

CMPA0560008S 0.5 – 6 GHz, 10 W GaN HPA

Description

The CMPA0560008S is a 10W packaged MMIC HPA utilizing the high performance, 0.15um GaN on SiC production process. The CMPA0560008S operates from 0.5-6 GHz and supports a variety of RF applications such as electronic warfare, test and measurement, radar among others. The CMPA0560008S achieves 10 W of saturated output power with 12 dB of large signal gain and typically 40% power-added efficiency under CW operation.

Packaged in a 5x5 mm plastic overmold QFN, the CMPA0560008S provides superior performance and environmental robustness in a small form factor allowing customers to improve SWaP-C benchmarks in their next-generation systems.

Figure 1. CMPA0560008S

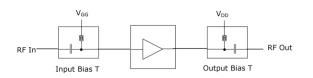


Figure 2. Functional Block Diagram

Features

- Psat: 10 W
- PAE: 40 %
- LSG: 12 dB
- S21: 19 dB
- S11: -11 dB
- S22: -8 dB
- CW operation

information.

• Small 5 x 5 mm footprint

Note: Features are typical performance across frequency under 25C

operation. Please reference performance charts for additional

Applications

- Electronic Warfare
- Test and Measurement
- Radar
- General Amplification

Absolute Maximum Ratings

Parameter	Symbol	Units	Value	Conditions
Drain Voltage	V_{d}	V	28	
Gate Voltage	Vg	V	-10, +2	
Drain Current	l _d	А	1.3	
Gate Current	lg	mA	3.8	
Input Power	Pin	dBm	29	
Dissipated Power	P _{diss}	W	25	85°C
Storage Temperature	T_{stg}	°C	-55, +150	
Mounting Temperature	TJ	°C	260	30 seconds
Junction Temperature	TJ	°C	225	
Output Mismatch Stress	VSWR	Ψ	5:1	

Recommended Operating Conditions

Parameter	Symbol	Units	Typical Value	Conditions
Drain Voltage	Vd	V	28	
Gate Voltage	Vg	V	-2.0	
Drain Current	Idq	mA	220	
Input Power	Pin	dBm	28	
Case Temperature	Tcase	°C	-40 to 85	

RF Specifications

Test conditions unless otherwise noted: Vd=28V, Idq= 220mA, CW, $T_{\mbox{\tiny base}}{=}25\,^{\rm o}{\rm C}$

Parameter	Units	Frequency	Min	Typical	Мах	Conditions
Frequency	GHz		0.5		6	
		0.5		40		
Output Power	dBm	3		40		Pin = 28 dBm
-		6		40		
Power-added Efficiency		0.5		60		
	%	3		44		Pin = 28 dBm
		6		36		
	dB	0.5		12		Pin = 28 dBm
LSG		3		12		
		6		12		
Small-Signal Gain (S21)	dB	0.5		21		
		3		19		Pin = -20 dBm
		6		19		
Input Return Loss	dB			-11		Pin = -20 dBm
Output Return Loss	dB			-8		Pin = -20 dBm

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

70

60

50

40

30

20

0.5

1.5

PAE (%)

