

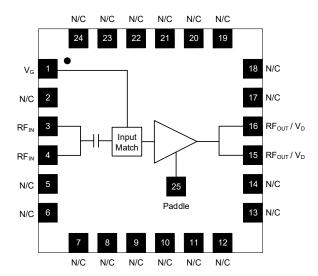
NPA1008

Rev. V5

Features

- GaN on Si HEMT D-Mode Integrated Amplifier
- Suitable for Linear & Saturated Applications
- Broadband Operation from 20 2700 MHz
- 50 Ω Input Matched
- 28 V Operation
- 45% Drain Efficiency
- 100% RF Tested
- Lead-Free 4 mm 24-lead PQFN Package
- Halogen-Free "Green" Mold Compound
- RoHS* Compliant

The NPA1008 is an integrated GaN on silicon power amplifier optimized for 20 - 2700 MHz operation. This amplifier has been designed for saturated and linear operation with output levels to 5 W (37 dBm) assembled in a lead-free 4 x 4 mm 24-lead QFN plastic package.


The NPA1008 is ideally suited for general purpose narrowband to broadband applications in test and measurement, defense communications, land mobile radio and wireless infrastructure.

Ordering Information

Part Number	Package
NPA1008	Bulk Quantity
NPA1008-SMB	Sample Board

Functional Schematic

Pin Designations

Pin#	Pin Name	Function	
1	V_{G}	Gate - DC Bias	
2	N/C ¹	No Connection	
3,4	RF _{IN}	RF Input	
5-14	N/C ¹	No Connection	
15,16	RF_{OUT} / V_D	RF Output / Drain	
17-24	N/C ¹	No Connection	
25	Paddle ²	Ground / Source	

- 1. All no connection pins may be left floating or grounded.
- The exposed pad centered on the package bottom must be connected to RF and DC ground. This path must also provide a low thermal resistance heat path.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

NPA1008 Rev. V5

RF Electrical Specifications: $T_C = 25^{\circ}C$, $V_{DS} = 28 \text{ V}$, $I_{DQ} = 88 \text{ mA}$

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Small Signal Gain	CW, 1900 MHz	G _{SS}	-	15.6	-	dB
Gain	CW, P _{OUT} = 37 dBm, 1900 MHz	G _P	10.5	12.0	1	dB
Saturated Output Power	CW, 1900 MHz	P _{SAT}	-	38.9	-	dBm
Drain Efficiency	CW, 1900 MHz	η _{SAT}	44	47.0	-	%
Power Added Efficiency	CW, P _{OUT} = 37 dBm, 1900 MHz	PAE	-	44.7	-	%
Ruggedness	All phase angles	Ψ	Ψ VSWR = 15:1, No Device Dam		amage	

DC Electrical Specifications: T_c = 25°C

Parameter	Test Conditions	Symbol	Min.	Тур.	Max.	Units
Drain-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 100 V	I _{DLK}	-	4	-	mA
Gate-Source Leakage Current	V _{GS} = -8 V, V _{DS} = 0 V	I_{GLK}	-	2	-	mA
Gate Threshold Voltage	V _{DS} = 28 V, I _D = 4 mA	V _T	-2.5	-1.5	-0.5	V
Gate Quiescent Voltage	V _{DS} = 28 V, I _D = 88 mA	V_{GSQ}	-2.1	-1.2	-0.3	٧
On Resistance	V _{DS} = 2 V, I _D = 45 mA	R _{ON}	-	1.2	-	Ω
Saturated Drain Current	V_{DS} = 7 V pulsed, pulse width 300 µs	$I_{D(SAT)}$	-	2.3	-	Α

NPA1008 Rev. V5

Absolute Maximum Ratings^{3,4,5}

Parameter	Absolute Maximum
Drain Source Voltage, V _{DS}	100 V
Gate Source Voltage, V _{GS}	-10 to 3 V
Gate Current, I _G	12 mA
Junction Temperature, T _J	+200°C
Operating Temperature	-40°C to +85°C
Storage Temperature	-65°C to +150°C
ESD Min Human Body Model (HBM)	+350 V

- 3. Exceeding any one or combination of these limits may cause permanent damage to this device.
- 4. MACOM does not recommend sustained operation near these survivability limits.
- 5. Operating at nominal conditions with $T_J \le 200^{\circ}$ C will ensure MTTF > 1 x 10^6 hours.

