

Rev. V3

Features

Wideband Performance

Gain: 21 dB @ 3 GHz

• P1dB: 20 dBm @ 3 GHz

Noise Figure: 1.4 dB @ 3 GHz

OIP3: 36 dBm @ 3 GHz

Bias Voltage: 5 VBias Current: 90 mA

50 Ω Matched Input / Output

Positive Voltage Only

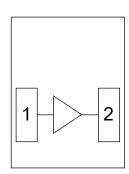
• Die Size: 0.59 x 0.70 mm

RoHS* Compliant

Applications

Instrumentation & Communication Systems

Description


MAAM-011326-DIE is an easy-to-use, wideband amplifier that operates from 0.4 to 6 GHz. The amplifier provides 21 dB gain, 20 dBm output P1dB and 36 dBm OIP3 at 3 GHz. The gain slope is only \pm 0.5 dB from 0.5 to 3 GHz. It is matched to 50 Ω with typical return losses of 15 dB at the input and 13 dB at the output. The amplifier requires only positive bias voltages and consumes 90 mA from a 5 V supply.

MAAM-011326-DIE is suitable for a wide range of applications in instrumentation and communication systems.

Ordering Information

Part Number	Package
MAAM-011326-DIE	Bare Die

Functional Schematic

Pad Configuration^{1,2,3}

Pin#	Pin Name	Function	
1	RFIN	RF Input	
2	RFOUT / V _{DD}	RF Output / V _{DD}	

- 1. The RFIN pad is DC coupled and matched to 50 Ω . An external DC block is required
- 2. The RFOUT pad is DC coupled and matched to 50 Ω . DC bias is supplied through this pad.
- Backside of die must be connected to RF, DC and thermal ground.

^{*} Restrictions on Hazardous Substances, compliant to current RoHS EU directive.

Rev. V3

Electrical Specifications: $T_B = 25^{\circ}C^4$, $V_{DD} = +5 \text{ V}^5$, $Z_0 = 50 \Omega$ (Probe Data with Bias Tees)

Parameter	Test Conditions	Units	Min.	Тур.	Max.
Gain	0.5 GHz 2 GHz 3 GHz 4 GHz 6 GHz	dB	21.0 — 20.0 — 19.0	22.0 21.5 21.0 21.0 20.0	_
Gain Variation vs. Temp	0.5 - 3 GHz 3 - 6 GHz	dB/°C	_	0.01 0.02	_
Gain Variation vs. Freq	0.5 - 3 GHz	dB	_	<u>+</u> 0.5	_
Noise Figure	0.5 GHz 3 GHz 6 GHz	dB	_	1.5 1.4 2.0	1.8 1.6 2.2
Input Return Loss	0.5 - 2 GHz 2 - 4 GHz 4 - 6 GHz	dB	_	-15 -16 -20	-10 -11 -10
Output Return Loss	0.5 - 6 GHz	dB	_	-13	-12
P1dB	0.5 GHz 2 GHz 3 GHz 4 GHz 5 GHz 6 GHz	dBm	_	20.3 20.3 20.0 19.0 17.6 16.2	_
Saturated Output Power	0.5 - 6 GHz	dBm	_	21	_
Output IP3 ⁶	0.5 GHz 2 GHz 3 GHz 4 GHz 5 GHz 6 GHz	dBm	33.0 — 32.5 — — 27.5	35.0 38.0 36.0 34.0 31.5 30.0	_
Supply Current	Quiescent bias	mA	_	90	100

^{4.} Baseplate temperature.

 ^{5.} Drain voltage injected through the RF output port using an external bias tees. Voltage at the output pin is ≈ +4.8 V.
 6. Output IP3 tested with two input tones of -20 dBm each with 10 MHz spacing.

Rev. V3

Maximum Operating Conditions

Parameter	Rating	
Input Power	5 dBm	
IC	120 mA	
Junction Temperature ^{7,8}	+150°C	
Operating Temperature	-40°C to +105°C	

- 7. Operating at nominal conditions with junction temperature ≤ 130°C will ensure MTTF > 1 x 106 hours.
- Junction Temperature (T_J) = T_B + Θjc * (V * I)
 Typical thermal resistance (Θic) = 65 °C/W.

a) For $T_B = +25^{\circ}C$,

 $T_J = 55 \, ^{\circ}\text{C} \ @ 5 \, \text{V}, \, 90 \, \text{mA}$

b) For $T_B = +105^{\circ}C$,

T_J = 135 °C @ 5 V, 90 mA

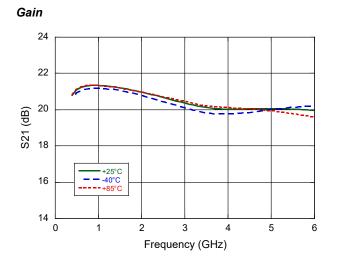
Absolute Maximum Ratings^{9,10}

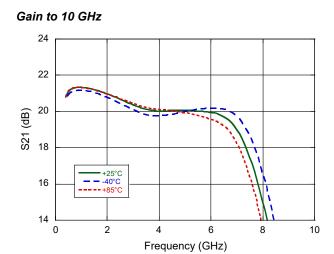
Parameter	Absolute Maximum	
V_{DD}	8 V	
Input Power	20 dBm	
Junction Temperature ¹¹	+150°C	
Storage Temperature	-65°C to +125°C	

