


# CMPA601C025F

25 W, 6.0 - 12.0 GHz, GaN MMIC, Power Amplifier

# Description

The CMPA601C025F is a gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC) on a Silicon Carbide (SiC) substrate, using a 0.25μm gate length fabrication process. The semiconductor offers 25 Watts of power from 6 to 12 GHz of instantaneous bandwidth. The GaN HEMT MMIC is housed in a thermally-enhanced, 10-lead 25 mm x 9.9 mm metal/ceramic flanged package. It offers high gain and superior efficiency in a small footprint package at 50 ohms.



PN: CMPA601C025F Package Type: 440213

#### Typical Performance Over $6.0 - 12 \text{ GHz} (T_c = 25^{\circ}\text{C})$

| Parameter                                   | 6.0 GHz | 7.5 GHz | 9.0 GHz | 10.5 GHz | 12.0 GHz | Units |
|---------------------------------------------|---------|---------|---------|----------|----------|-------|
| Small Signal Gain                           | 35      | 34      | 34      | 37       | 31       | dB    |
| P <sub>OUT</sub> @ P <sub>IN</sub> = 22 dBm | 34      | 51      | 49      | 45.9     | 36.5     | W     |
| Power Gain @ P <sub>IN</sub> = 22 dBm       | 23      | 25      | 25      | 25       | 23.5     | dB    |
| PAE @ P <sub>IN</sub> = 22 dBm              | 21      | 36      | 35      | 33       | 27       | %     |

Note: All data CW

#### **Features**

- 34 dB Small Signal Gain
- 40 W Typical P<sub>SAT</sub>
- Operation up to 28 V
- High Breakdown Voltage
- **High Temperature Operation**
- Size 0.172 x 0.239 x 0.004 inches

#### **Applications**

- **Jamming Amplifiers**
- **Test Equipment Amplifiers**
- **Broadband Amplifiers**





## Absolute Maximum Ratings (not simultaneous) at 25°C

| Parameter                                         | Symbol            | Rating    | Units           | Conditions                      |
|---------------------------------------------------|-------------------|-----------|-----------------|---------------------------------|
| Drain-Source Voltage                              | V <sub>DSS</sub>  | 84        | V               | 25°C                            |
| Gate-Source Voltage                               | V <sub>GS</sub>   | -10, +2   | V <sub>DC</sub> | 25°C                            |
| Storage Temperature                               | T <sub>STG</sub>  | -40, +150 | °C              |                                 |
| Operating Junction Temperature                    | TJ                | 225       | 30              |                                 |
| Maximum Forward Gate Current                      | I <sub>GMAX</sub> | 23        | mA              | 25°C                            |
| Soldering Temperature <sup>1</sup>                | T <sub>STG</sub>  | 245       | °C              |                                 |
| Screw Torque                                      | τ                 | 40        | in-oz           |                                 |
| Thermal Resistance, Junction to Case <sup>2</sup> | $R_{\theta JC}$   | 0.85      | °C/W            | 85°C @ P <sub>DISS</sub> = 116W |
| Case Operating Temperature <sup>2</sup>           | T <sub>C</sub>    | -40, +150 | °C              |                                 |