Figure 3: Pout v. Frequency v. Temperature

85 °C

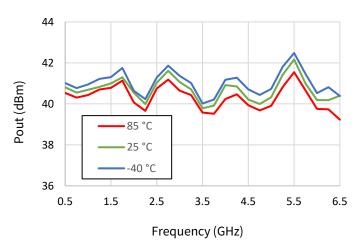
25 °C

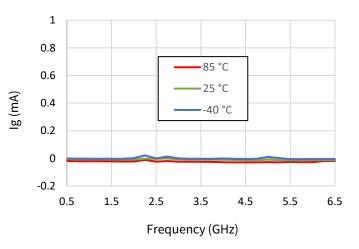
-40 °C

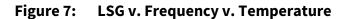
4.5

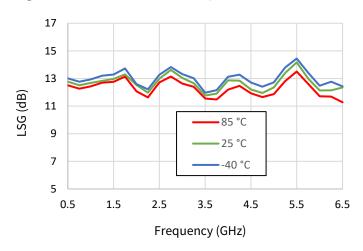
5.5

6.5

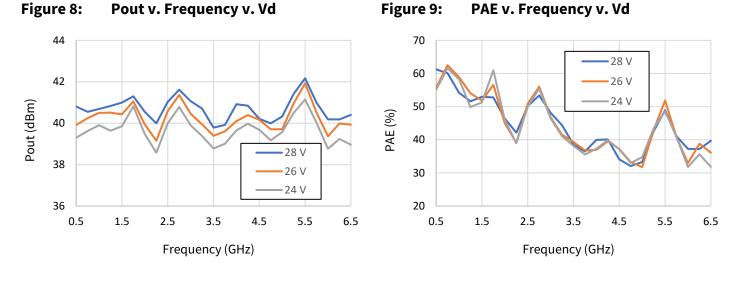





Figure 6: Ig v. Frequency v. Temperature

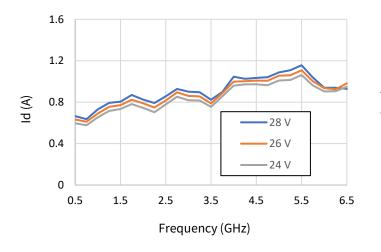
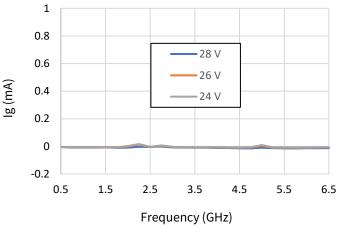

2.5

3.5


Frequency (GHz)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Figure 10: Id v. Frequency v. Vd

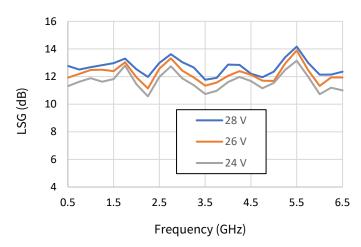
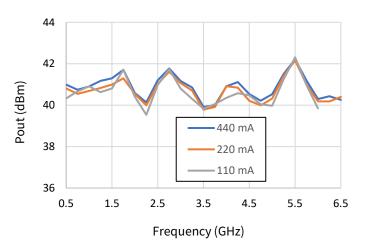
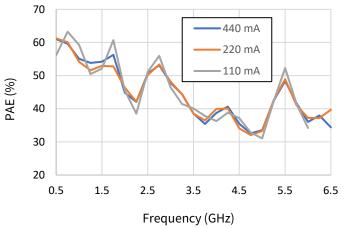


Figure 11: Ig v. Frequency v. Vd





MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Figure 13: Pout v. Frequency v. Idq

Figure 14: PAE v. Frequency v. Idq

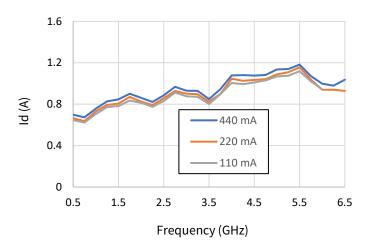
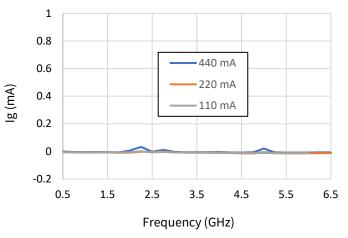
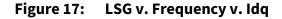
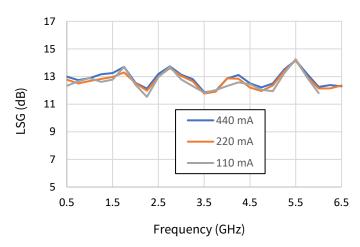





Figure 16: Ig v. Frequency v. Idq

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

0.45 GHz

3 GHz

6 GHz

22 24

26

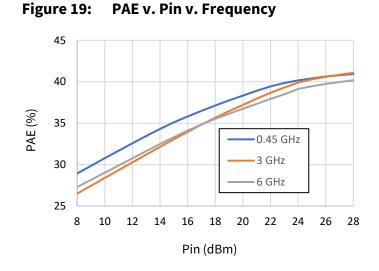
28

18 20

Pin (dBm)

