


# CMPA0527005F

5 W, 0.5 - 2.7 GHz, 50 V, GaN HEMT

### Description

CMPA0527005F is a packaged gallium nitride (GaN) High Electron Mobility Transistor (HEMT) based monolithic microwave integrated circuit (MMIC). This device is matched to 50 ohms at the input and unmatched at the output. This device operates from a 50 V rail and is intended to be used as a predriver from 0.5 to 2.7 GHz. The transistor is available in a 6 leaded flange package.



Package Types: 440221 PN: CMPA0527005F

### Typical Performance Over 0.5 - 2.7 GHz ( $T_C = 25^{\circ}$ C), 50 V, $P_{IN} = 24$ dBm, CW

| Parameter         | 0.5 GHz | 1.0 GHz | 1.5 GHz | 2.0 GHz | 2.7 GHz | Units |
|-------------------|---------|---------|---------|---------|---------|-------|
| Small Signal Gain | 20.4    | 20.8    | 21      | 20.5    | 19.5    | dB    |
| Output Power      | 7.8     | 9.3     | 9.1     | 8.7     | 6.6     | W     |
| Drain Efficiency  | 58.5    | 53.8    | 49.2    | 47.1    | 41.5    | %     |

Note: Measured in the CMPA0527005F-AMP1 application circuit

#### **Features**

- Up to 2.7 GHz Operation
- 8 W Typical Output Power
- 20 dB Small Signal Gain
- Application Circuit for 0.5 2.7 GHz
- 50% Efficiency
- 50 V Operation



Large Signal Models Available for ADS and MWO





### Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

| Parameter                                         | Symbol            | Rating    | Units | Conditions |
|---------------------------------------------------|-------------------|-----------|-------|------------|
| Drain-Source Voltage                              | V <sub>DSS</sub>  | 150       | V     | 25°C       |
| Gate-to-Source Voltage                            | $V_{GS}$          | -10, +2   | V     | 25 C       |
| Storage Temperature                               | T <sub>STG</sub>  | -65, +150 | °C    |            |
| Operating Junction Temperature                    | TJ                | 225       | - °C  |            |
| Maximum Forward Gate Current                      | I <sub>GMAX</sub> | 1.2       | mA    | - 25°C     |
| Maximum Drain Current <sup>1</sup>                | I <sub>DMAX</sub> | 0.5       | А     | 25 C       |
| Soldering Temperature <sup>1</sup>                | Ts                | 245       | °C    |            |
| Screw Torque                                      | τ                 | 40        | in-oz |            |
| Thermal Resistance, Junction to Case <sup>2</sup> | $R_{\theta JC}$   | 18        | °C/W  | 85°C       |
| Case Operating Temperature <sup>2</sup>           | T <sub>C</sub>    | -40, +75  | °C    |            |