# Electrical Characteristics (Frequency = 6.0 GHz to 12.0 GHz unless otherwise stated; T<sub>C</sub> = 25°C)

| Characteristics                                  | Symbol            | Min. | Тур. | Max. | Units | Conditions                                                                                                |
|--------------------------------------------------|-------------------|------|------|------|-------|-----------------------------------------------------------------------------------------------------------|
| DC Characteristics <sup>1,2</sup>                | ,                 |      |      |      |       |                                                                                                           |
| Gate Threshold                                   | V <sub>TH</sub>   | -3.8 | -2.8 | -2.3 | V     | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 23 mA                                                            |
| Saturated Drain Current                          | I <sub>DS</sub>   | 10.6 | 13.0 |      | А     | $V_{DS} = 6 \text{ V}, I_{GS} = 2 \text{ V}$                                                              |
| Drain-Source<br>Breakdown Voltage                | V <sub>BD</sub>   | 84   | 100  | _    | V     | V <sub>GS</sub> = -8 V, I <sub>DS</sub> = 23 mA                                                           |
| RF Characteristics <sup>3</sup>                  |                   |      |      |      |       |                                                                                                           |
| Small Signal Gain at 6.0 - 10.5 GHz              | C21               | 28   | 31   | _    | dB    | $V_{DD} = 28 \text{ V}, I_{DQ} = 2 \text{ A}, P_{IN} = -30 \text{ dBm}$                                   |
| Small Signal Gain at 10.5 - 12 GHz               | S21               | 25   | 28   | _    | ав    |                                                                                                           |
| Output Power at 6 GHz <sup>3,4</sup>             | P <sub>OUT1</sub> | 45.5 | 47.2 | _    |       |                                                                                                           |
| Output Power at 9.5 GHz <sup>3,4</sup>           | P <sub>OUT2</sub> | 45.5 | 47.1 | _    | dBm   |                                                                                                           |
| Output Power at 12 GHz <sup>3,4</sup>            | P <sub>OUT3</sub> | 43.0 | 44.8 | _    | ]     | V 20VI 24 B 22 IB                                                                                         |
| Power Added Efficiency at 6 GHz <sup>3,4</sup>   | PAE <sub>1</sub>  | 23   | 33.2 | _    |       | $V_{DD} = 28 \text{ V}, I_{DQ} = 2 \text{ A}, P_{IN} = 22 \text{ dBm}$                                    |
| Power Added Efficiency at 9.5 GHz <sup>3,4</sup> | PAE <sub>2</sub>  | 26   | 32.3 | _    | %     |                                                                                                           |
| Power Added Efficiency at 12 GHz <sup>3,4</sup>  | PAE <sub>3</sub>  | 15.5 | 26.5 | _    | ]     |                                                                                                           |
| Input Return Loss                                | S11               | _    | _    | _    | I.D.  | V 20VI 24 B 20 IS                                                                                         |
| Output Return Loss                               | S22               | _    | -5   | _    | dB    | $V_{DD} = 28 \text{ V}, I_{DQ} = 2 \text{ A}, P_{IN} = -30 \text{ dBm}$                                   |
| Output Mismatch Stress                           | VSWR              | _    | _    | 5:1  | Ψ     | No damage at all phase angles,<br>V <sub>DD</sub> = 28 V, I <sub>DQ</sub> = 2 A, P <sub>IN</sub> = 22 dBm |

#### Notes:

<sup>1</sup> Refer to the Application Note on soldering
2 See also, the Power Dissipation De-rating Curve on page 5

<sup>&</sup>lt;sup>1</sup> Measured on-wafer prior to packaging

<sup>&</sup>lt;sup>2</sup> Scaled from PCM data

<sup>&</sup>lt;sup>3</sup> Measured in CMPA601C025F-AMP with 12.4 GHz low pass filter

<sup>&</sup>lt;sup>4</sup> Fixture loss de-embedded using the following offsets. The offset is subtracted from the input offset value and added to the output offset value.

a) 6.0 GHz - 0.13 dB

b) 9.50 GHz - 0.26 dB

c) 12.0 GHz - 0.35 dB



## **CMPA601C025F Typical Performance**

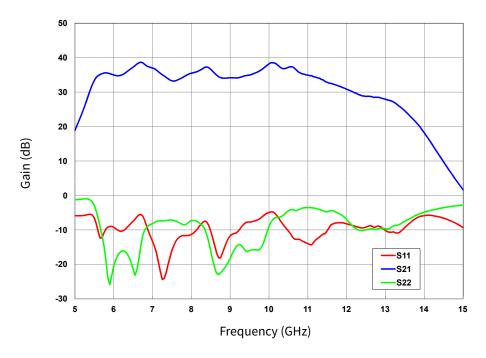
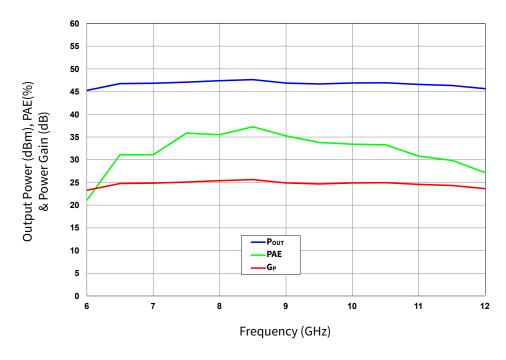




