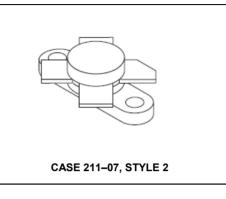


The RF MOSFET Line 45W, 150MHz, 28V

Rev. V1


Designed primarily for wideband large–signal output and driver stages from Product Image ______

N-Channel enhancement mode MOSFET

- Guaranteed performance at 150 MHz, 28 Vdc Output power = 45 W Power gain = 17 dB (min) Efficiency = 60% (min)
- Excellent thermal stability, ideally suited for Class A operation
- Facilitates manual gain control, ALC and modulation techniques
- 100% tested for load mismatch at all phase angles with 30:1 VSWR
- Low Crss 8 pF @ VDS = 28 V
- Gold top metal

Typical data for power amplifier applications in industrial, commercial and amateur radio equipment

 Typical performance at 30 MHz, 28 Vdc Output power = 30 W (PEP) Power gain = 20 dB (typ.) Efficiency = 50% (typ.) IMD(d3) (30 W PEP) –32 dB (typ.)

MAXIMUM RATINGS

Rating	Symbol	Value		Unit	
Drain–Gate Voltage	VDSS 65		Vdc		
Drain–Gate Voltage (R _{GS} = 1.0 MΩ)		VDGR	6	5	Vdc
Gate-Source Voltage		VGS	±2	20	Adc
Drain Current — Continuous		۱D	4.	.5	Adc
Total Device Dissipation @ T _C = 25°C Derate above 25°C	PD	11 0.6	-	Watts W/ºC	
Storage Temperature Range	T _{stg}	-65 to	+150	°C	
Operating Junction Temperature	Tj	200		°C	
HERMAL CHARACTERISTICS					
Characteristic			Max		Unit
Thermal Resistance, Junction to Case		R _{0JC}	1.52		°C/W
ELECTRICAL CHARACTERISTICS (T _C = 25°C unless	otherwise noted)				
Characteristic	Symbol	Min	Тур	Max	Unit
DFF CHARACTERISTICS					
Drain–Source Breakdown Voltage (I _D = 50 mA, V _{GS} = 0)	V(BR)DSS	65	80	_	Vdc
Zero Gate Voltage Drain Current (V _{GS} = 0, V _{DS} = 28 V)	-	_	1.0	mAdc	
Gate-Source Leakage Current (VGS = 20 V, VDS = 0)	—	_	1.0	μAdc	

Ge

DQ

NOTE – <u>CAUTION</u> – MOS devices are susceptible to damage from electrostatic charge. Reasonable precautions in handling and packaging MOS devices should be observed.

1

The RF MOSFET Line 45W, 150MHz, 28V

Rev. V1

Characteristic	Symbol	Min	Тур	Max	Unit	
ON CHARACTERISTICS						
Gate Threshold Voltage (V _{DS} = 10 V, I _D = 50 mA)	VGS(th)	1.5	2.5	4.5	Vdc	
Drain–Source On–Voltage (V _{GS} = 10 V, I _D = 3 A)	VDS(on)	—	1.0	—	V	
Forward Transconductance (V _{DS} = 10 V, I _D = 2 A)	9fs	1.4	1.8	—	mhos	
OYNAMIC CHARACTERISTICS						
Input Capacitance (V_{DS} = 28 V, V_{GS} = 0, f = 1.0 MHz)	Ciss	_	60	-	pF	
Output Capacitance ($V_{DS} = 28 \text{ V}, V_{GS} = 0, f = 1.0 \text{ MHz}$)	Coss	-	70	-	pF	
Reverse Transfer Capacitance (V _{DS} = 28 V, V _{GS} = 0, f = 1.0 MHz)	Crss	-	8	-	pF	
UNCTIONAL CHARACTERISTICS	-					
Common Source Power Gain (V _{DD} = 28 V, P _{out} = 45 W, f = 150 MHz, I _{DQ} = 25 mA)	G _{ps}	17	19.5	_	dB	
Drain Efficiency (V _{DD} = 28 V, Pout = 45 W, f = 150 MHz, I _{DQ} = 25 mA)	η	60	70	_	%	
Electrical Ruggedness (V _{DD} = 28 V, P _{out} = 45 W, f = 150 MHz, I _{DQ} = 25 mA, VSWR 30:1 at All Phase Angles)		No Degradation in Output Power				
YPICAL FUNCTIONAL TESTS (SSB)						
Common Source Power Gain (V _{DD} = 28 V, P _{out} = 30 W (PEP), I _{DQ} = 100 mA, f = 30; 30.001 MHz)	G _{ps}	_	20	_	dB	
Drain Efficiency (V _{DD} = 28 V, P _{out} = 30 W (PEP), I _{DQ} = 100 mA, f = 30; 30.001 MHz)	η	_	50	_	%	
Intermodulation Distortion (VDD = 28 V, Pout = 30 W (PEP), IDQ = 100 mA, f = 30; 30.001 MHz)	IMD(d3)	_	-32	_	dB	