#### Notes:

### Electrical Characteristics (T<sub>C</sub> = 25°C)

| Characteristics                                                                                     | Symbol              | Min. | Тур. | Max. | Units           | Conditions                                                                                                    |
|-----------------------------------------------------------------------------------------------------|---------------------|------|------|------|-----------------|---------------------------------------------------------------------------------------------------------------|
| DC Characteristics <sup>1</sup>                                                                     |                     |      |      |      |                 |                                                                                                               |
| Gate Threshold                                                                                      | V <sub>GS(th)</sub> | -3.8 | -3.0 | -2.3 |                 | V <sub>DS</sub> = 10 V, I <sub>D</sub> = 1.2 mA                                                               |
| Gate Quiescent Voltage                                                                              | I <sub>GS(Q)</sub>  | _    | -2.7 |      | V <sub>DC</sub> | $V_{DS} = 50 \text{ V}, I_D = 0.11 \text{ A}$                                                                 |
| Saturated Drain Current <sup>2</sup>                                                                | I <sub>DS</sub>     | 0.78 | 1.12 |      | Α               | $V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$                                                              |
| Drain-Source Breakdown Voltage                                                                      | $V_{BR}$            | 100  | -    | _    | $V_{DC}$        | $V_{GS} = -8 \text{ V}, I_D = 1.2 \text{ mA}$                                                                 |
| RF Characteristics <sup>3,4,5</sup> ( $T_c = 25^{\circ}C$ , $F_0 = 2.7$ GHz unless otherwise noted) |                     |      |      |      |                 |                                                                                                               |
| Small Signal Gain                                                                                   | S21                 | 17   | 18.5 | _    | dB              | $V_{DD} = 50 \text{ V}, I_{DQ} = 0.11 \text{ A}, P_{IN} = -10 \text{ dBm}$                                    |
| Power Gain                                                                                          | G <sub>P</sub>      | _    | 13.5 | _    | иь              |                                                                                                               |
| Output Power                                                                                        | P <sub>OUT</sub>    | 38.6 | 39.5 | _    | dBm             | $V_{DD} = 50 \text{ V}, I_{DQ} = 0.11 \text{ A}$                                                              |
| Drain Efficiency                                                                                    | η                   | 49   | 58.0 | _    | %               |                                                                                                               |
| Output Mismatch Stress                                                                              | VSWR                | _    | _    | 10:1 | Ψ               | No damage at all phase angles,<br>V <sub>DD</sub> = 50 V, I <sub>DQ</sub> = 0.11 A, P <sub>OUT</sub> = 5 W CW |
| Dynamic Characteristics <sup>6</sup>                                                                |                     |      |      |      |                 |                                                                                                               |
| Output Capacitance at 1 MHz                                                                         | C <sub>DS</sub>     | _    | 0.8  | _    | pF              | $V_{DS} = 50 \text{ V}, V_{GS} = -8 \text{ V}$                                                                |

#### Notes:

<sup>&</sup>lt;sup>1</sup> Current limit for long term, reliable operation <sup>2</sup> Refer to the Application Note on soldering <sup>3</sup> Measured for the CMPA0527005F at P<sub>DISS</sub> = 8.4 W <sup>4</sup> See also, Power Derating Curve on Page 5

<sup>&</sup>lt;sup>1</sup> Measured on-wafer prior to packaging

<sup>&</sup>lt;sup>2</sup> Scaled from PCM data

<sup>&</sup>lt;sup>3</sup> Measured in production test fixture

<sup>&</sup>lt;sup>4</sup> P<sub>IN</sub> = 26 dBm

<sup>&</sup>lt;sup>5</sup> CW

<sup>&</sup>lt;sup>6</sup> Includes package



#### CMPA0527005F Typical Performance in CMPA0527005F-AMP1 Application Circuit

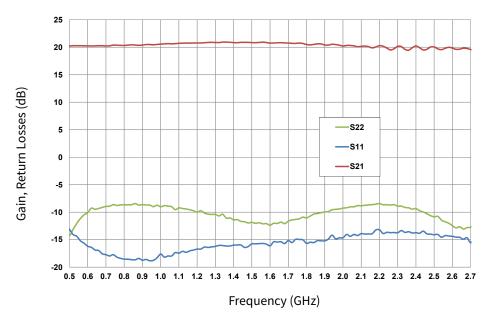



Figure 1. Small Signal Gain, Return Losses versus Frequency of the CMPA0527005F  $V_{DD}$  = 50 V,  $I_{DQ}$  = 0.110 A

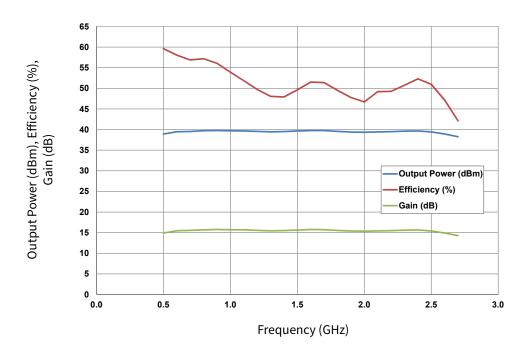



Figure 2. Output Power, Power Added Efficiency and Gain vs Frequency of the CMPA0527005F as measured in demonstration amplifier circuit CMPA0527005F-AMP1  $V_{DD}$  = 50 V,  $I_{DQ}$  = 0.110 A,  $P_{IN}$ = 24 dBm CW,  $T_{C}$  = 25°C