Figure 1. Small Signal S-Parameters vs. Frequency  $V_{DD} = 28 \text{ V}$ ,  $I_{DO} = 2.0 \text{ A}$ ,  $P_{IN} = -30 \text{ dBm}$ 



**Figure 2.** Output Power, Gain and Power Added Efficiency vs. Input Power  $V_{DD} = 28 \text{ V}$ ,  $I_{DQ} = 2.0 \text{ A}$ ,  $P_{IN} = 22 \text{ dBm}$ 



# **CMPA601C025F Typical Performance**

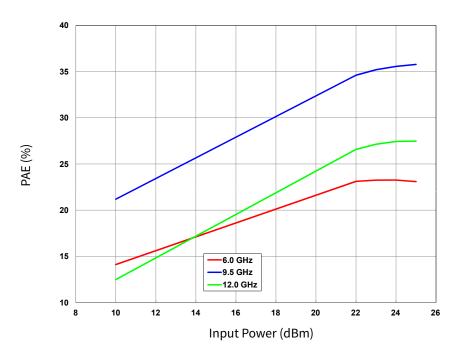



Figure 3. Power Added Efficiency vs. Input Power  $V_{DD}$  = 28 V,  $I_{DO}$  = 2.0 A

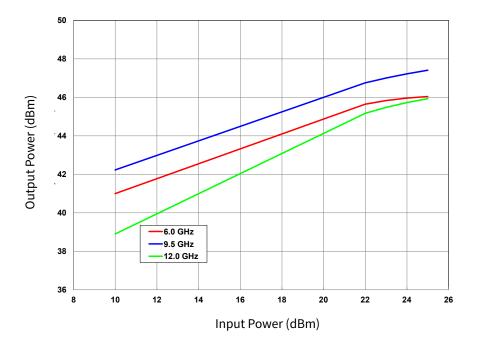
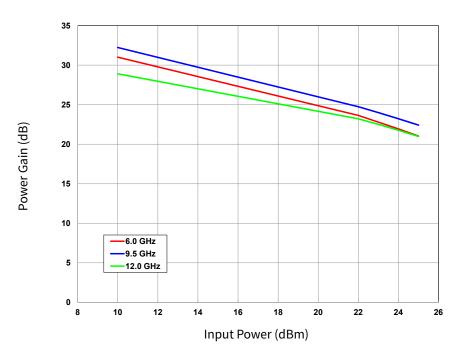




Figure 4. Output Power vs. Input Power  $V_{DD} = 28 \text{ V}, I_{DQ} = 2.0 \text{ A}$ 



## **CMPA601C025F Typical Performance**



**Figure 5.** Gain vs Input Power  $V_{DD} = 28 \text{ V}, I_{DQ} = 2.0 \text{ A}$ 

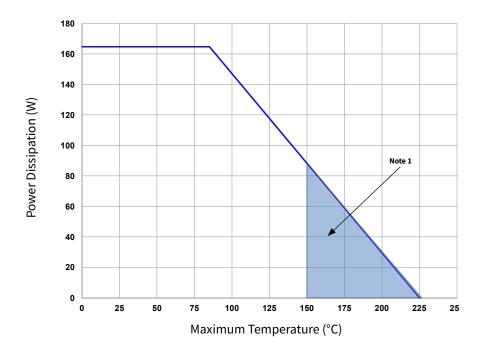
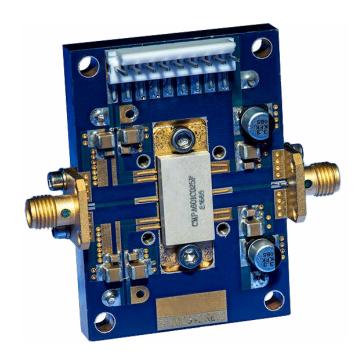