Thermal Characteristics^{6,7}

Parameter	Test Conditions	Symbol	Typical	Units
Thermal Resistance	V _{DS} = 28 V, T _J =200°C	Θ _{JC}	12.1	°C/W

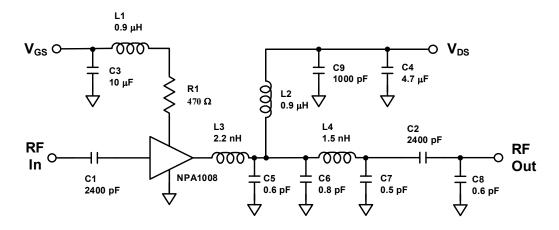
Junction temperature (T_J) measured using IR Microscopy. Case temperature measured using thermocouple embedded in heat-sink.

Handling Procedures

Please observe the following precautions to avoid damage:

Static Sensitivity

Gallium Nitride Circuits are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.


The thermal resistance of the mounting configuration must be added to the device Θ_{JC}, for proper T_J
calculation during operation. The recommended via pattern, shown on page 4, on a 20 mil thick, 1 oz plated
copper, PCB adds an additional 4 °C/W to the typical value.

NPA1008 Rev. V5

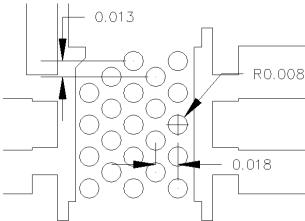
Evaluation Board and Recommended Tuning Solution

20 - 2700 MHz Broadband Circuit

Description

Parts measured on evaluation board (20-mil thick RO4350). The PCB's electrical and thermal ground is provided using a standard-plated densely packed via hole array (see recommended via pattern).

Matching is provided using a combination of lumped elements and transmission lines as shown in the simplified schematic above. Recommended tuning solution component placement, transmission lines, and details are shown on the next page.

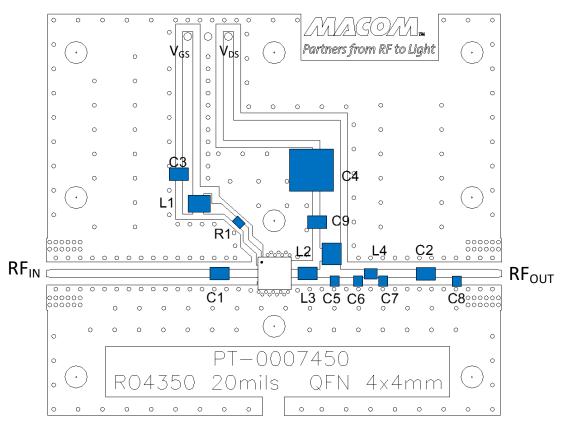

Bias Sequencing Turning the device ON

- 1. Set V_{GS} to the pinch-off (V_P) , typically -5 V.
- 2. Turn on V_{DS} to nominal voltage (28 V).
- 3. Increase V_{GS} until the I_{DS} current is reached.
- 4. Apply RF power to desired level.

Turning the device OFF

- 1. Turn the RF power off.
- 2. Decrease V_{GS} down to V_P.
- 3. Decrease V_{DS} down to 0 V.
- 4. Turn off V_{GS}.

Recommended Via Pattern (All dimensions shown as inches)

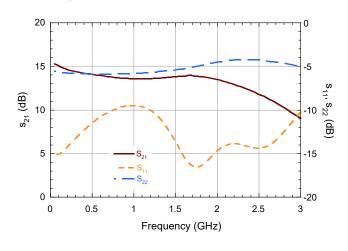


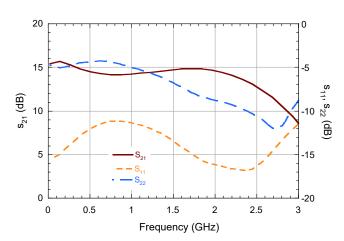
4

NPA1008 Rev. V5

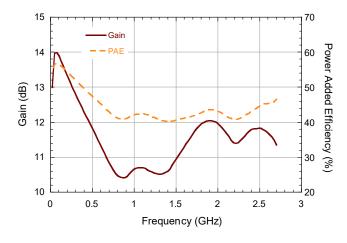
Evaluation Board and Recommended Tuning Solution 20 - 2700 MHz Broadband Circuit