45

40


35

30

25

8

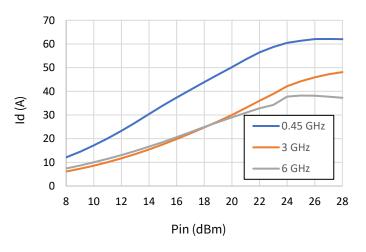
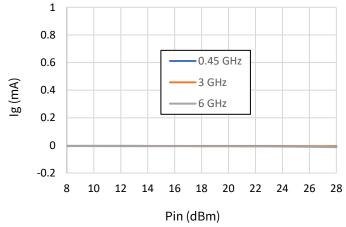
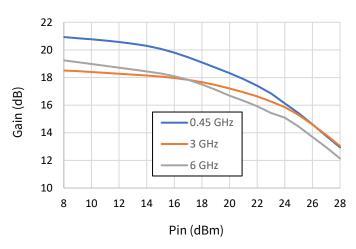
Pout (dBm)

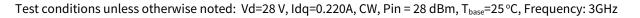
12

14

16

10


Figure 21: Ig v. Pin v. Frequency

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

85 °C

25 °C

-40 °C

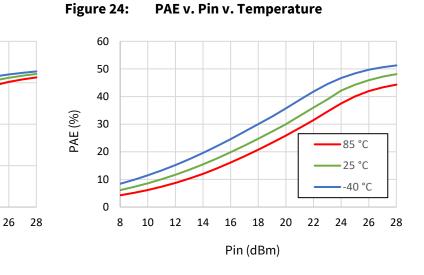
22 24

Figure 23: Pout v. Pin v. Temperature

45

40

35

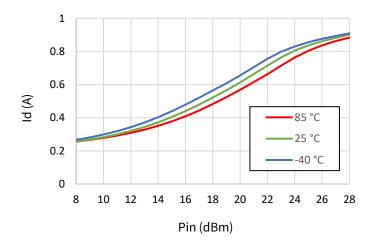

30

25

8

10

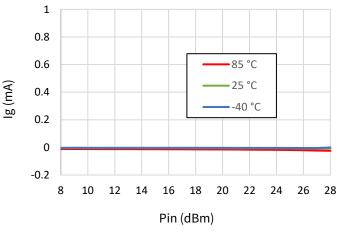
Pout (dBm)



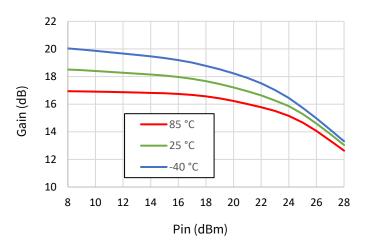
14

16

12

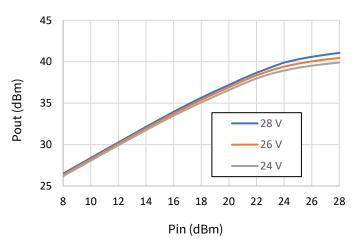


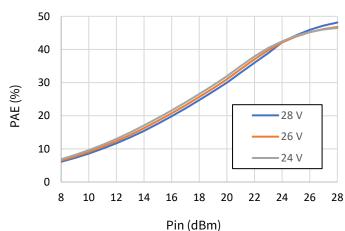
18


Pin (dBm)

20

Figure 26: Ig v. Pin v. Temperature





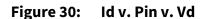

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Figure 29: PAE v. Pin v. Vd

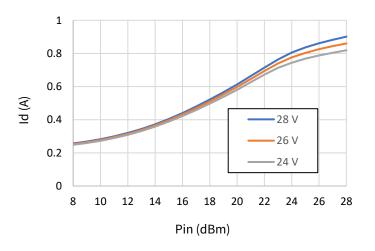
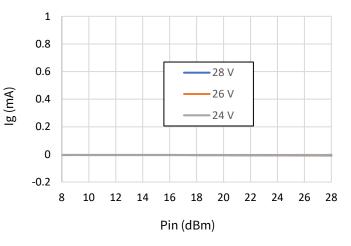
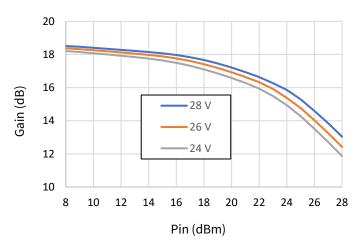
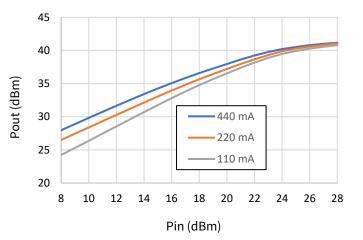
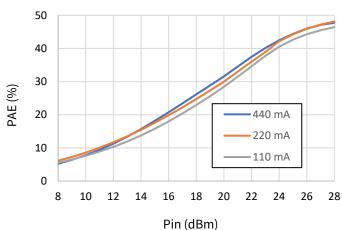