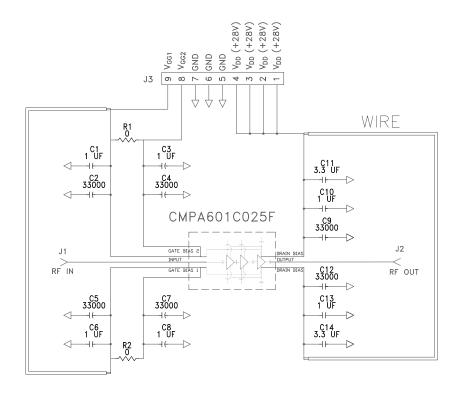

Figure 6. Power Dissipation Derating Curve

Notes:

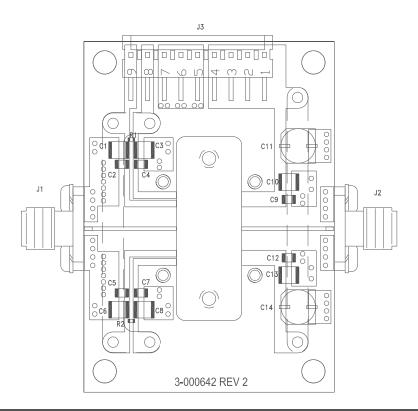

<sup>&</sup>lt;sup>1</sup> Area exceeds Maximum Case Operating Temperature (See Page 2)



# CMPA601C025F-AMP Demonstration Amplifier Circuit Bill of Materials

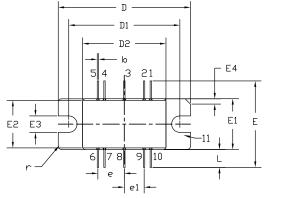

| Designator               | Description                                                       | Qty |
|--------------------------|-------------------------------------------------------------------|-----|
| C2, C4, C5, C7, C9, C12  | CAP, 33000pF, 0805, 100V, X7R                                     | 6   |
| C1, C3, C6, C8, C10, C13 | CAP, 1.0μF, 100V, 10%, X7R, 1210                                  | 6   |
| C11,C14                  | CAP ELECT 3.3µF 80V FK SMD                                        | 2   |
| R1, R2                   | RES 0.0 OHM 1/16W 0402 SMD                                        | 2   |
| J1, J2                   | CONN, SMA, PANEL MOUNT JACK, FLANGE,<br>4-HOLE, BLUNT POST, 20MIL | 2   |
| J3                       | HEADER RT>PLZ .1CEN LK 9POS                                       | 1   |
| W1                       | WIRE, BLACK, 22 AWG ~ 1.50"                                       | 1   |
| W2                       | WIRE, BLACK, 22 AWG ~ 1.75"                                       | 1   |
| Q1                       | CMPA601C025F                                                      | 1   |

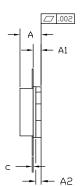
# CMPA601C025F-AMP Demonstration Amplifier Circuit






## **CMP601C025F-AMP Demonstration Amplifier Circuit Schematic**





# CMPA601C025F-AMP Demonstration Amplifier Circuit Outline

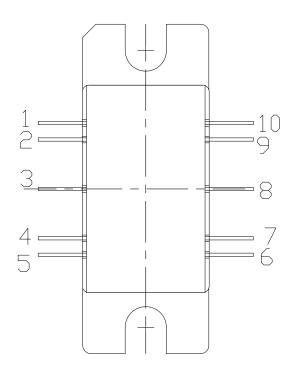




#### **Product Dimensions CMPA601C025F**






PIN 1: GATE BIAS 6: DRAIN BIAS 2: GATE BIAS 7: DRAIN BIAS 3: RF IN 8: RF DUT 4: GATE BIAS 9: DRAIN BIAS 5: GATE BIAS 10: DRAIN BIAS 11: SDURCE

