

CMPA5259050F

50 W, 4.9 - 5.9 GHz, 28 V, GaN MMIC for Radar Power Amplifiers

Description

The CMPA5259050F is a gallium nitride (GaN) high electron mobility transistor (HEMT) based monolithic microwave integrated circuit (MMIC). It is designed specifically for high efficiency, high gain, and wide bandwidth capabilities, which makes CMPA5259050F ideal for 4.9 - 5.9 GHz radar amplifier applications. The transistor is supplied in a 0.5 inch square ceramic/metal flange package.

Package Types: 440219 PN's: CMPA5259050F

Features

- 30 dB small signal gain
- 50% efficiency at P_{SAT}
- Operation up to 28 V
- High breakdown voltage
- 0.5 inch-square package

Applications

- AESA radar
- Defence radar
- Fire control radar
- Naval, marine, ground protection radar
- Weather radar

Typical Performance Over 4.9 - 5.9 GHz ($T_c = 25$ °C) of Demonstration Amplifier

Parameter	5.2 GHz	5.5 GHz	5.9 GHz	Units
Small Signal Gain	31.4	30.8	31.0	dB
Output Power	59.6	56.0	55.2	W
Power Added Efficiency	51.5	52	52	%

Note:

100 µsec pulse width, 10% duty cycle, $P_{_{\text{IN}}}$ = 26 dBm.

Absolute Maximum Ratings (Not Simultaneous) at 25 °C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	84	V _{DC}	
Gate-Source Voltage	V _{GS}	-10, +2	V _{DC}	
Storage Temperature	T _{STG}	-55, +150	°C	
Operating Junction Temperature	T _J	225	°C	
Soldering Temperature	T _s	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ¹	R _{eJC}	1.60	°C/W	$P_{DISS} = 61 \text{ W}, T_{CASE} = 85 ^{\circ}\text{C}, 500 \mu\text{s}, 20\%$
Case Operating Temperature	T _c	-40, +105	°C	
Forward Gate Current	I _{GS}	16.8	mA	

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Test Methodology	
Human Body Model	НВМ	1 A (> 250 V)	JEDEC JESD22 A114-D	
Charge Device Model	CDM	2 (125 < 250 V)	JEDEC JESD22 C101-C	

Electrical Characteristics ($T_c = 25$ °C)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	V _{GS(TH)}	-3.6	-2.5	-2.4	V _{DC}	$V_{DS} = 10 \text{ V}, I_{DS} = 16.8 \text{ mA}$
Gate Quiescent Voltage	$V_{GS(Q)}$	-	-2.7	-	V _{DC}	$V_{DS} = 10 \text{ V}, I_{D} = 16.8 \text{ mA}$
Saturated Drain Current	I _{DS}	12.6	18.6	-	А	$V_{DS} = 6 \text{ V}, V_{GS} = 2 \text{ V}$
Drain-Source Breakdown Voltage	V _{BD}	84	100	-	V _{DC}	$V_{GS} = -8 \text{ V, } I_{DS} = 16.8 \text{ mA}$
RF Characteristics ^{2,3}						
Small Signal Gain	G _{ss}	28	31	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, \text{Freq} = 4.9 - 5.9 \text{ GHz}, P_{IN} = -20 \text{ dBm}$
Power Output	Роит	46	59.6	-	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, \text{Freq} = 5.2 \text{ GHz}, P_{IN} = 24 \text{ dBm}$
Power Output	Роит	46	56.0	-	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, \text{ Freq} = 5.5 \text{ GHz}, P_{IN} = 24 \text{ dBm}$
Power Output	Роит	46	55.2	-	W	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, \text{Freq} = 5.9 \text{ GHz}, P_{IN} = 24 \text{ dBm}$
Power Added Efficiency	PAE	40.5	51	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, \text{Freq} = 5.2 \text{ GHz}, P_{IN} = 24 \text{ dBm}$
Power Added Efficiency	PAE	42	52	-	%	V _{DD} = 28 V, I _{DQ} = 1.0 A, Freq = 5.5 GHz, P _{IN} = 24 dBm
Power Added Efficiency	PAE	42	52	-	%	V _{DD} = 28 V, I _{DQ} = 1.0 A, Freq = 5.9 GHz, P _{IN} = 24 dBm
Power Gain	G _P	-	21.8	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, \text{Freq} = 5.2 - 5.9 \text{ GHz}, P_{IN} = 26 \text{ dBm}$
Input Return Loss	S11	-	-12	-	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, \text{Freq} = 5.2 - 5.9 \text{ GHz}, P_{IN} = -20 \text{ dBm}$
Output Return Loss	S22	-	-17	4	dB	$V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, \text{ Freq} = 5.2 - 5.9 \text{ GHz}, P_{IN} = -20 \text{ dBm}$
Output Mismatch Stress	VSWR	-	3:1	-	Ψ	No Damage at All Phase Angles V _{DD} = 28 V, I _{DQ} = 1.0 A, P _{IN} = 26 dBm