Figure 31: Ig v. Pin v. Vd





MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Figure 34: PAE v. Pin v. Idq

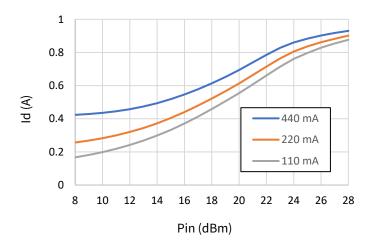
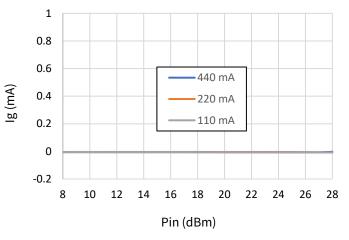
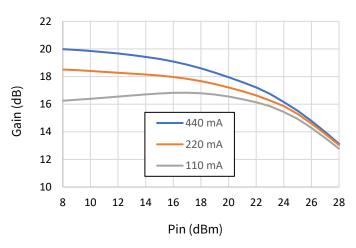
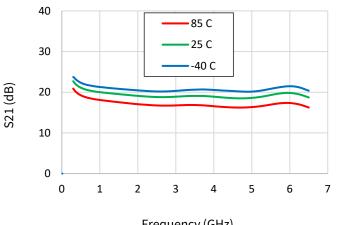




Figure 36: Ig v. Pin v. Idq



MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

CMPA0560008S - Small Signal v. Temperature and Vd

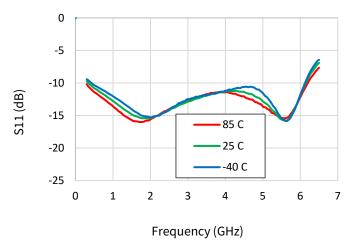

Test conditions unless otherwise noted: Vd=28 V, Idq=0.220A, CW, Pin = -10 dBm, T_{base}=25 °C

Figure 38: S21 v. Frequency v. Temperature

Frequency (GHz)

S11 v. Frequency v. Temperature Figure 40:

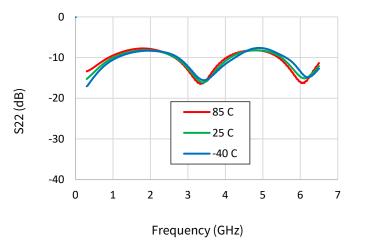


Figure 39: S21 v. Frequency v. Vd

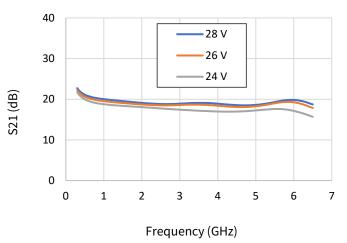


Figure 41: S11 v. Frequency v. Vd

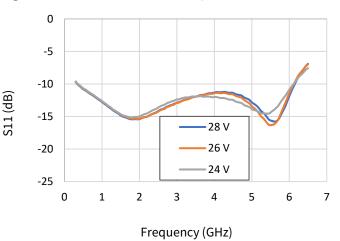
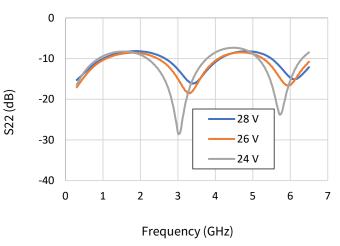



