

CGHV40180F

180 W, DC - 2.0 GHz, 50 V, GaN HEMT

Description

The CGHV40180F is an unmatched, gallium nitride (GaN) high electron mobility transistor (HEMT). The CGHV40180F, operating from a 50 volt rail, offers a general purpose, broadband solution to a variety of RF and microwave applications. GaN HEMTs offer high efficiency, high gain and wide bandwidth capabilities making the CGHV40180F ideal for linear and compressed amplifier circuits. The transistor is available in a 2-lead flange package.

Package Type: 440223 PN: CGHV40180F

Typical Performance Over 800 MHz - 1000 MHz ($T_c = 25$ °C), 50 V

Parameter	800 MHz	850 MHz	900 MHz	950 MHz	1000 MHz	Units
Small Signal Gain	25.6	25.2	24.9	24.4	24.3	٩D
Gain @ P _{IN} 34 dBm	20.4	20.8	20.3	20.1	20.1	dB
Output Power @ P _{IN} 34 dBm	275	302	279	257	257	W
EFF @ P _{IN} 34 dBm	67	75	73	73	71	%

Measured CW in the CGHV40180F-AMP Application circuit

Features

- Up to 2.0 GHz Operation
- 24 dB Small Signal Gain at 900 MHz
- 20 dB Power Gain at 900 MHz
- 250 W Typical Output Power at 900 MHz
- 75% Efficiency at P_{SAT}

Applications

- **Military Communications**
- Public Safety VHF-UHF applications
- Radar
- Medical
- **Broadband Amplifiers**

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions	
Drain-source Voltage	V _{DSS}	150	.,,	25°C	
Gate-to-Source Voltage	V_{GS}	-10, +2	V	25 C	
Storage Temperature	T _{STG}	-65, +150	°C		
Operating Junction Temperature ¹	TJ	225			
Maximum Forward Gate Current	I _{GMAX}	42	mA	- 25°C	
Maximum Drain Current ¹	I _{DMAX}	12.1	Α	25 C	
Soldering Temperature ²	Ts	245	°C		
Screw Torque	τ	40	in-oz		
CGHV40180F Thermal Resistance, Junction to Case	$R_{ heta JC}$	0.95	°C/W	D = 150 95%C	
Maximum dissipated power		150	W	P _{DISS} = 150, 85°C	
Case Operating Temperature ³	T _c	-40, +150	°C		

Notes:

Electrical Characteristics

Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions	
DC Characteristics¹ (T _c = 25°C)							
Gate Threshold Voltage	$V_{GS(th)}$	-3.8	-3.0	-2.3	.,	$V_{DS} = 10 \text{ V}, I_{D} = 41.8 \text{ mA}$	
Gate Quiescent Voltage	$V_{GS(Q)}$	_	-2.7	_	V _{DC}	V _{DS} = 50 V, I _D = 1000 mA	
Saturated Drain Current	I _{DS}	27.2	38.9	_	А	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$	
Drain-Source Breakdown Voltage	V _{BR}	125	_	_	V _{DC}	$V_{GS} = -8 \text{ V}, I_D = 41.8 \text{ mA}$	
RF Characteristics ² ($T_c = 25^{\circ}C$, $F_0 =$	900 MHz un	less oth	erwise n	oted)			
Small Signal Gain	Gss	23.4	24.0	_	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{IN} = 10 \text{ dBm CW}$	
Power Gain	G _P	19.3	20.3	_	ив		
Output Power	P _{out}	53.7	54.3	_	dBm	$V_{DD} = 50 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{IN} = 34 \text{ dBm CW}$	
Drain Efficiency ³	η	64	74	_	%		
Output Mismatch Stress	VSWR	_	_	3:1	Ψ	No damage at all phase angles, $V_{DD} = 50 \text{ V}, I_{DQ} = 1.0 \text{ A}, P_{OUT} = 180 \text{ W CW}$	
Dynamic Characteristics							
Input Capacitance	C _{GS}	_	57.8	_			
Output Capacitance	C _{DS}	_	13.7	_	pF	$V_{DS} = 50 \text{ V}, V_{gs} = -8 \text{ V}, f = 1 \text{ MHz}$	
Feedback Capacitance	C _{GD}	_	1.23	_			

