

Rev. V1

Designed for wideband amplifier, driver or oscillator applications in military, mobile, and aircraft radio.

- Specified 28 V, 400 MHz characteristics —
 Output power = 1.0 W
 Power gain = 15 dB min.
 Efficiency = 45% typ.
- Emitter ballast and low current density for improved MTBF
- · Common emitter for improved stability

Product Image

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	V _{CEO}	30	Vdc
Collector-Base Voltage	V _{СВО}	40	Vdc
Emitter-Base Voltage	V _{EBO}	3.0	Vdc
Collector Current — Continuous	Ic	150	mAdc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	P _D	6.1 35	Watts mW/°C
Storage Temperature Range	T _{stg}	-65 to +150	°C

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{0JC}	28.5	°C/W

ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted.)

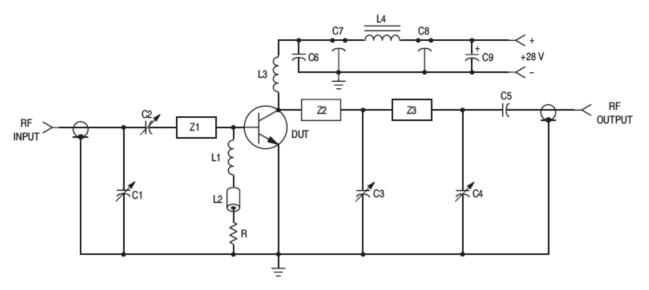
Characteristic	Symbol	Min	Тур	Max	Unit
OFF CHARACTERISTICS	•	•	•	•	•
Collector–Emitter Breakdown Voltage (I _C = 10 mAdc, I _B = 0)	V _{(BR)CEO}	30	_	_	Vdc
Collector–Emitter Breakdown Voltage (I _C = 5.0 mAdc, V _{BE} = 0)	V _{(BR)CES}	35	_	_	Vdc
Collector–Base Breakdown Voltage (I _C = 0.1 mAdc, I _E = 0)	V _{(BR)CBO}	35	_	_	Vdc
Emitter–Base Breakdown Voltage (I _E = 1.0 mAdc, I _C = 0)	V _{(BR)EBO}	3.0	_	_	Vdc
Collector Cutoff Current (V _{CE} = 20 Vdc, I _B = 0)	Iceo	_	_	1.0	mAdc

(continued)

1

Rev. V1

ELECTRICAL CHARACTERISTICS — continued (T_C = 25°C unless otherwise noted.)


Characteristic	Symbol	Min	Тур	Max	Unit
ON CHARACTERISTICS	·	•	•		•
DC Current Gain (I _C = 100 mAdc, V _{CE} = 10 Vdc)	h _{FE}	20	60	150	_
DYNAMIC CHARACTERISTICS					
Current–Gain — Bandwidth Product (I _C = 100 mAdc, V _{CE} = 20 Vdc, f = 200 MHz)	f _T	_	2.5	_	GHz
Output Capacitance (V _{CB} = 28 Vdc, I _E = 0, f = 1.0 MHz)	C _{ob}	_	3.5	5.0	pF
FUNCTIONAL TESTS	•	•			•
Common–Emitter Amplifier Power Gain (1) (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)	G _{pe}	15	16	_	dB
Collector Efficiency (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)	η	_	45	_	%
Series Equivalent Input Impedance (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)	Z _{in}	_	6.4 – j4.8	_	Ohms
Series Equivalent Output Impedance (V _{CC} = 28 Vdc, P _{out} = 1.0 W, f = 400 MHz)	Z _{out}	_	75 – j45	_	Ohms

NOTE:

1. Class C

Rev. V1

C1, C2, C4 — 1.0-20 pF JOHANSON 9063

C3 - 1.0-10 pF JOHANSON

C5 — 150 pF Chip

C6 - 0.1 uF

C7, C8 - 680 pF Feedthru

C9 — 1.0 μF TANTALUM

L1, L3 - 5 Turns, AWG #20, 1/4" I.D.

L2 — Ferrite Bead, FERROXCUBE

No. 56-590-65/4B

L4 — FERROXCUBE VK200-20/4B

Input/Output Connectors — Type N Board — Glass Teflon, ε = 2.56, t = 0.062"

R - 4.7 Ohms, 1/4 W

Z1 — 2.0" x 0.1" MICROSTRIP LINE

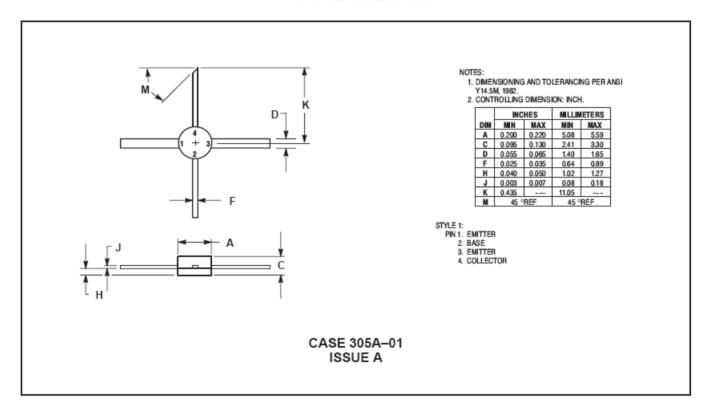

Z2, Z3 - 2.6" x 0.1" MICROSTRIP LINE

Figure 1. 400 MHz Power Gain Test Circuit

Rev. V1

PACKAGE DIMENSIONS

MRF313

The RF Line NPN Silicon High-Frequency Transistor 1.0W, 400MHz, 28V

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM: MRF313