

CGHV40200PP

200 W, 50 V, GaN HEMT

Description

The CGHV40200PP is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV40200PP, operating from a 50 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CGHV40200PP ideal for linear and compressed amplifier circuits. The transistor is available in a 4-lead flange package.

Package Type: 440199 PN: CGHV40200PP

Features

- Up to 3.0 GHz Operation
- 21 dB Small Signal Gain at 1.8 GHz
- 250 W typical P_{SAT}
- 67% Efficiency at P_{SAT}
- 50 V Operation

Applications

- 2-Way Private Radio
- **Broadband Amplifiers**
- Cellular Infrastructure
- Test Instrumentation
- Class A, AB, Linear Amplifiers suitable for OFDM, W-CDMA, EDGE, CDMA waveforms

Typical Performance Over 1.7-1.9 GHz ($T_c = 25^{\circ}C$), CW

Parameter	1.7 GHz	1.8 GHz	1.9 GHz	Units
Small Signal Gain	21.7	21.0	20.1	dB
Gain @ P _{IN} = 38 dBm	16.5	16.1	15.4	dB
P _{OUT} @ P _{IN} = 38 dBm	270	250	218	W
Drain Efficiency @ P _{IN} = 38 dBm	64	67	65	%

RoHS

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	150	V	25%
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25°C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225	1	
Maximum Forward Gate Current ¹	I _{GMAX}	41.6	mA	2506
Maximum Drain Current ¹	I _{DMAX}	8.7	А	- 25°C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	$R_{ heta JC}$	0.94	°C/W	85°C
Case Operating Temperature ^{3, 4}	T _C	-40, +70	°C	

Notes

Electrical Characteristics ($T_c = 25^{\circ}C$)

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions
DC Characteristics ¹						
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	.,,	V _{DS} = 10 V, I _D = 41.6 mA
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	V _{DS} = 50 V, I _D = 2.0 A
Saturated Drain Current ²	I _{DS}	27.0	38.7	_	Α	V _{DS} = 6.0 V, V _{GS} = 2.0 V
Drain-Source Breakdown Voltage	V _{BR}	125	_	_	V _{DC}	V _{GS} = -8 V, I _D = 41.6 mA
RF Characteristics ^{3,4} ($T_c = 25$ °C, F	o = 1.8 GH	z unless (otherwis	e noted)		
Small Signal Gain	G _{SS}	17.75	20.0	_	40	V _{DD} = 50 V, I _{DQ} = 1.2 A, P _{IN} = 10 dBm
Power Gain	G _P	15.05	16.0	_	dB	
Power Output	Роит	200	250	_	W	$V_{DD} = 50 \text{ V}, I_{DQ} = 1.2 \text{ A}, P_{IN} = 38 \text{ dBm}$
Drain Efficiency⁵	η	60	69	_	%	
Output Mismatch Stress	VSWR	_	_	3:1	Ψ	No damage at all phase angles, V _{DD} = 50 V, I _{DQ} = 1.2 A, P _{OUT} = 200 W CW
Dynamic Characteristics						
Input Capacitance	C _{GS}	_	29.3	_		
Output Capacitance	C _{DS}		7.3	_	pF	$V_{DS} = 28 \text{ V}, V_{GS} = -8 \text{ V}, f = 1 \text{ MHz}$
Feedback Capacitance	C _{GD}	_	0.61	_		

Notes:

¹ Current limit for long term, reliable operation per side of the device

² Refer to the Application Note on soldering

 $^{^{3}}$ CGHV40200PP at P_{DISS} = 166 W

⁴ See also, the Power Dissipation De-rating Curve on Page 8

 $^{^{\}rm 1}\,{\rm Measured}$ on wafer prior to packaging per side of device

² Scaled from PCM data

³ Measured in CGHV40200PP-TB

 $^{^4}$ I_{DO} of 1.2 A is by biasing each device at 0.6 A

⁵ Drain Efficiency = P_{OUT}/P_{DC}

 $^{^{\}rm 5}$ Capacitance values are for each side of the device

Typical Performance

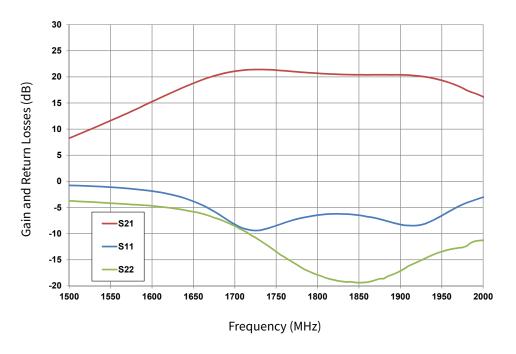
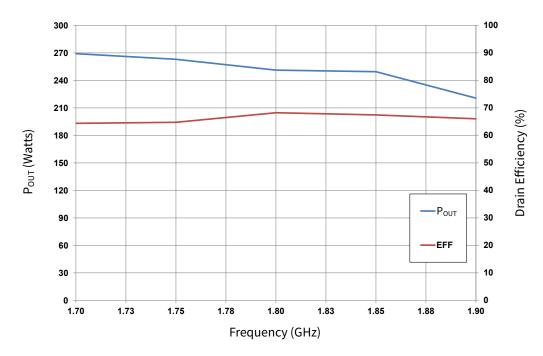



Figure 1. Gain and Return Losses vs Frequency measured in CGHV40200PP-TB $V_{DD} = 50 \text{ V}$, $I_{DQ} = 1.2 \text{ A}$, f = 1500 - 2000 MHz

Figure 2. Output Power and Drain Efficiency vs Frequency measured in CGHV40200PP-TB CW Operation, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 1.2 \text{ A}$, Output Power @ $P_{IN} = 38 \text{ dBm}$

Typical Performance

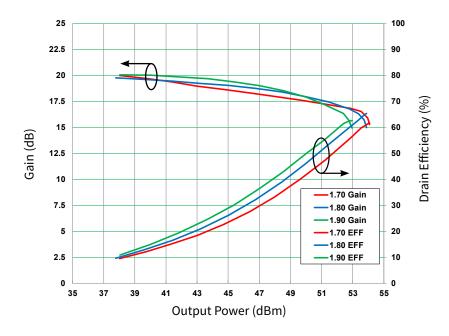
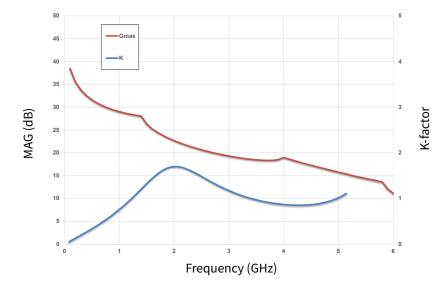



Figure 3. Gain and Drain Efficiency vs Output Power measured in CGHV40200PP-TB CW Operation, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 1.2 \text{ A}$

Figure 4. Simulated Maximum Avaliable Gain and K-factor of the CGHV40200PP $V_{DD} = 50 \text{ V}, I_{DQ} = 1.2 \text{ A}$

Electrostatic Discharge (ESD) Classifications

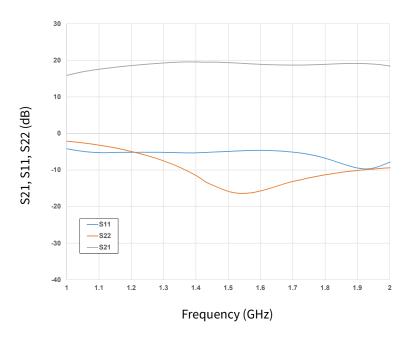
Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	нвм	1B	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	C3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.

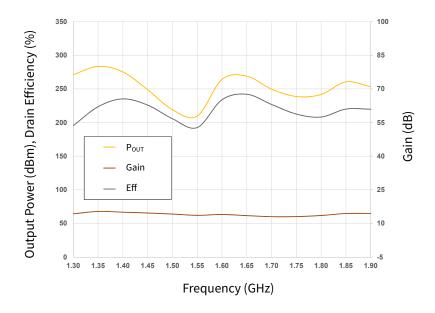
Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:

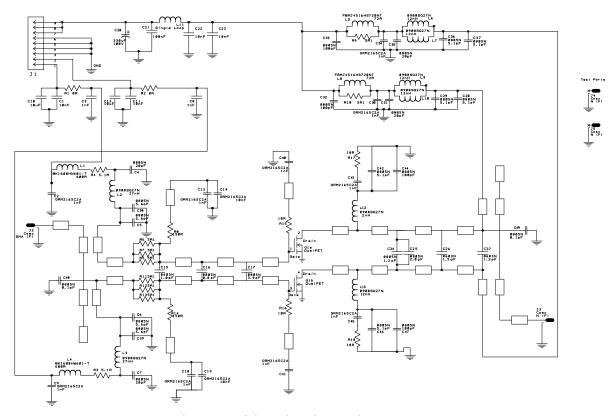
Rev. 1.5, 2022-12-8

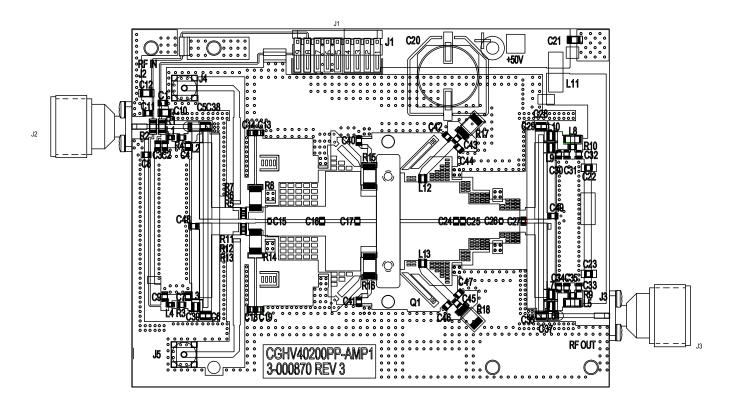


CGHV40200PP-AMP1 Demonstration Amplifier Circuit Bill of Materials

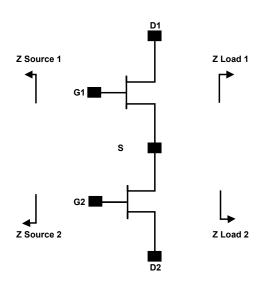

Designator	Description	Qty
R1, R2	RES, 1/4W, 1206 1%, 0 OHM	2
R5, R6, R7, R11, R12, R13	RES, 1/16W, 0603, 1%, 5.1 Ohms	6
R3, R4, R9, R10	RES 5.1 OHM 1/8W 5% 0805 SMD	4
R15, R16, R17, R18	RES SMD 10 OHM 1% 2W 2512	4
R8, R14	RES SMD 150 OHM 5% 1W 2512	2
C48, C49	CAP, 0.1pF, +/- 0.05pF, 0805, ATC, 600F	2
C16	CAP, 0.8pF, +/-0.05pF, 0805, ATC	1
C27	CAP, 1.2pF, +/-0.1pF, 0603, ATC	1
C24	CAP, 1.2pF, +/-0.1pF, 0805, ATC	1
C15	CAP, 1.0pF, +/-0.1pF, 0603, ATC	1
C26	CAP, 1.5pF,+/-0.1pF, 0603, ATC	1
C25	CAP, 2.0pF, +/-0.1pF, 0805, ATC	1
C17	CAP, 3.9pF, +/-0.25pF, 0805, ATC	1
C28, C29, C36, C37, C42, C46	CAP, 5.1pF, +/-0.05pF, 0805, ATC600F	4
C5, C6, C38, C39	CAP, 5.6pF, +/- 0.1pF, 0805, ATC 600F	4
C4, C7, C31, C35	CAP, 20pF, +/- 5% 250V 0805, ATC600F	4
C32, C33, C44, C47	CAP, 100pF, +/- 5%, 250V, 0805, ATC 600F	4
C2, C3, C8, C9, C13, C18, C30, C34, C40, C41, C43, C45	CAP, 1000pF, +/-10%, 0805, X7R, 100V, TEMP STBL	12
C1, C11, C14, C19, C22, C23	CAP, 10000pF, +/-10%, 0805, X7R, 100V, TEMP STBL	6
C21	CAP, 0.1μF, +/-10%, 250V, 1206, X7R	1
C10, C12	CAP CER 10μF 25V X7R 1206	2
C20	CAP, 330μF, +/-20%, 100V, ELECTROLYTIC, CASE SIZE K16	1
L6, L7, L9, L10, L12, L13	IND, 12NH, 2%, 0908SQ-12NGL	6
L2, L3	IND, 27NH, 2%, 0908SQ-27NGL	2
L11	CABLE, 18 AWG, 4.2"	1
L1, L4	FERRITE BEAD 600 OHM 0603 1LN	2
L5, L8	FERRITE BEAD 72 OHM 1806 1LN	2
J2, J3	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4-HOLE, BLUNT POST	2
J1	HEADER RT>PLZ .1CEN LK 9POS	1
J4, J5	CONN SMA JACK STR 50 OHM SMD	2
	PCB, Rogers 6035HTC 0.020" THK, CGHV40200PP 1.35-1.85 GHz	1
	BASEPLATE, AL, 4.80 X 3.60 X 0.49, ALTERNATE HOLE PATTERN	1
	2-56 SOC HD SCREW 1/4 SS	4
	#2 SPLIT LOCKWASHER SS	4
	CGHV40200PP	1