RF INPUT Z1 C3	$\xrightarrow{\text{BIAS}} R2$ $\xrightarrow{+} \qquad \qquad$	R1 RFC2 E	$\begin{array}{c} RFC1 \\ 4 \\ \hline \\ 4 \\ \hline \\ 4 \\ \hline \\ \hline \\ 4 \\ \hline \\ \hline$
C1, C10 C2, C5, C8 C3 C4 C6, C14 C7 C9 C11, C12 C13 L1 L2 L3 L4 R1	1000 pF, Chip Capacitor 2–20 pF, Trimmer Capacitors, Johanson 43 pF, 100 mil Chip Capacitor, ATC 120 pF, 100 mil Chip Capacitor, ATC 0.1 μF, Capacitors 50 pF, 100 mil Chip Capacitor, ATC 12 pF, 100 mil Chip Capacitor, ATC 680 pF, Feedthru Capacitors 50 μF, 50 V, Electrolytic Capacitor 2 Turns, 0.297" ID, 18 AWG 1–1/2 Turns, 0.265" ID, 18 AWG 1–1/4 Turns, 0.234" ID, 18 AWG 1–1/2 Turns, 0.250" ID, 18 AWG 1–1/2 Turns, 0.250" ID, 18 AWG	R2 R3 Z1 Z2 Z3 Z4 Z5 Z6 Z7 RFC1 RFC2 Board	1 kΩ, 1/2 W Chip Resistor 10 kΩ, 1/2 W Chip Resistor 0.160" x 0.400" Microstrip 0.160" x 0.600" Microstrip 0.160" x 0.900" Microstrip 0.160" x 0.800" Microstrip 0.160" x 0.800" Microstrip 0.160" x 0.400" Microstrip Ferroxcube VK200–19/4B 10 Turns, 0.250" ID, 20 AWG, Enamel 0.062", G10 1 oz. Copper Clad Both Sides, $\varepsilon_{\rm f}$ = 2.56

