

PXAD184218FV

Thermally-Enhanced High Power RF LDMOS FET 420 W, 28 V, 1805 – 1880 MHz Description

The PXAD184218FV is a 420-watt (P_{3dB}) LDMOS FET with an asymmetrical design intended for use in multi-standard cellular power amplifier applications in the 1805 to 1880 MHz frequency band. Features include dual-path design, input and output matching, high gain and thermally-enhanced package with earless flanges. Manufactured with an advanded LDMOS process, this device provides excellent thermal performance and superior reliability.

Features

- · Broadband internal input and output matching
- · Asymmetrical Doherty design
 - Main : P_{1dB} = 130 W Typ
 - Peak : P_{1dB} = 290 W Typ
- Typical Pulsed CW performance, 1842.5 MHz, 28 V, Doherty configuration
 - Output power at P_{3dB} = 420 W
 - Efficiency = 62%
 - Gain = 14 dB
- Capable of handling 10:1 VSWR @ 28 V, 110 W (WCDMA) output power
- · Integrated ESD protection
- Human Body Model class 2 (per ANSI/ESDA/ JEDEC JS-001)
- · Low thermal resistance
- · Pb-free and RoHS compliant

RF Characteristics

Two-carrier WCDMA Specifications (tested in the Doherty production test fixture)

 V_{DD} = 28 V, I_{DQ} = 720 mA, $V_{GS(PEAK)}$ = 1.4 V, P_{OUT} = 60 W avg, f = 1880 MHz, 3GPP signal, channel bandwidth = 3.84 MHz, peak/average = 10 dB @ 0.01% CCDF

Characteristic	Symbol	Min	Тур	Max	Unit
Linear Gain	G _{ps}	15	16	_	dB
Drain Efficiency	η_{D}	49	51.5	_	%
Adjacent Channel Power Ratio	ACPR	_	-28	-25.0	dBc
Output PAR@0.01% CCDF	OPAR	6.8	7.7	_	dBc

All published data at $T_{CASE} = 25^{\circ}C$ unless otherwise indicated

ESD: Electrostatic discharge sensitive device—observe handling precautions!

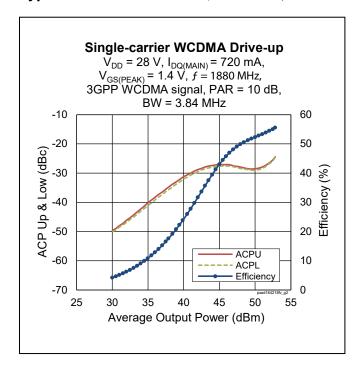
DC Characteristics (each side)

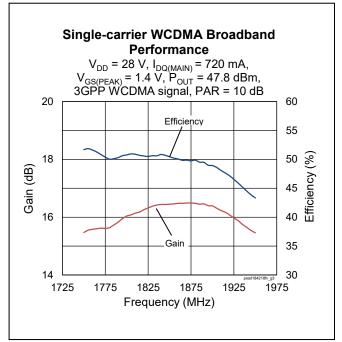
Characteristic	Conditions	Symbol	Min	Тур	Max	Unit
Drain-Source Breakdown Voltage	$V_{GS} = 0 \text{ V}, I_{DS} = 10 \text{ mA}$	V(_{BR)DSS}	65	_	_	V
Drain Leakage Current	$V_{DS} = 28 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	1	μΑ
	$V_{DS} = 63 \text{ V}, V_{GS} = 0 \text{ V}$	I _{DSS}	_	_	10	μΑ
Gate Leakage Current	$V_{GS} = 10 \text{ V}, V_{DS} = 0 \text{ V}$	I _{GSS}	_	_	1	μΑ
On-State Resistance (Main)	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.03	_	Ω
(Peak)	$V_{GS} = 10 \text{ V}, V_{DS} = 0.1 \text{ V}$	R _{DS(on)}	_	0.02	_	Ω
Operating Gate Voltage (Main)	V _{DS} = 28 V, I _{DQ} = 720 mA	V _{GS}	2.3	2.6	2.9	V
(Peak)	$V_{DS} = 28 \text{ V}, I_{DQ} = 0 \text{ mA}$	V_{GS}	_	1.5	_	V

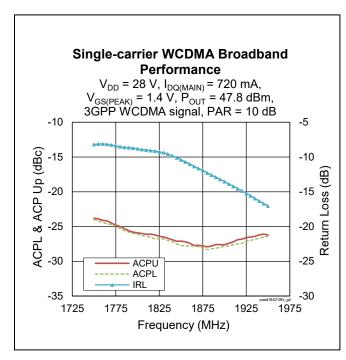
Maximum Ratings

Parameter	Symbol	Value	Unit
Drain-Source Voltage	V_{DSS}	65	V
Gate-Source Voltage	V_{GS}	-6 to +10	V
Junction Temperature	T _J	225	°C
Storage Temperature Range	T _{STG}	-65 to +150	°C