Figure 43: S22 v. Frequency v. Vd

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

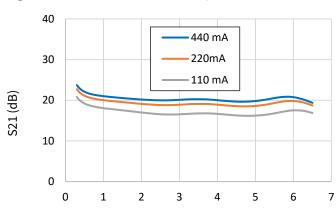
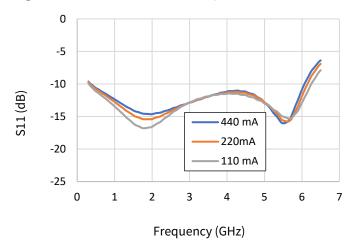
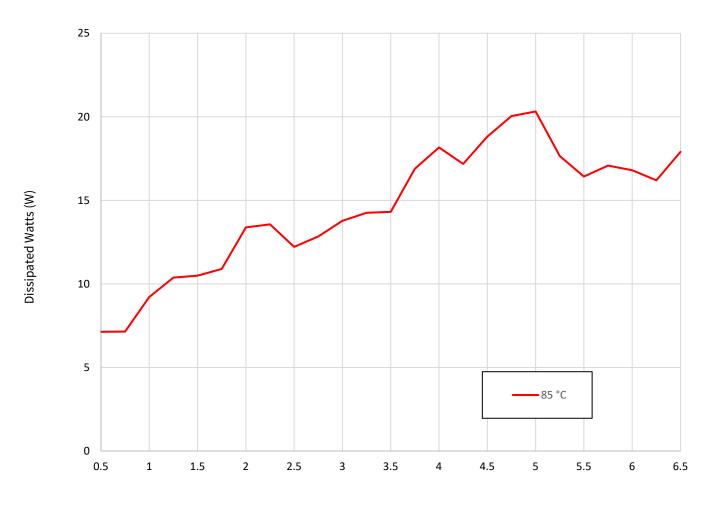



Figure 44: S21 v. Frequency v. ldq

Frequency (GHz)

Figure 45: S11 v. Frequency v. Idq

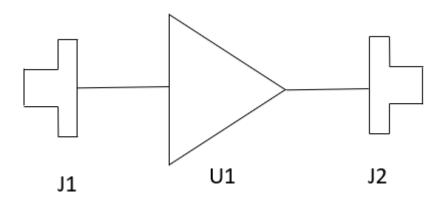
0 -10 S22 (dB) -20 440 mA 220mA -30 110 mA -40 1 2 3 4 5 6 7 0 Frequency (GHz)


Figure 46: S22 v. Frequency v. Idq

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Thermal Characteristics

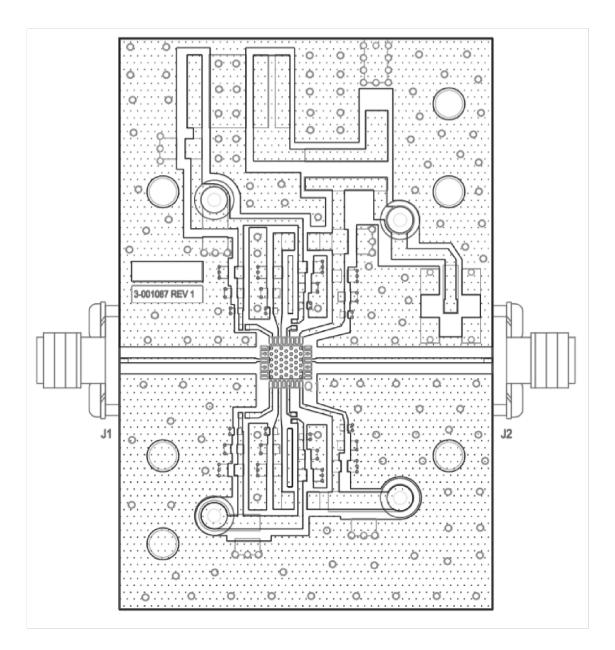
Parameter	Symbol	Value	Operating Conditions
Operating Junction Temperature	TJ	131°C	Freq = 3.0 GHz, V_d = 28 V, I_{dq} = 220 mA, I_{drive} = 0.88 A,
Thermal Resistance, Junction to Case	$R_{ extsf{ heta}JC}$	3.3°C/W	 P_{in} = 28 dBm, P_{out} = 40.6 dBm, P_{diss} = 13.8 W, T_{case} = 85°C, CW