Figure 1. MRF171A 150 MHz Test Circuit

3

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

The RF MOSFET Line 45W, 150MHz, 28V

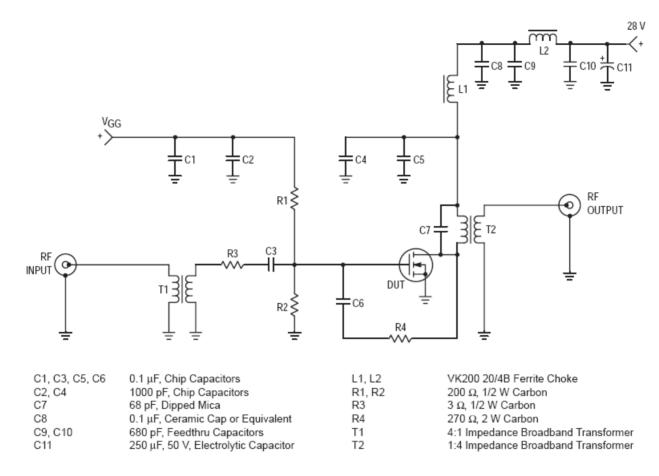


Figure 2. MRF171A 30 MHz Test Circuit

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

МЛСОМ

The RF MOSFET Line 45W, 150MHz, 28V

Rev. V1

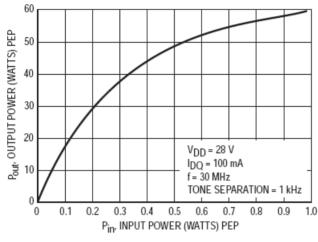
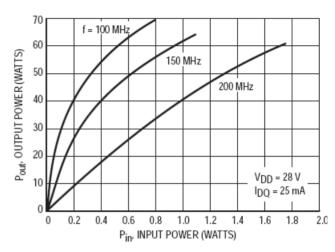



Figure 3. Output Power versus Input Power

TYPICAL CHARACTERISTICS

Figure 4. Output Power versus Input Power

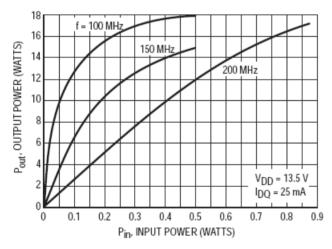


Figure 5. Output Power versus Input Power

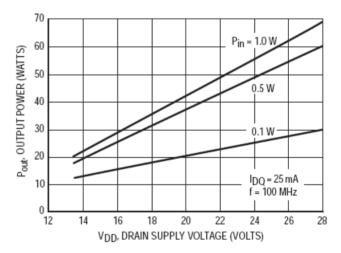
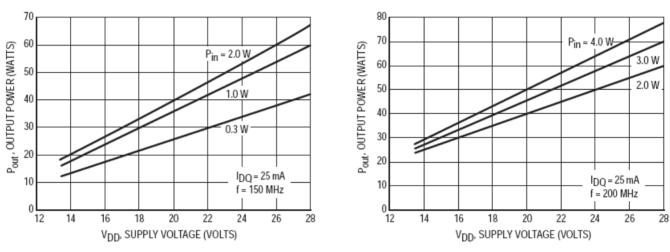
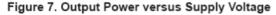
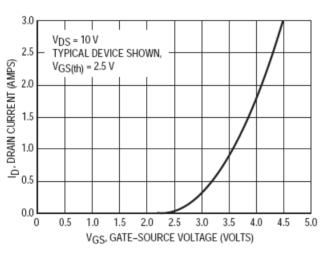
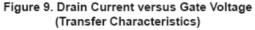




Figure 6. Output Power versus Supply Voltage


MACOM


The RF MOSFET Line 45W, 150MHz, 28V

TYPICAL CHARACTERISTICS

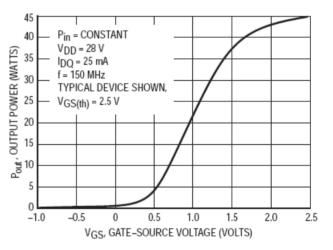


Figure 10. Output Power versus Gate Voltage

6

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

The RF MOSFET Line 45W, 150MHz, 28V

Rev. V1

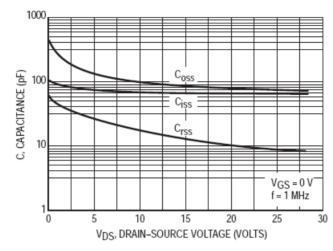
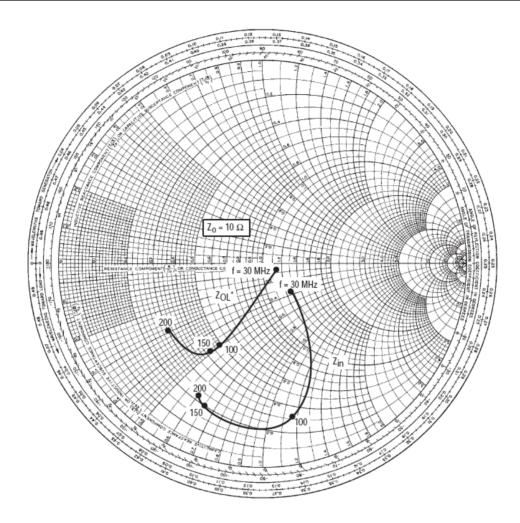