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

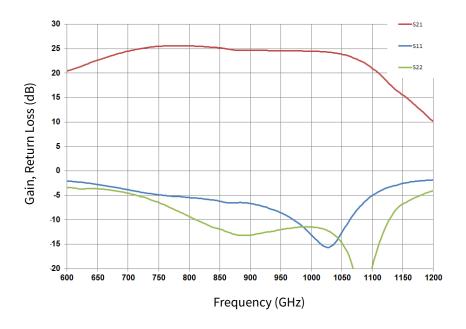
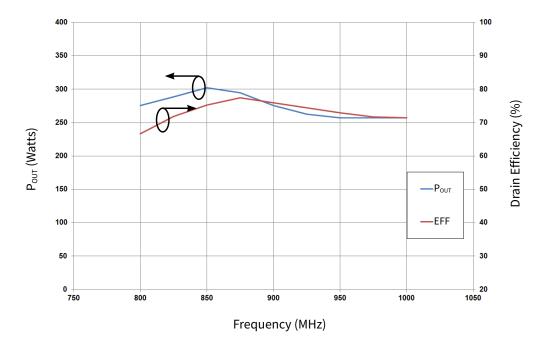
³ See also, Power Derating Curve on Page 5

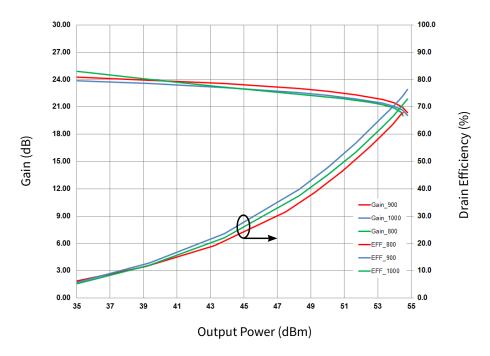
¹ Measured on wafer prior to packaging

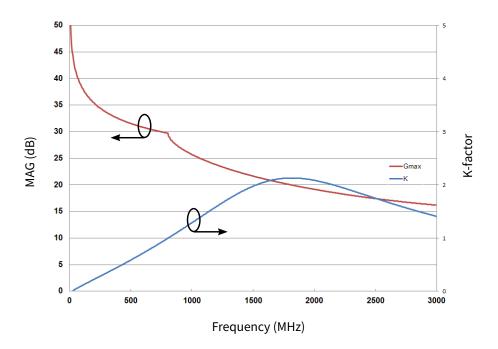
 $^{^{\}rm 2}$ Measurements are to be performed using the production test fixture AD-838292F-TB

³ Drain Efficiency = P_{OUT}/P_{DC}

CGHV40180F Typical Performance


Figure 1. Small Signal Gain and Return Loss versus Frequency measured in application circuit CGHV40180F $V_{DD} = 50 \text{ V}, I_{DO} = 1.0 \text{ A}$

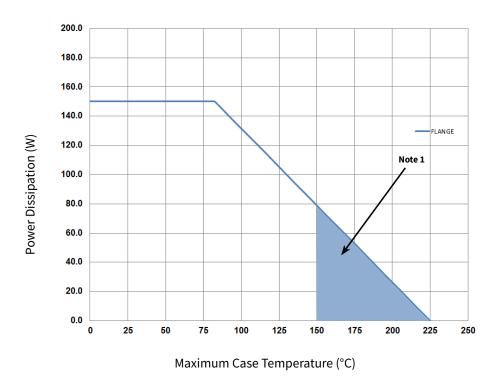

Figure 2. Output Power and Drain Efficiency vs Frequency CGHV40180F-TB CW Operation, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 1.0 \text{ A}$, @ P_{IN} 34 dBm

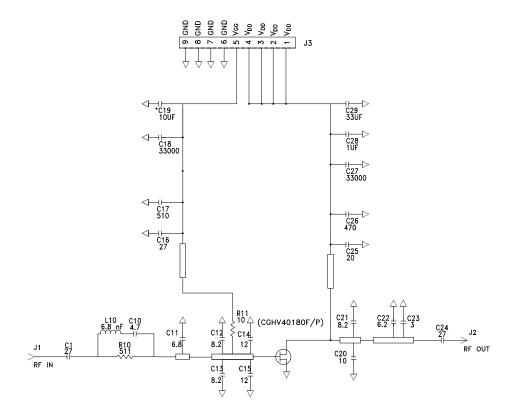
CGHV40180F Typical Performance

Figure 3. Gain and Drain Efficiency vs. Frequency and Output Power CGHV40180F-TB CW Operation, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 1.0 \text{A}$