Notes:

¹ Measured on wafer prior to packaging.

² Measured in CMPA5259050F-TB test fixture.

 $^{^3}$ Pulse width = 100 µsec, 10% duty cycle.

Typical Pulsed Performance

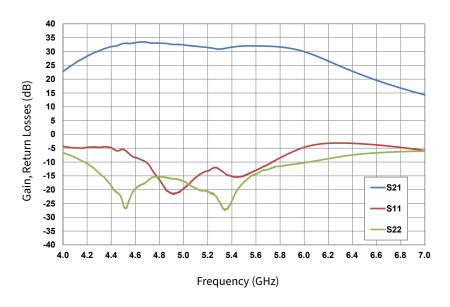


Figure 1. Gain and Input Return Loss vs Frequency of the CMPA5259050F Measured in CMPA5259050F-AMP Amplifier Circuit $\rm V_{DD}$ = 28 V, $\rm I_{DQ}$ = 1.0 A, $\rm T_{C}$ = 25 °C

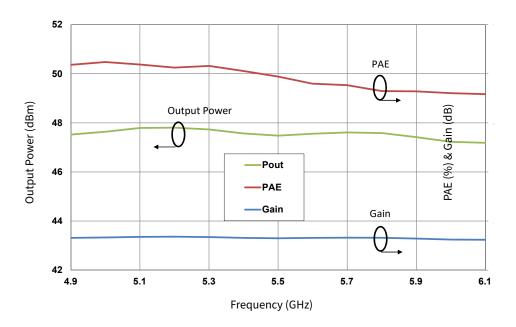
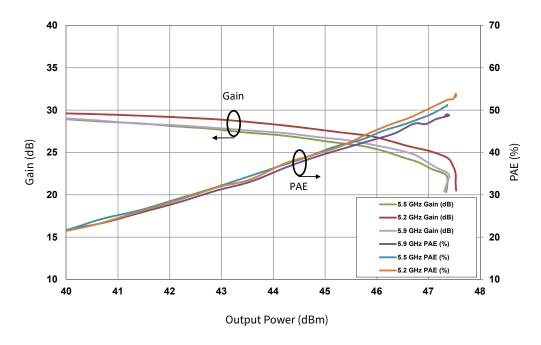
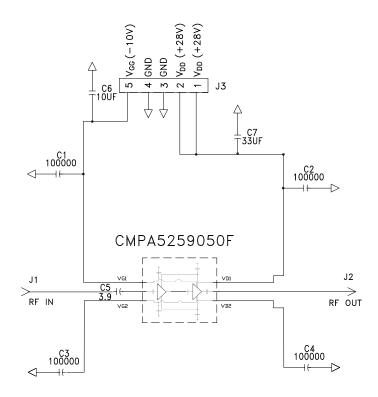
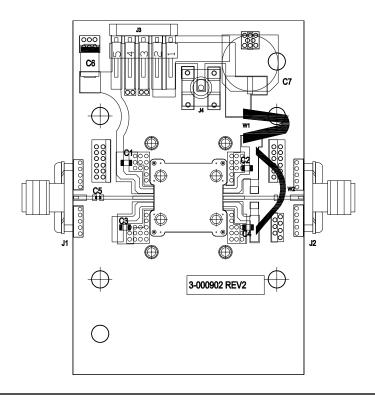


Figure 2. Output Power, Gain, and Power Added Efficiency vs Frequency of the CMPA5259050F Measured in CMPA525050F-AMP Amplifier Circuit $V_{DD} = 28 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{IN} = 26 \text{ dBm}, \text{Pulse Width} = 100 \text{ }\mu\text{s}, \text{Duty Cycle} = 10\%, T_{C} = 25 \text{ }^{\circ}\text{C}$