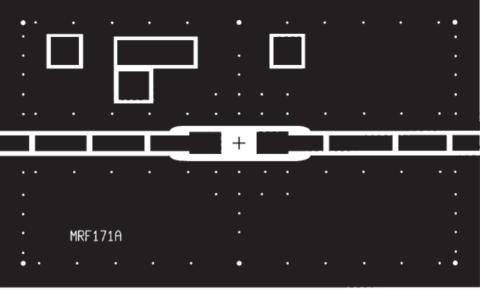
Figure 11. Capacitance versus Drain-Source Voltage

Rev. V1

V _{DD} = 28 V, I _{DQ} = 25 mA, P _{out} = 45 W									
f MHz	Z _{in} (1) Ω	Z _{OL} (2) Ω							
30	12.8 – j3.6	11.5 – j0.99							
100	3.1 – j11.6	4.9 – j4.9							
150	2.0 – j6.5	4.2 – j4.9							
200	2.2 – j6.0	3.0 – j2.9							

(1) 68 Ω shunt resistor gate-to-ground.

(2) Z_{OL} = Conjugate of the optimum load impedance into which the device operates at a given output power, voltage and frequency.


Figure 12. Large-Signal Series Equivalent Input/Output Impedance

8

Rev. V1

(Scale 1:1)

Figure 13. MRF171A Circuit Board Photo Master

The RF MOSFET Line 45W, 150MHz, 28V

Rev. V1

f	s	11	S	21	S.	12	S	22
MHz	S ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	S ₂₂	φ
30	0.801	-162	11.90	96	0.026	13	0.811	-166
40	0.809	-166	9.12	91	0.028	11	0.812	-171
50	0.810	-169	7.29	88	0.027	11	0.831	-172
60	0.808	-170	6.22	85	0.028	9	0.824	-174
70	0.814	-172	5.30	82	0.028	9	0.831	-176
80	0.811	-173	4.56	81	0.027	10	0.837	-175
90	0.811	-174	4.04	80	0.027	13	0.829	-174
100	0.814	-174	3.66	77	0.027	12	0.846	-176
110	0.812	-175	3.37	75	0.027	11	0.842	-177
120	0.816	-175	3.00	74	0.027	13	0.850	-176
130	0.816	-176	2.75	73	0.027	14	0.849	-175
140	0.817	-176	2.57	72	0.027	17	0.851	-176
150	0.821	-176	2.37	69	0.027	17	0.863	-177
160	0.820	-176	2.27	67	0.027	17	0.853	-177
170	0.821	-177	2.08	66	0.026	19	0.838	-177
180	0.824	-177	1.93	65	0.027	19	0.861	-177
190	0.825	-177	1.89	64	0.027	21	0.873	-177
200	0.830	-177	1.74	62	0.027	23	0.873	-178
210	0.831	-177	1.67	60	0.027	25	0.874	-177
220	0.831	-178	1.62	59	0.026	28	0.870	-178
230	0.836	-178	1.48	57	0.027	27	0.909	-179
240	0.836	-178	1.43	56	0.027	26	0.865	-180
250	0.839	-178	1.37	57	0.028	30	0.873	-178
260	0.844	-178	1.30	54	0.028	34	0.882	-179
270	0.842	-178	1.28	52	0.028	36	0.887	-180
280	0.845	-179	1.21	52	0.027	37	0.881	-180
290	0.849	-179	1.14	50	0.027	36	0.869	179
300	0.849	-179	1.12	50	0.029	39	0.852	-180
310	0.855	-179	1.06	49	0.029	42	0.891	-179
320	0.856	-179	1.03	46	0.030	43	0.889	180
330	0.856	-180	0.96	45	0.031	47	0.868	180
340	0.858	-180	0.96	46	0.030	47	0.888	179
350	0.860	180	0.93	44	0.031	49	0.875	-180
360	0.862	180	0.91	44	0.033	48	0.901	179
370	0.866	180	0.86	43	0.034	50	0.913	178
380	0.867	179	0.84	41	0.036	52	0.897	178
390	0.869	179	0.82	42	0.035	54	0.893	178
400	0.870	179	0.78	40	0.035	57	0.880	180
410	0.872	179	0.77	39	0.037	55	0.923	178
420	0.876	178	0.73	37	0.039	54	0.915	176
430	0.877	178	0.69	38	0.040	56	0.903	177
440	0.879	178	0.68	39	0.041	58	0.921	178