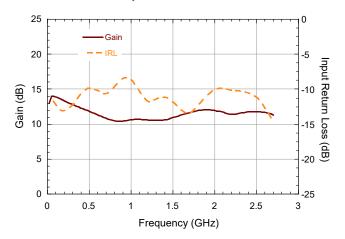
Parts list


Reference	Value	Tolerance	Manufacturer	Part Number
C1, C2	2400 pF	-	Dielectric Labs, Inc.	C08BL242X-5UN-X0
C3	10 μF	10%	TDK	C2012XR1C106M085AC
C4	4.7 µF	10%	TDK	C5750X7R2A475K230KA
C5, C8	0.6 pF	0.1 pF	ATC	800A0R6BT250X
C6	0.8 pF	0.1 pF	ATC	800A0R8BT250X
C7	0.5 pF	0.1 pF	ATC	800A0R5BT250X
C9	1000 pF	10%	Kemet	C0805C102K1RACTU
R1	470 Ω	10%	Panasonic	ERJ-P03F4700V
L1, L2	0.9 µH	10%	Coilcraft	1008AF-901XJLC
L3	2.2 nH	±0.2 nH	AVX	L08052R2CEW
L4	1.5 nH	±0.2 nH	AVX	L06031R5CGS
PCB	Rogers RO4350, ε _r =3.5, 0.020"			


NPA1008 Rev. V5

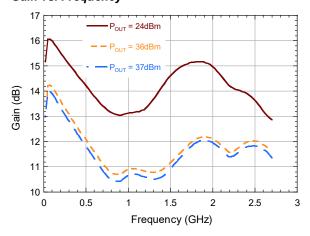
Typical Performance as measured in the Broadband Evaluation Board: CW, V_{DS} = 28 V, I_{DQ} = 88 mA, T_{C} = 25°C (unless noted)

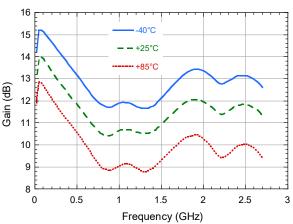

Device s-parameters (Deembedded)


Broadband Circuit s-Parameters

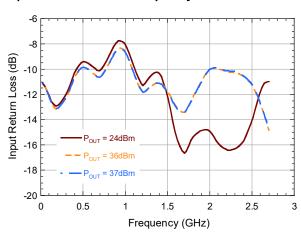
Performance vs. Frequency at $P_{OUT} = 37 \text{ dBm}$

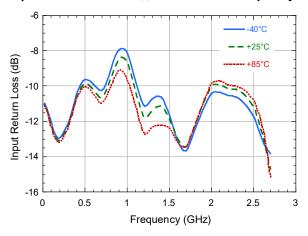
Performance vs. Input Return Loss at Pout = 37 dBm

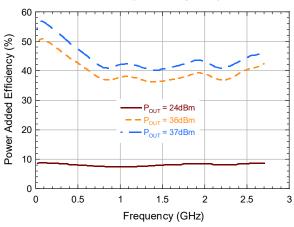


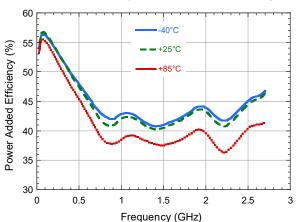

NPA1008 Rev. V5

Typical Performance as measured in the Broadband Evaluation Board: CW, V_{DS} = 28 V, I_{DQ} = 88 mA, T_{C} = 25°C (unless noted)


Gain vs. Frequency


Gain vs. Frequency at P_{OUT} = 37 dBm

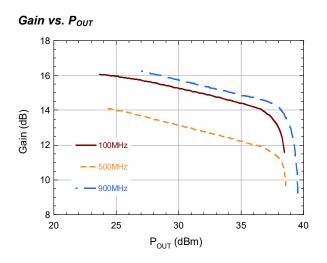

Input Return Loss vs. Frequency

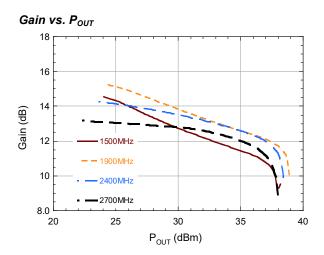

Input Return Loss at Pout = 37 dBm vs. Frequency

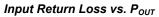
Power Added Efficiency vs. Frequency

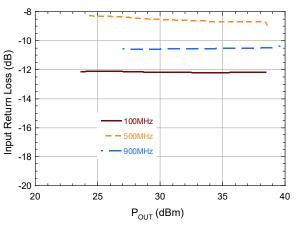
Power Added Efficiency at Pout = 37 dBm vs. Frequency

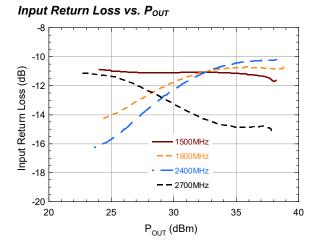
7

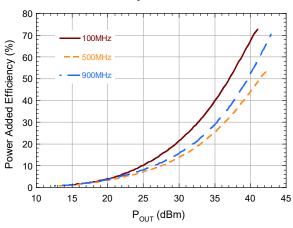

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

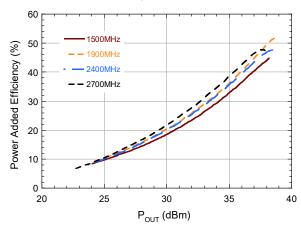

Visit www.macom.com for additional data sheets and product information.