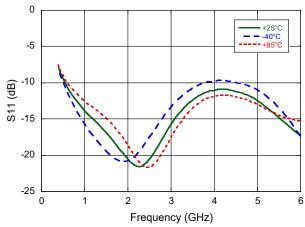
- Exceeding any one or combination of these limits may cause permanent damage to this device
- 10. MACOM does not recommend sustained operation near these survivability limits.
- Junction temperature directly effects device MTTF. Junction temperature should be kept as low as possible to maximize lifetime.

Handling Procedures

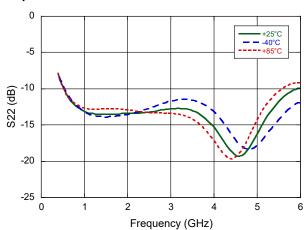
Please observe the following precautions to avoid damage:

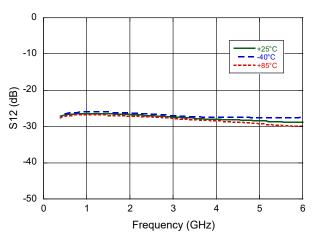

Static Sensitivity

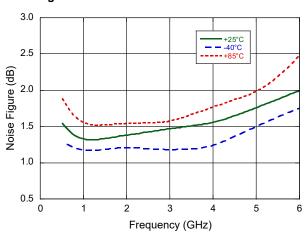

These electronic devices are sensitive to electrostatic discharge (ESD) and can be damaged by static electricity. Proper ESD control techniques should be used when handling these HBM Class 1B devices.


MAAM-011326-DIE Rev. V3

Typical Performance Curves @ 5 V / 90 mA, Z_0 = 50 Ω (Probe data with Bias Tees)

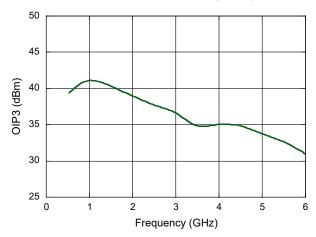



Input Return Loss

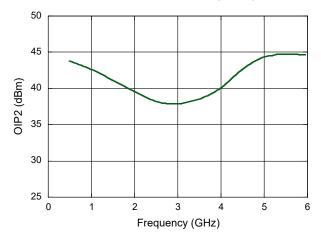

Output Return Loss

Reverse Isolation

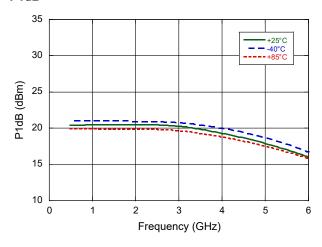
Noise Figure


MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

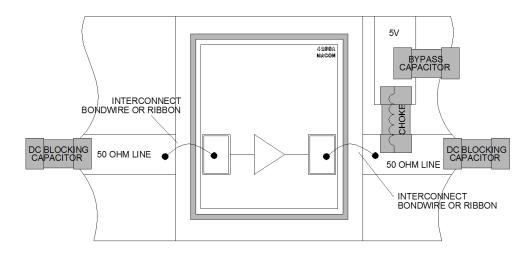
Visit www.macom.com for additional data sheets and product information.


Rev. V3

Typical Performance Curves @ 5 V / 90 mA, Z_0 = 50 Ω (Probe data with Bias Tees)


OIP3 at P_{IN} = -20 dBm/tone, 10 MHz Spacing

OIP2 at P_{IN} = -20 dBm/tone, 10 MHz Spacing


P1dB

MAAM-011326-DIE Rev. V3

Device Assembly¹²

Die Dimensions^{13,14}

Bond Pad Dimensions (µm)

Pad #	Size		Description	
Pau #	X	Y	Description	
1, 4	100	100	GND	
2	100	139	RF _{IN}	
3	100	139	RF _{OUT} / V _{DD}	

- 12. DO NOT use eutectic (solder) for die attach. Use electrically and thermally conductive epoxy only, such as Ablestick ABP 8062T.
- 13. Dimensions are in microns.
- 14. GND bond pads 1 and 4 are connected to the backside of the die through via holes. These bond pads do not require bond wires. Only pins 2 and 3 require bond wires.

21 dB Gain Amplifier, Die 0.4 - 6 GHz

MAAM-011326-DIE

Rev. V3

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

MAAM-011326-DIE