#### CMPA0527005F Typical Performance in CMPA0527005F-AMP1 Application Circuit

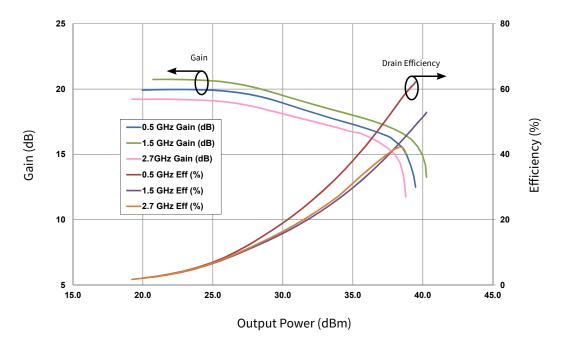



Figure 3. Gain (dB) and Efficiency (%) vs Output Power (dBm) of the CMPA0527005F as measured in demonstration amplifier circuit CMPA0527005F-AMP1  $V_{DD} = 50 \text{ V}$ ,  $I_{DO} = 0.110 \text{ A}$ ,  $T_{C} = 25 ^{\circ}\text{C}$ 

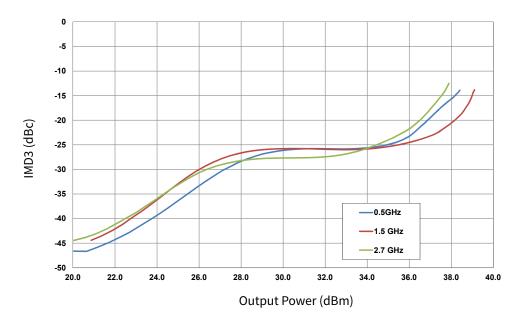



Figure 4. Third Order Intermodulation Distortion vs Output Power measured in demonstration amplifier circuit CMPA0527005F-AMP1  $V_{DD}$  = 50 V,  $I_{DO}$  = 0.110 A,  $T_{C}$  = 25°C,  $\Delta f$ = 1 MHz



### CMPA0527005F Typical Performance

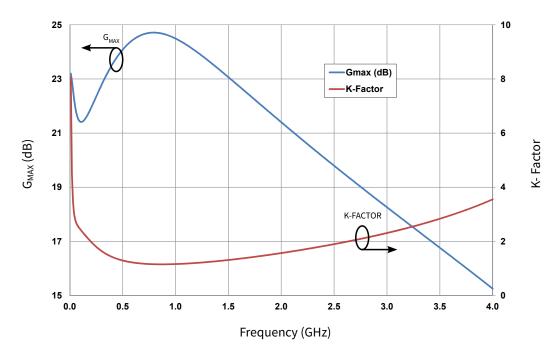



Figure 5. Simulated  $G_{MAX}$  and K-Factor vs Frequency  $V_{DD}$  = 50 V,  $I_{DQ}$  = 0.110 A,  $T_{C}$  = 25°C

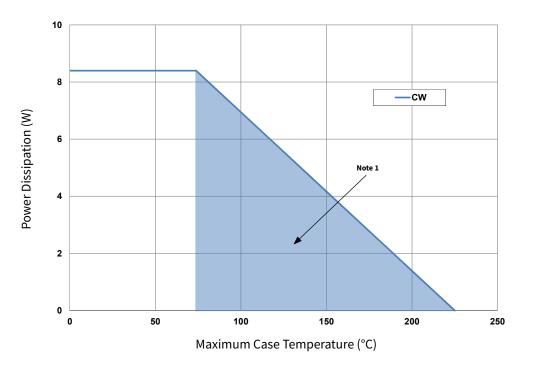
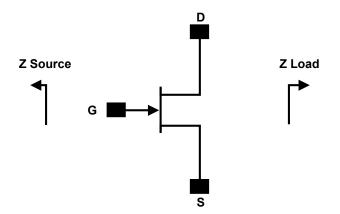




Figure 6. Transient Power Dissipation De-Rating Curve

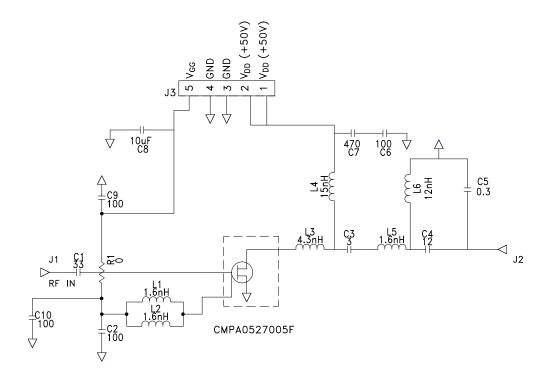
Notes: Shaded area exceeds Maximum Case Temperature (See Page 2).