Power Dissipation v. Frequency (Tcase = 85°C)

Frequency (GHz)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

CMPA0560008S-AMP1 Evaluation Board Schematic Drawing



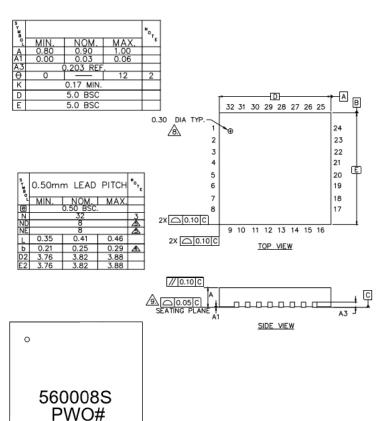
CMPA0560008S-AMP1 Evaluation Board Bill of Materials

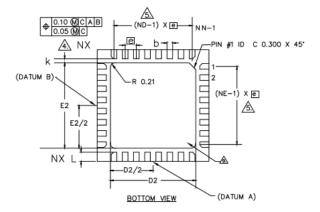
Reference Designator	Description	Qty
J1, J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL	2
U1	CMPA0560008S	1
-	PCB, TEST FIXTURE, RF35, 0.010", 5X5 2-STAGE, QFN	1
-	2-56 SOC HD SCREW 3/16 SS	4
-	#2 SPLIT LOCKWASHER SS	4

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

CMPA0560008S-AMP1 Evaluation Board Assembly Drawing

Bias On Sequence


- 1. Ensure RF is turned-off
- 2. Apply pinch-off voltage of -5 V to the gate (Vg)
- 3. Apply nominal drain voltage (Vd)
- 4. Adjust Vg to obtain desired quiescent drain current (Idq)
- 5. Apply RF


Bias Off Sequence

- 1. Turn RF off
- 2. Apply pinch-off to the gate (Vg=-5V)
- 3. Turn off drain voltage (Vd)
- 4. Turn off gate voltage (Vg)

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Product Dimensions

NOTES :

- UTES : 1. DIMENSIONING AND TOLERANCING CONFORM TO ASME Y14.5M. 1994. 2. ALL DIMENSIONS ARE IN MILLIMETERS, 0 IS IN DEGREES. 3. N IS THE TOTAL NUMBER OF TERMINALS. A DIMENSION & APPLIES TO METALLIZED TERMINAL AND IS MEASURED BETWEEN 0.15 AND 0.30mm FROM TERMINAL TIP.
- 5
- ND AND NE REFER TO THE NUMBER OF TERMINALS ON EACH D AND E SIDE RESPECTIVELY. MAX: PACKAGE WARPAGE 10.05 mm. MAXIMUM ALLOWABLE BURRS IS 0.076 mm IN ALL DIRECTIONS. 6.

A PIN #1 ID ON TOP WILL BE LASER MARKED.

- 9. BILATERAL COPLANARITY ZONE APPLIES TO THE EXPOSED HEAT SINK SLUG AS WELL AS THE
- TERMINALS. 10. THIS DRAWING CONFORMS TO JEDEC REGISTERED OUTLINE MO-220 11. ALL PLATED SURFACES ARE 100% TIN MATTE 0.010 mm +/- 0.005 mm.

PIN	DESC.	PIN	DESC
1	NC	17	NC
2	NC	18	NC
3	RFGND	19	NC
4	RFIN / Vg	20	RFGND
5	RFGND	21	RFOUT / Vd
6	NC	22	RFGND
7	NC	23	NC
8	NC	24	NC
9	NC	25	NC
10	NC	26	NC
11	NC	27	NC
12	NC	28	NC
13	NC	29	NC
14	NC	30	NC
15	NC	31	NC
16	NC	32	NC

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information.

Electrostatic Discharge (ESD) Classification

Parameter	Symbol	Class	Classification Level	Test Methodology
Human body Model	HBM	TBD	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	TBD	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

Product Ordering Information

Part Number	Description	MOQ Increment	Image
CMPA0560008S	0.5 – 6 GHz, 10W GaN MMIC		omenen Lune F.
CMPA0560008S-AMP1	Evaluation Board w/ PA	1 Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

CMPA0560008S CMPA0560008S-AMP1