Table 1. Common Source S-Parameters (VDS = 12.5 V, ID = 0.5 A)

The RF MOSFET Line 45W, 150MHz, 28V

Rev. V1

f	s ₁₁		\$ ₂₁		\$ ₁₂		\$ ₂₂	
MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ
450	0.882	177	0.68	36	0.040	61	0.926	178
460	0.884	177	0.65	36	0.041	59	0.937	175
470	0.886	177	0.62	35	0.041	60	0.896	176
480	0.885	176	0.62	33	0.044	61	0.907	176
490	0.886	176	0.61	32	0.046	63	0.907	176
500	0.887	176	0.59	31	0.047	65	0.916	175

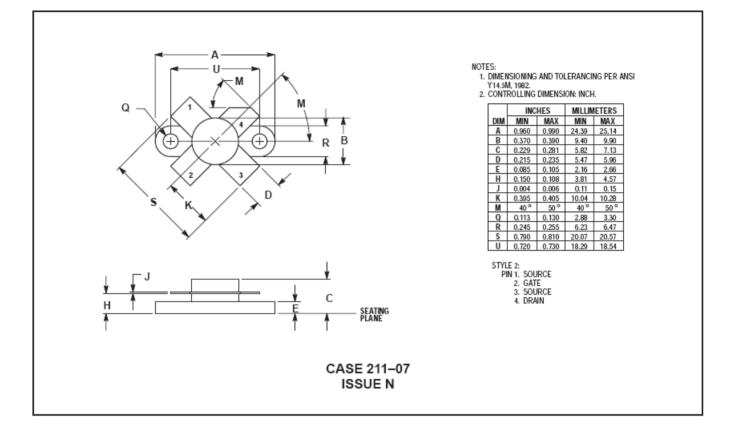
Table 1. Common Source S-Parameters (VDS = 12.5 V, ID = 0.5 A) (continued)

The RF MOSFET Line 45W, 150MHz, 28V

Rev. V1

f MHz	\$ ₁₁	φ	\$ ₂₁	φ	\$ ₁₂	φ	\$ ₂₂	φ
30	0.783	-152	17.10	100	0.025	17	0.730	-158
40	0.793	-158	13.20	94	0.027	13	0.730	-164
50	0.793	-162	10.50	90	0.027	12	0.754	-167
60	0.791	-165	9.00	87	0.027	11	0.746	-169
70	0.798	-167	7.68	83	0.026	10	0.760	-171
80	0.795	-169	6.63	82	0.026	10	0.770	-170
90	0.795	-170	5.85	80	0.026	12	0.760	-170
100	0.799	-170	5.30	77	0.026	10	0.779	-172
110	0.798	-171	4.86	75	0.026	11	0.775	-174
120	0.802	-172	4.35	74	0.025	13	0.785	-172
130	0.801	-172	3.97	72	0.025	14	0.788	-171
140	0.803	-173	3.70	71	0.025	15	0.791	-172
150	0.809	-173	3.42	68	0.025	14	0.808	-173
160	0.808	-173	3.27	66	0.025	15	0.796	-172
170	0.809	-174	2.99	65	0.024	18	0.783	-174
180	0.814	-174	2.77	63	0.025	19	0.809	-173
190	0.815	-175	2.71	62	0.024	21	0.820	-174
200	0.822	-175	2.49	60	0.024	22	0.826	-175
210	0.824	-175	2.37	57	0.024	24	0.836	-175
220	0.825	-175	2.23	57	0.024	26	0.807	-175
230	0.831	-176	2.08	56	0.024	29	0.839	-175
240	0.830	-176	2.00	54	0.024	29	0.818	-176
250	0.832	-176	1.92	55	0.024	33	0.828	-174
260	0.838	-176	1.81	53	0.024	35	0.829	-175
270	0.837	-176	1.79	50	0.025	37	0.834	-175
280	0.840	-177	1.69	50	0.025	39	0.832	-176
290	0.844	-177	1.60	48	0.025	39	0.836	-177
300	0.844	-177	1.55	48	0.025	44	0.814	-175
310	0.849	-178	1.48	47	0.026	46	0.848	-175
320	0.852	-178	1.43	44	0.027	45	0.855	-177
330	0.852	-178	1.35	43	0.028	48	0.833	-177
340	0.855	-178	1.32	44	0.028	49	0.861	-177
350	0.856	-178	1.29	41	0.029	53	0.842	-176

