRM155R60J106ME44; GRM155R60J106ME47; C1005X5R0J106M050BC; CL05A106MQ5NUN; C0402C106M9PAC	10UF	CAPACITOR; SMT (0402); CERAMIC CHIP; 10UF; 6.3V; TOL=20%; TG=-55 DEGC TO +85 DEGC; TC=X5R	
C2-C4	3	C0402C104J4RAC; GCM155R71C104JA55	0.1UF	CAPACITOR; SMT (0402); CERAMIC CHIF 0.1UF; 16V; TOL=5%; TG=-55 DEGC TO +125DEGC; TC=X7R	
C5	1	C1005X7R1E473K050BC; GRM155R71E473K; GCM155R71E473KA55	0.047UF	CAPACITOR; SMT; 0402; CERAMIC CHIP; 0.047UF; 25V; TOL=10%; TG= -55 DEGC TO +125DEGC	
C6	1	0402N500J500C	50PF	CAPACITOR; SMT (0402); CERAMIC; 50PF; 50V; 5%; C0G; -55DEGC TO +125DEGC;	
DE, DI, <i>RE</i> , RO	4	5012	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENTH=0.445IN; BOARD HOLE=0.063IN; WHITE; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;	
IOREF	1	5125	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENTH=0.445IN; BOARD HOLE=0.063IN; BROWN; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH;	
J1, J4	2	SSQ-108-24-G-S	SSQ-108-24-G-S	CONNECTOR; FEMALE; THROUGH HOLE; 0.025INCH; SQ POST SOCKET; STRAIGHT; 8 PINS	
J2	1	SSQ-106-24-G-S	SSQ-106-24-G-S	CONNECTOR; FEMALE; THROUGH HOLE; 0.025INCH; SQ POST SOCKET; STRAIGHT; 6 PINS	
J3	1	SSQ-110-24-G-S	SSQ-110-24-G-S	CONNECTOR; FEMALE; THROUGH HOLE; 0.025INCH; SQ POST SOCKET; STRAIGHT; 10 PINS	
J5	1	OSTTA024163	OSTTA024163	CONNECTOR; FEMALE; THROUGH HOLE; 5.08MM TERM BLOCK CONNECTOR; STRAIGHT; 2 PINS; -30 DEGC TO +105 DEGC	
JU1-JU3	3	PEC04SAAN	PEC04SAAN	CONNECTOR; MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 4 PINS	
JU4, JU11	2	PEC03SAAN	PEC03SAAN	CONNECTOR, MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 3 PINS	
JU5-JU7, JU9, JU10	5	PCC02SAAN	PCC02SAAN	CONNECTOR, MALE; THROUGH HOLE; BREAKAWAY; STRAIGHT; 3 PINS; -65 DEGC TO +125 DEGC	

www.analog.com

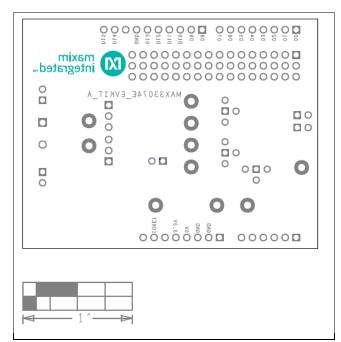

Analog Devices | 5

MAX33074E Shield EV Kit

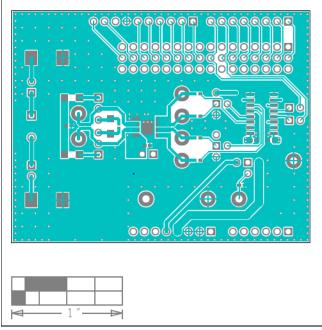
JU8	1	TSW-116-07-T-T	TSW-116-07-T-T	CONNECTOR; MALE; THROUGH HOLE; 0.025IN SQ POST HEADER; STRAIGHT; 48PINS	
R3-R6	4	ERJ-2GE0R00	0	RESISTOR; 0402; 0 OHM; 0%; JUMPER; 0.10W; THICK FILM	
R7-R9	3	CRCW120660R0KNEAIF	60	RESISTOR; 1206; 60 OHM; 10%; 200PPM; 0.25W; THICJ FILM	
SU1-SU3, SU5, SU6, SU8-SU10	8	S1100-B; SX1100-B; STC02SYAN	SX1100-B	TEST POINT; JUMPER; STR; TOATL LENGTH=0.24IN; BLACK; INSULATION=PBT; PHOSPHOR BRONZE CONTACT=GOLD PLATED	
TP18, TP19	2	5011	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; BLACK; PHOSPHOR BRONZE WIRE SILVER PLATE FINISH	
U1	1	MAX33074EASA+	MAX33074EASA+	EVKIT PART-IC; MAX33074E; CI25 -70V FAULT PROTECTED HALF DUPLEX RS- 485; TRANSCEIVER; PACKAGE OUTLINE DRAWING: 21-0111; LAND PATTERN NUMBER: 90-0151; PACKAGE CODE: S8E+14C; NSOIC8-EP	
U2	1	MAX14931FASE+	MAX14931FASE+	IC; DISO; 3/1 CHANNEL; 150MBPS; DEFAULT LOW; 2.75KVRMS DIGITAL ISOLATOR; NSOIC16 150MIL	
VCC_EXT	1	5010	N/A	TEST POINT; PIN DIA=0.125IN; TOTAL LENGTH=0.445IN; BOARD HOLE=0.063IN; RED; PHOSPHOR BRONZE WIRE SIL;	
PCB	1	MAX33074E	РСВ	PCB:MAX33074E	
D1, D2	0	SM15T30CA	25.6V	DIODE; TVS; SMC (DO-214AB); VRM=25.6V; IPP=36A	

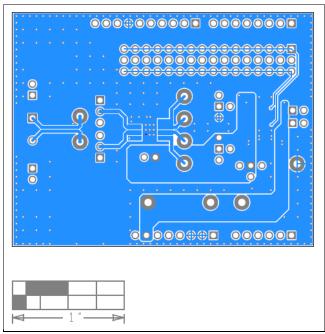

MAX33074E Shield EV Kit

MAX33074E Shield Schematic



MAX33074E Shield EV Kit


MAX33074E Shield PCB Layout


MAX33074E Shield PCB Layout—Top Silkscreen

MAX33074E Shield PCB Layout—Bottom Layer

MAX33074E Shield PCB Layout—Top Layer

MAX33074E Shield PCB Layout—Bottom Silkscreen

MAX33074E Shield EV Kit

Revision History

REVISION NUMBER	REVISION DATE	DESCRIPTION	
0	8/22	Initial release	_

Arduino® is a trademark of Arduino SA

Arm and Mbed are registered trademarks or trademarks of Arm Limited (or its subsidiaries) in the US and/or elsewhere.

Information furnished by Analog Devices is believed to be accurate and reliable. However, no responsibility is assumed by Analog Devices for its use, nor for any infringements of patents or other rights of third parties that may result from its use. Specifications subject to change without notice. No license is granted by implication or otherwise under any patent or patent rights of Analog Devices. Trademarks and registered trademarks are the property of their respective owners.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Maxim Integrated: MAX33074ESHLD#