NPA1008 Rev. V5

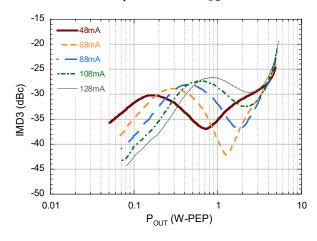

Typical Performance as measured in the Broadband Evaluation Board: CW, V_{DS} = 28 V, I_{DQ} = 88 mA, T_{C} = 25°C (unless noted)

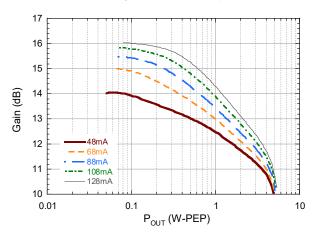




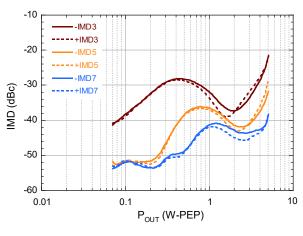
Power Added Efficiency vs. Pour

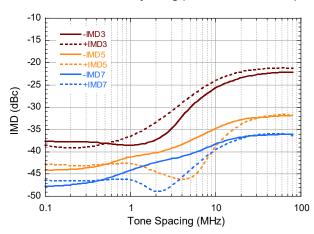
Power Added Efficiency vs. Pout


8


NPA1008 Rev. V5

Typical 2-Tone Performance as measured in the Broadband Evaluation Board 1 MHz Tone Spacing, Freq = 1900 MHz, V_{DS} = 28 V, I_{DQ} = 88 mA, T_{C} = 25°C (unless noted)

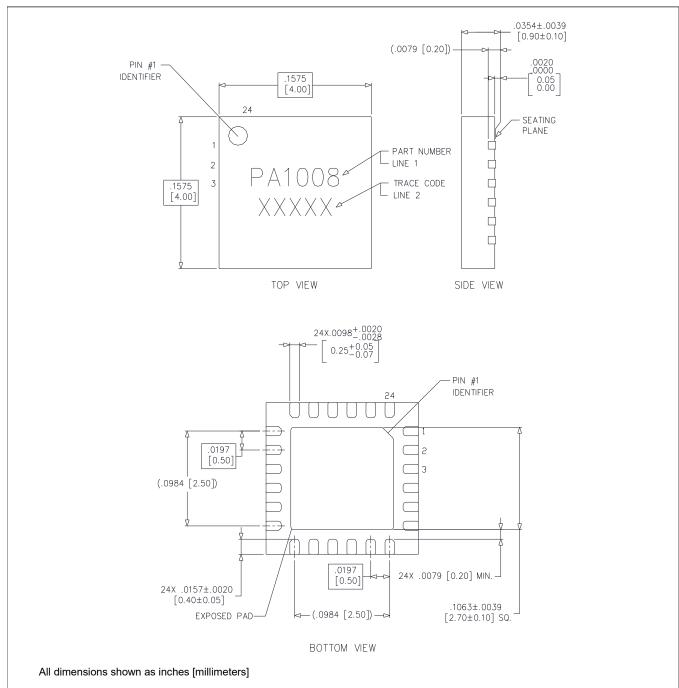

2-Tone IMD vs. Output Power vs. IDQ


2-Tone Gain vs. Output Power vs. IDQ

2-Tone IMD vs. Output Power

2-Tone IMD vs. Tone Spacing ($P_{OUT} = 37 \text{ dBm-PEP}$)

Quiescent V_{GS} vs. Temperature



9

NPA1008 Rev. V5

Lead-Free 4 mm 24-Lead QFN Plastic Package[†]

[†] Meets JEDEC moisture sensitivity level 3 requirements. Plating is Matte Tin.

This part is not recommended for new designs. Please refer to part number NPA1008A for a form, fit and function alternative.

GaN Amplifier 28 V, 5 W 20 - 2700 MHz

NPA1008 Rev. V5

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM: NPA1008