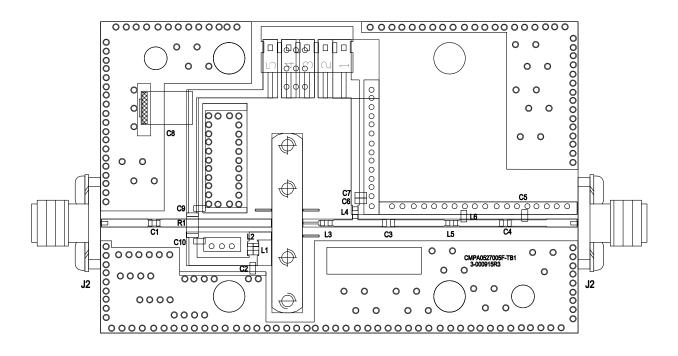
### Source and Load Impedances



| Frequency (MHz) | Z Load       |
|-----------------|--------------|
| 0.5             | 143+j115     |
| 1               | 63.18+j93.20 |
| 1.5             | 39.49+j67.24 |
| 2               | 40.13+j42.78 |
| 2.3             | 40.19+j42.82 |
| 2.7             | 30.48+j29.17 |


### Electrostatic Discharge (ESD) Classifications

| Parameter           | Symbol | Class | Classification Level           | Test Methodology    |
|---------------------|--------|-------|--------------------------------|---------------------|
| Human Body Model    | НВМ    | 1B    | ANSI/ESDA/JEDEC JS-001 Table 3 | JEDEC JESD22 A114-D |
| Charge Device Model | CDM    | C2B   | ANSI/ESDA/JEDEC JS-002 Table 3 | JEDEC JESD22 C101-C |


 $<sup>^1\,\</sup>rm V_{DD}$  = 50 V,  $\rm I_{DQ}$  = 0.110 A in the 440221 package  $^2$  Optimized for power gain,  $\rm P_{SAT}$  and PAE