Thermal Characteristics


Parameter	Symbol	Value	Unit
Thermal Resistance (Main, T _{CASE} = 70°C, 60 W CW)	$R_{ hetaJC}$	0.514	°C/W
(Peak, T _{CASE} = 70°C, 280 W CW)	$R_{ hetaJC}$	0.297	°C/W


Ordering Information


Type and Version	Order Code	Package Description	Shipping
PXAD184218FV V1 R0	PXAD184218FV-V1-R0	H-37275G-6/2, earless flange	Tape & Reel, 50 pcs
PXAD184218FV V1 R2	PXAD184218FV-V1-R2	H-37275G-6/2, earless flange	Tape & Reel, 250 pcs

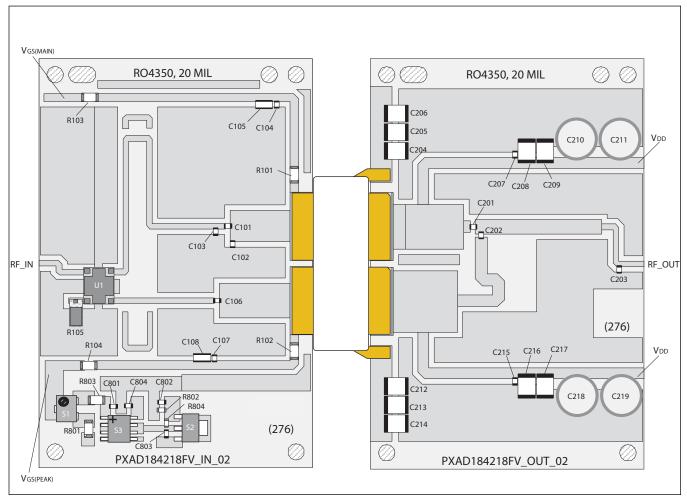
Typical RF Performance (data taken in production test fixture)

Load Pull Performance

Main Side Load Pull Performance – Pulsed CW signal: 10 μ s, 10% duty cycle, V_{DD} = 28 V, I_{DQ} = 960 mA, class AB

			P _{1dB}								
		Max Output Power				Power Max Drain Efficiency					
Freq [MHz]	Zs [Ω]	Z Ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	դ D [%]	Z Ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	ր D [%]
1805	2.3 - j6.3	1.6 - j3.3	20.9	52.40	173	58.7	3.5 - j3.1	23.1	50.60	116	66.6
1842.5	3.2 - j7.4	1.4 - j3.5	20.2	52.45	176	56.2	2.7 - j2.7	22.4	51.30	134	67.7
1880	5.1 - j8.9	1.4 - j3.5	20.7	52.50	180	57.4	2.7 -j 3.1	22.8	51.40	138	67.5

			P _{3dB}								
			Max Output Power					Max Drain Efficiency			
Freq [MHz]	Zs [Ω]	Z Ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η D [%]	Z Ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η D [%]
1805	2.3 - j6.3	1.4 - j3.5	18.4	53.20	210	58.5	2.9 - j3.7	20.6	52.00	157	67.4
1842.5	3.2 - j7.4	1.3 - j3.6	18.1	53.29	213	58.6	2.6 - j3.3	20.2	52.20	167	68.4
1880	5.1 - j8.9	1.4 - j3.7	18.6	53.27	212	58.8	2.7 - j3.2	20.7	52.10	162	68.6


Peak Side Load Pull Performance – Pulsed CW signal: 10 μ s, 10% duty cycle, V_{DD} = 28 V, I_{DQ} = 10 mA, class B

			P _{1dB}								
		Max Output Power Max Drain Effic				Max Output Power					
Freq [MHz]	Zs [Ω]	Z Ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	η D [%]	Z Ι [Ω]	Gain [dB]	P _{1dB} [dBm]	P _{1dB} [W]	η D [%]
1805	2.1 - j4.6	1.1 - j3.3	17.1	55.38	345	54.7	2.8 - j2.2	18.7	53.27	212	66.7
1842.5	2.8 - j5.4	1.2 - j3.4	17.4	55.43	349	54.9	2.7 -j 2.2	18.8	53.30	214	66.7
1880	4.4 - j5.6	1.3 - j3.7	17.7	55.42	348	54.6	2.5 - j2.2	19.2	53.33	215	66.3

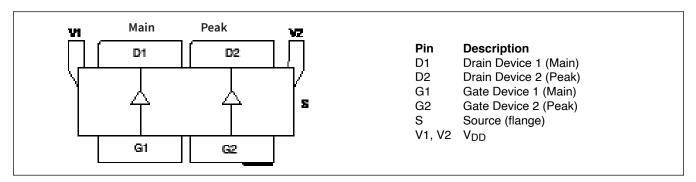
			P _{3dB}								
			Max Output Power					Power Max Drain Efficiency			
Freq [MHz]	Zs [Ω]	Z Ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η D [%]	Z Ι [Ω]	Gain [dB]	P _{3dB} [dBm]	P _{3dB} [W]	η D [%]
1805	2.1 - j4.6	1.2 - j3.6	14.9	56.17	414	56.9	2.8 - j2.6	16.5	54.20	265	66.8
1842.5	2.8 - j5.4	1.2 - j3.7	15	56.20	417	56.2	2.6 - j2.7	16.6	54.40	277	67.1
1880	4.4 - j5.6	1.3 - j3.8	15.6	56.14	411	56.2	2.4 - j2.9	17	54.80	301	66.9