	Table 2. Common Source S-Parameters (VDS = 28 V, ID = 0.5 A) (continued)											
f MHz	S ₁₁	φ	\$ ₂₁	φ	s ₁₂	φ	\$ ₂₂	φ				
360	0.859	-179	1.25	42	0.030	54	0.872	-178				
370	0.863	-179	1.18	39	0.030	55	0.886	-178				
380	0.864	-179	1.15	38	0.031	55	0.864	-178				
390	0.867	-179	1.12	39	0.032	57	0.862	-179				
400	0.869	-180	1.07	37	0.032	60	0.853	-177				
410	0.872	-180	1.05	35	0.035	60	0.898	-179				
420	0.876	180	1.00	34	0.036	60	0.889	180				
430	0.877	179	0.95	35	0.037	62	0.884	-179				
440	0.879	179	0.93	34	0.038	64	0.902	-179				
450	0.882	179	0.91	32	0.039	65	0.901	-180				
460	0.884	178	0.88	32	0.041	64	0.922	179				
470	0.885	178	0.84	32	0.040	66	0.877	179				
480	0.885	178	0.83	30	0.042	66	0.892	179				
490	0.886	177	0.81	29	0.044	68	0.891	179				
500	0.887	177	0.80	28	0.045	68	0.900	178				


Table 2. Common Source S-Parameters (Vns = 28 V. In = 0.5 A) (continued)

Rev. V1

PACKAGE DIMENSIONS

Rev. V1

M/A-COM Technology Solutions Inc. All rights reserved.

Information in this document is provided in connection with M/A-COM Technology Solutions Inc ("MACOM") products. These materials are provided by MACOM as a service to its customers and may be used for informational purposes only. Except as provided in MACOM's Terms and Conditions of Sale for such products or in any separate agreement related to this document, MACOM assumes no liability whatsoever. MACOM assumes no responsibility for errors or omissions in these materials. MACOM may make changes to specifications and product descriptions at any time, without notice. MACOM makes no commitment to update the information and shall have no responsibility whatsoever for conflicts or incompatibilities arising from future changes to its specifications and product descriptions. No license, express or implied, by estoppels or otherwise, to any intellectual property rights is granted by this document.

THESE MATERIALS ARE PROVIDED "AS IS" WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING LIABILITY OR WARRANTIES RELATING TO FITNESS FOR A PARTICULAR PURPOSE, CONSEQUENTIAL OR INCIDENTAL DAMAGES, MERCHANTABILITY, OR INFRINGEMENT OF ANY PATENT, COPYRIGHT OR OTHER INTELLECTUAL PROPERTY RIGHT. MACOM FURTHER DOES NOT WARRANT THE ACCURACY OR COMPLETENESS OF THE INFORMATION, TEXT, GRAPHICS OR OTHER ITEMS CONTAINED WITHIN THESE MATERIALS. MACOM SHALL NOT BE LIABLE FOR ANY SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES, INCLUDING WITHOUT LIMITATION, LOST REVENUES OR LOST PROFITS, WHICH MAY RESULT FROM THE USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹⁵

M/A-COM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM: MRF171A