#### NOTES:

- 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M  $-\,$  1994.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

|     | INC   | HES       | MILLIM   | ETERS | NOTES       |
|-----|-------|-----------|----------|-------|-------------|
| DIM | MIN   | MAX       | MIN      | MAX   |             |
| Α   | 0.155 | 0.175     | 3.94     | 4.45  |             |
| A1  | 0.055 | 0.065     | 1.40     | 1.65  |             |
| A2  | 0.035 | 0.045     | 0.89     | 1.14  |             |
| b   | 0.01  | TYP       | 0.254    | TYP   | 10x         |
| С   | 0.007 | 0.009     | 0.18     | 0.23  |             |
| D   | 0.995 | 1.005     | 25.27    | 25.53 |             |
| D1  | 0.835 | 0.845     | 21.21    | 21.46 |             |
| D2  | 0.623 | 0.637     | 15.82    | 16.18 |             |
| Ε   | 0.653 | TYP       | 16.59    | TYP   |             |
| E1  | 0.380 | 0.390     | 9.65     | 9.91  |             |
| E2  | 0.355 | 0.365     | 9.02     | 9.27  |             |
| E3  | 0.120 | 0.130     | 3.05     | 3.30  |             |
| E4  | 0.035 | 0.045     | 0.89     | 1.14  | 45° CHAMFER |
| e   | 0.20  | 0 TYP     | 5.08 TYP |       | 4×          |
| e1  | 0.15  | 0 TYP     | 3.81 TYP |       | 4×          |
| ٦   | 0.115 | 0.155     | 2.92     | 3.94  | 10x         |
| r   | 0.02  | 0.025 TYP |          | TYP   | 3x          |

| Pin Number | Qty                          |  |  |  |
|------------|------------------------------|--|--|--|
| 1          | Gate Bias for Stage 1, 2 & 3 |  |  |  |
| 2          | Gate Bias for Stage 1, 2 & 3 |  |  |  |
| 3          | RF <sub>IN</sub>             |  |  |  |
| 4          | Gate Bias for Stage 1, 2 & 3 |  |  |  |
| 5          | Gate Bias for Stage 1, 2 & 3 |  |  |  |
| 6          | Drain Bias                   |  |  |  |
| 7          | Drain Bias                   |  |  |  |
| 8          | RF <sub>OUT</sub>            |  |  |  |
| 9          | Drain Bias                   |  |  |  |
| 10         | Drain Bias                   |  |  |  |





#### **Part Number System**

# CMPA601C025F

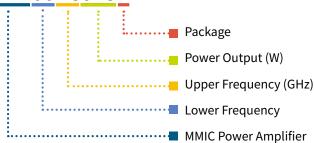



Table 1.

| Parameter                    | Value   | Units |
|------------------------------|---------|-------|
| Lower Frequency              | 6.0     | GHz   |
| Upper Frequency <sup>1</sup> | 12.0    | GHz   |
| Power Output                 | 25      | W     |
| Package                      | Flanged | _     |

#### Table 2.

| Character Code | Code Value                     |
|----------------|--------------------------------|
| А              | 0                              |
| В              | 1                              |
| С              | 2                              |
| D              | 3                              |
| Е              | 4                              |
| F              | 5                              |
| G              | 6                              |
| Н              | 7                              |
| J              | 8                              |
| К              | 9                              |
| Examples:      | 1A = 10.0 GHz<br>2H = 27.0 GHz |

#### **Electrostatic Discharge (ESD) Classifications**

| Parameter           | Symbol | Class | Classification Level           | Test Methodology    |
|---------------------|--------|-------|--------------------------------|---------------------|
| Human Body Model    | НВМ    | 1A    | ANSI/ESDA/JEDEC JS-001 Table 3 | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | С3    | ANSI/ESDA/JEDEC JS-002 Table 3 | JEDEC JESD22 C101-C |

Note: 

<sup>1</sup> Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.



# **Product Ordering Information**

| Order Number     | Description                        | Unit of Measure | Image          |
|------------------|------------------------------------|-----------------|----------------|
| CMPA601C025F     | GaN HEMT                           | Each            | CMP MENDOCOCOS |
| CMPA601C025F-AMP | Test board with GaN HEMT installed | Each            |                |



#### Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# MACOM:

CMPA601C025F-TB CMPA601C025F CMPA601C025F-AMP