Reference Circuit, 1805 - 1880 MHz

Reference circuit assembly diagram (not to scale)

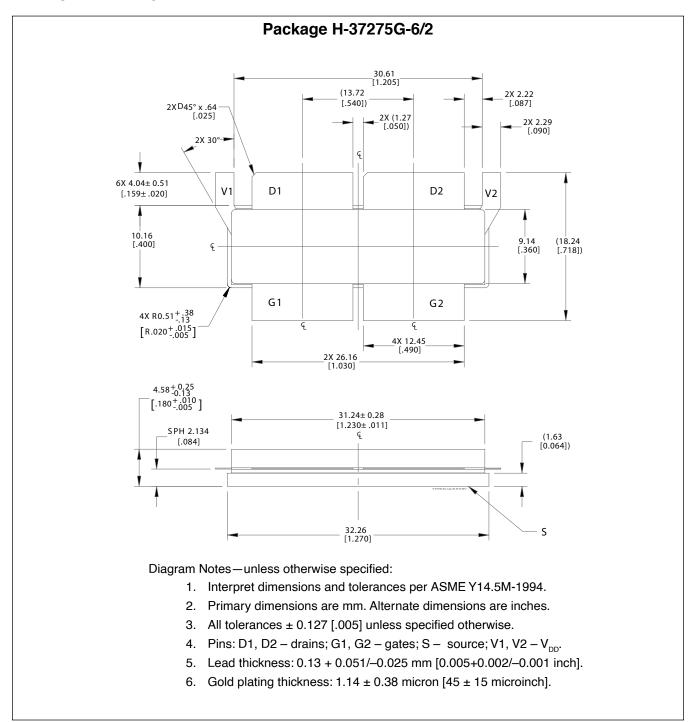
Reference Circuit (cont.)

Reference Circuit Assembly


DUT	PXAD184218FV V1					
Test Fixture Part No.	LTA/PXAD184218FV V1					
PCB	Rogers 4350, 0.508 mm [0.020"] thick, 2 oz. copper, $\varepsilon_{\rm r}$ = 3.66, f = 1805 – 1880 MHz					

Components Information

Component	Description	Manufacturer	P/N	
Input				
C101, C106	Capacitor, 22 pF	ATC	ATC800A220JT250T	
C102	Capacitor, 1.8 pF	ATC	ATC800A1R8CT250T	
C103	Capacitor, 0.6 pF	ATC	ATC800A0R6CT250T	
C104, C107	Capacitor, 33 pF	ATC	ATC800A330JT250T	
C105, C108	Capacitor, 10 μF	Murata Electronics North America	LLL31MR60J106ME01L	
R101, R102, R103, R104	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-8GEYJ100V	
R105	Resistor, 50 ohms	Richardson	C16A50Z4	
C801, C802, C803, C804	Capacitor, 1000 pF	AVX Corporation	06031C102KAT2A	
R801	Resistor, 100 ohms	Panasonic Electronic Components	ERJ-8GEYJ101V	
R802	Resistor, Chip 1.3K ohms	Panasonic Electronic Components	ERJ-3GEYJ132V	
R803	Resistor, 10 ohms	Panasonic Electronic Components	ERJ-8GEYJ100V	
R804	Resistor, CHIP 1.2K ohms	Panasonic Electronic Components	ERJ-3GEYJ122V	
S1	Resistor, Variable 2K ohms	Bourns Inc.	3224W-1-202E	
S2	Transistor	Diodes Incorporated	BCP5616TA	
S3	Voltage Regulator	Texas Instruments	LM78L05ACM	
U1	Hybrid Coupler	Anaren	05X3C19P1-05S	
Output				
C201	Capacitor, 7.5 pF	ATC	ATC800A7R5JT250T	
C202	Capacitor, 33 pF	ATC	ATC800A330JT250T	
C203	Capacitor, 0.3 pF	ATC	ATC800A0R3CT250T	
C204, C205, C206, C208, C209, C212, C213 C214, C216, C217	Capacitor,10 μF	Taiyo Yuden	UMK325C7106MM-T	
C207, C215	Capacitor, 22 pF	ATC	ATC800A220JT250T	
C210, C211, C218, C219	Capacitor, 220 µF	Panasonic Electronic Components	PCE4444TR-ND	



Pinout Diagram (top view)

Package Outline Specifications

Revision History

Revision	Date	Data Sheet Type	Page	Subjects (major changes since last revision)				
01	2016-04-20	Advance	All	Data Sheet reflects advance specification for product development				
02	2016-11-07	Production	All	Data Sheet reflects released product specification				
02.1	2016-12-07	Production	1, 4	Revised typo in Features, revised PAE to Drain Eff inLoad Pull performance				
03	2018-06-25	Production	All	Converted to the Data Sheet				

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

PXAD184218FV-V1-R2 PXAD184218FV-V1-R0