Typical Pulsed Performance

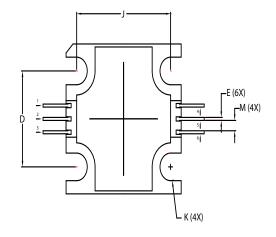



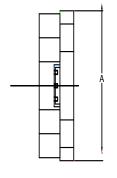

Figure 3. Gain and Power Added Efficiency vs Output Power of the CMPA529050F Measured in CMPA525050F-AMP Amplifier Circuit V_{DD} = 28 V, I_{DO} = 1.0 A, Pulse Width = 100 μ s, Duty Cycle = 10%, T_{c} = 25 °C

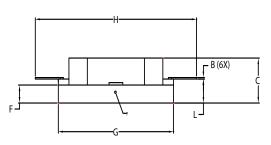
CMPA5259050F-AMP Demonstration Amplifier Schematic

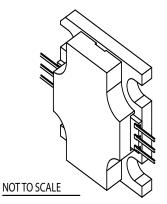
CMPA5259050F-TB Demonstration Amplifier Circuit Outline

CMPA5259050F-AMP Demonstration Amplifier Circuit Bill of Materials

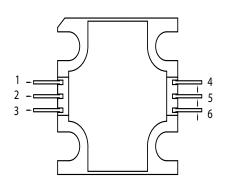

Designator	Description	Qty
C5	CAP, 3.9 pF, +/-0.1 pF, 0402, ATC	1
C7	CAP, 33 UF, 20%, G CASE	1
C1, C2, C3, C4	CAP CER 0.1 UF 100 V 10% X7R 0805	4
C6	CAP 10 UF 16 V TANTALUM, 2312	1
	PCB, RF35, 10 MIL THK	1
J1, J2	CONN, SMA, PANEL MOUNT JACK, FL	2
J3	HEADER RT > PLZ .1CEN LK 5POS	1
W1, W2	WIRE, BLACK, 22 AWG	2
J4	CONN, SMB, STRAIGHT JACK RECEPTACLE, SMT, 50 OHM, Au PLATED	1
Q1	MMIC, CMPA5259050F	1


CMPA5259050F-AMP Demonstration Amplifier Circuit





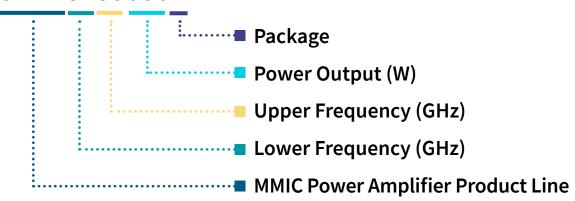
Product Dimensions CMPA5259050F (Package Type — 440219)



NOTES:

- 1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

	INC	HFS	MILLIMETERS	
	111111111111111111111111111111111111111		WILLIAM	
DIM	MIN	MAX	MIN	MAX
Α	0.495	0.505	12.57	12.82
В	0.003	0.005	0.076	0.127
С	0.140	0.160	3.56	4.06
D	0.315	0.325	8.00	8.25
E	0.008	0.012	0.204	0.304
F	0.055	0.065	1.40	1.65
G	0.495	0.505	12.57	12.82
Н	0.695	0.705	17.65	17.91
J	0.403	0.413	10.24	10.49
K	Ø .092		2.34	4
L	0.075	0.085	1.905	2.159
М	0.032	0.040	0.82	1.02



Pin	Function
1	Gate Bias
2	RF_IN
3	Gate Bias
4	Drain Bias
5	RF_OUT
6	Drain Bias
7	Source
	·

Part Number System

CMPA5259050F

Table 1.

Parameter	Value	Units
Lower Frequency	4.9	GHz
Upper Frequency ¹	5.9	GHz
Power Output	50	W
Package	Flange	-

Note:

Table 2.

Character Code	Code Value
A	0
В	1
С	2
D	3
Е	4
F	5
G	6
Н	7
J	8
К	9
Examples:	1 A = 10.0 GHz 2 H = 27.0 GHz

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CMPA5259050F	GaN MMIC	Each	dun stratus
CMPA5259050F-AMP	Test Board with GaN MMIC Installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

CMPA5259050F-AMP CMPA5259050F