CGHV40200PP Typical Performance

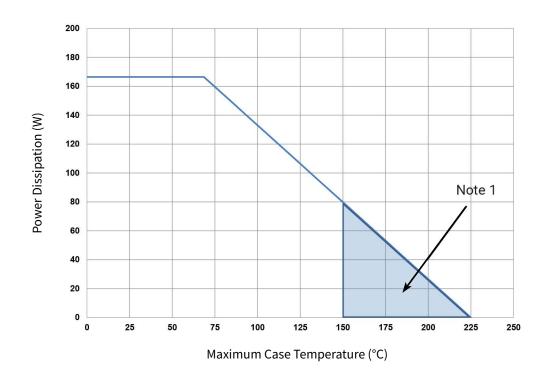

Figure 5. Small Signal Gain and Return Losses vs Frequency measured in the CGHV40200PP-AMP1 Broadband Amplifier Circuit $V_{DD} = 50 \text{ V}$, $I_{DO} = 1.2 \text{ A}$


Figure 6. Saturated Output Power Gain, and Drain Efficiency vs Frequency of the CGHV40200PP measured in the CGHV40200PP-AMP1 Broadband Amplifier Circuit $V_{DD}=50V,\,I_{DO}=1\,A,\,CW,\,P_{SAT},\,I_{G}=0\,mA$

CGHV40200PP-AMP1 Demonstration Amplifier Circuit Schematic



CGHV40200PP-AMP1 Demonstration Amplifier Circuit Outline


Simulated Source and Load Impedances

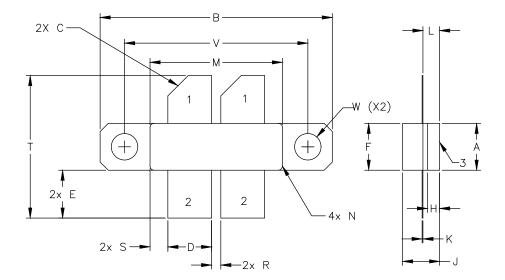
Frequency (MHz)	Z Source (1,2)	Z Load (1,2)
500	2.9 +j4.8	12.8 +j7.3
1000	0.8 +j1.5	9.1 +j5.1
1500	0.9 +-j0.6	5.5 +j3.8
2000	1.1 -j2.2	4.4 +j2.0
2500	1.8 -j4.0	3.8 +j0.5

Notes:

CGHV40200PP Power Dissipation De-rating Curve

Note:

 $^{^1\,}V_{DD}$ = 50 V, I_{DQ} = 2 x 0.6 A in the 440199 package


 $^{^{\}rm 2}$ Optimized for power gain, P_{SAT} and PAE

³ When using this device at low frequency, series resistors should be used to maintain amplifier stability

¹ Area exceeds Maximum Case Temperature (See Page 2).

Product Dimensions CGHV40200PP (Package Type 440199)

	INCHES		MILLIN	1ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.225	0.235	5.72	5.97
В	1.135	1.145	28.83	29.00
С	0.10 4	45° REF	2.54	45° REF
D	0.210	0.220	5.33	5.59
E	0.230	0.240	5.84	6.00
F	0.225	0.235	5.71	5.97
Н	0.055	0.065	1.40	1.65
J	0.174	0.208	3.87	4.37
К	0.003	0.006	0.08	0.15
L	0.075	0.085	1.91	2.16
М	0.643	0.657	16.30	16.70
N	R.01	0 REF	R0.51 REF	
R	0.040	0.050	1.00	1.27
S	0.083	0.093	2.10	2.36
Т	0.680	0.720	17.30	18.30
V	0.895	0.905	22.70	22.98
W	ø.1	30	ø.	3.30

Part Number System

Table 1.

Parameter	Value	Units
Upper Frequency ¹	2.5	GHz
Power Output	200	W
Package	Push Pill	_

Note:

Table 2.

Character Code	Code Value	
А	0	
В	1	
С	2	
D	3	
Е	4	
F	5	
G	6	
Н	7	
J	8	
К	9	
Examples:	1A = 10.0 GHz 2H = 27.0 GHz	

¹ Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV40200PP	GaN HEMT	Each	O DOSANDIZODEJ
CGHV40200PP-AMP1	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

CGHV40200PP CGHV40200PP-TB CGHV40200PP-AMP1