#### CMPA0527005F-AMP1 Application Circuit Schematic

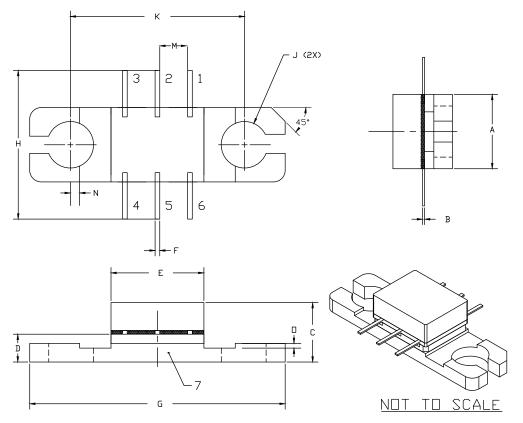


### CMPA0527005F-AMP1 Application Circuit





### CMPA0527005F-AMP1 Application Circuit Bill of Materials


| Designator | Description                                                       | Qty |
|------------|-------------------------------------------------------------------|-----|
| C1         | CAP, 33pF, 5%, 0603, ATC                                          | 1   |
| C2, C6, C9 | CAP, 100pF, 5%, 0603, ATC                                         | 3   |
| C3         | CAP, 3pF, 5%, 0805, ATC                                           | 1   |
| C4         | CAP, 12pF, 5%, 0603, ATC                                          | 1   |
| C5         | CAP, 0.3pF, 5%, 0603, ATC                                         | 1   |
| C7         | CAP, 470pF, 5%, 0603,100V. X7R                                    | 1   |
| C8         | CAP, 33000pF, 0805,100V,X7R                                       | 1   |
| R1         | RES, 1/16W, 1206, 1%, 0 Ohms                                      | 1   |
| L1 ,L2, L5 | INDUCTOR, CHIP, 1.6nH, 0603CS SMT                                 | 3   |
| L3         | INDUCTOR, CHIP, 4.3nH, 0603CS SMT                                 | 1   |
| L4         | INDUCTOR, CHIP, 15nH, 0603HP SMT                                  | 1   |
| L6         | INDUCTOR, CHIP, 12nH, 0603CS SMT                                  | 1   |
| Q1         | Transistor CMPA0527005F                                           | 1   |
|            | PCB, RO4350, CMPA0527005F Applications Board, 1.7" X 2.6" X 0.02" | 1   |
|            | BASEPLATE, AL, 2.60 X 1.7 X 0.25                                  | 1   |
|            | 2-56 SOC HD SCREW 1/4 SS                                          | 4   |
|            | #2 SPLIT LOCKWASHER SS                                            | 4   |
| J1, J2     | CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST, 20MIL    | 2   |
| J3         | HEADER RT>PLZ .1CEN LK 5POS                                       | 1   |

### CMPA0527005F-AMP1 Demonstration Amplifier Circuit





### Product Dimensions CMPA0527005F (Package Type — 440221)



#### NOTES:

- 1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.
- 2. CONTROLLING DIMENSION: INCH.
- 3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.
- 4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.
- 5. ALL PLATED SURFACES ARE NI/AU

|     | INCHES |       | MILLIMETERS |       |
|-----|--------|-------|-------------|-------|
| DIM | MIN    | MAX   | MIN         | MAX   |
| Α   | 0.155  | 0.165 | 3.94        | 4.19  |
| В   | 0.003  | 0.005 | 0.076       | 0.127 |
| С   | 0.118  | 0.138 | 3.00        | 3.50  |
| D   | 0.055  | 0.065 | 1.40        | 1.65  |
| Е   | 0.195  | 0.205 | 4.95        | 5.21  |
| F   | 0.009  | 0.011 | 0.23        | 0.28  |
| G   | 0.545  | 0.555 | 13.84       | 14.09 |
| Н   | 0.280  | 0.360 | 7.11        | 9.14  |
| J   | ø.     | 100   | 100 2.54    |       |
| K   | 0.3    | 75    | 9.53        |       |
| М   | 0.0    | 61    | 1.5         | 54    |
| N   | 0.018  | 0.022 | 0.46        | 0.56  |
| 0   | 0.008  | 0.012 | 0.20        | 0.30  |

| Pin Number | Qty                            |
|------------|--------------------------------|
| 1          | NC                             |
| 2          | RF <sub>IN</sub>               |
| 3          | Gate Bias                      |
| 4          | NC                             |
| 5          | RF <sub>OUT</sub> + Drain Bias |
| 6          | NC                             |
| 7          | Source                         |



#### Part Number System

### CMPA0527005F

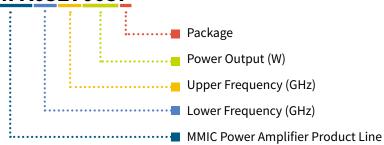



Table 1.

|                              |        | ·     |
|------------------------------|--------|-------|
| Parameter                    | Value  | Units |
| Upper Frequency <sup>1</sup> | 2.7    | GHz   |
| Power Output                 | 5      | W     |
| Package                      | Flange | _     |

#### Note:

Table 2.

| Character Code | Code Value                     |
|----------------|--------------------------------|
| A              | 0                              |
| В              | 1                              |
| С              | 2                              |
| D              | 3                              |
| E              | 4                              |
| F              | 5                              |
| G              | 6                              |
| Н              | 7                              |
| J              | 8                              |
| К              | 9                              |
| Examples:      | 1A = 10.0 GHz<br>2H = 27.0 GHz |

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.



### **Product Ordering Information**

| Order Number      | Description                                     | Unit of Measure | Image |
|-------------------|-------------------------------------------------|-----------------|-------|
| CMPA0527005F      | GaN HEMT                                        | Each            |       |
| CMPA0527005F-AMP1 | Test board with GaN HEMT<br>(flanged) installed | Each            |       |



#### Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

## **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

CMPA0527005F