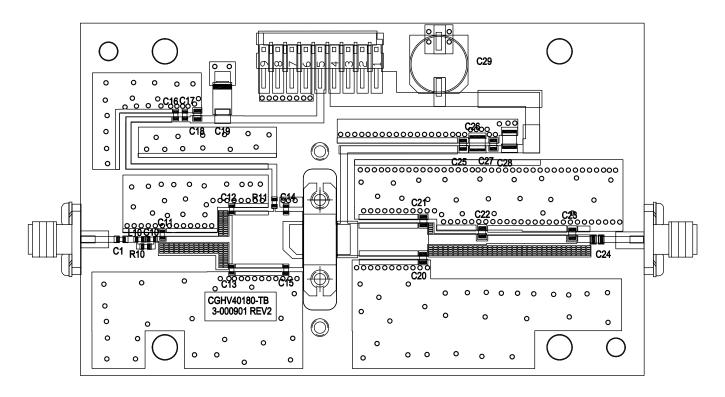
Figure 4. Simulated Maximum Available Gain and K-factor of the CGHV40180F V_{DD} = 50 V, I_{DQ} = 1.0 A

CGHV40180F Power Dissipation De-rating Curve



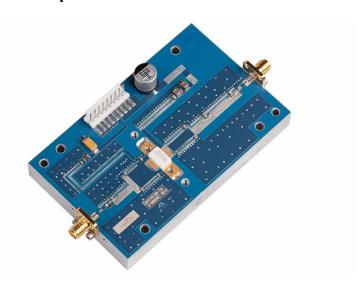

Figure 5. Transient Power Dissipation De-rating Curve

Note:


¹ Area exceeds Maximum Case Operating Temperature (See Page 2)

CGHV40180F-AMP Application Circuit Schematic

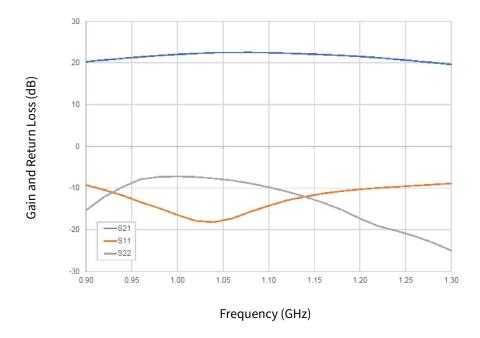
CGHV40180F-AMP Application Circuit



CGHV40180F-AMP Application Circuit Bill of Materials

Designator	Description	Qty
R11	RES, 1/16W, 0603, 1%, 10.0 OHMS	1
R10	RES, 1/16W, 0603, 1%, 511 OHMS	1
C29	CAP, 33µF, 20%, G CASE	1
C28	CAP, 1.0µF, 100V, ±10%, X7R, 1210	1
C17	CAP, 510pF, NPO, 5%, 100V, 0603	1
C26	CAP, 470pF, NPO, 5%, 250V, ATC800B	1
C19	CAP, 10μF, 16V TANTALUM, 2312	1
C14, C15	CAP, 12.0pF, ±5%, 0603, ATC600S	2
C1, C16	CAP, 27pF, ±5%, 0603, ATC600S	2
C10	CAP, 4.7pF, ±0.1pF, 0603, ATC600S	1
C11	CAP, 6.8pF, ±0.25pF, 0603, ATC600S	1
C12, C13	CAP, 8.2pF, ±0.25pF, 0603, ATC600S	2
C18, C27	CAP, 33000pF, 0805, 100V, X7R	2
C20	CAP, 10pF, ±1%, 250V, 0805, ATC600F	2
C25	CAP, 20pF, ±5%, 250V, 0805, ATC600F	1
C24	CAP, 27pF, ±5%, 250V, 0805, ATC600F	1
C23	CAP, 3.0pF, ±0.1pF, 250V, 0805, ATC600F	2
C22	CAP, 6.2pF, ±0.1pF, 250V, 0805, ATC600F	1
C21	CAP, 8.2pF, ±0.1pF, 250V, 0805 ATC600F	1
-	PCB ROGERS HTC6035, 0.020 THK, ER 3.60	1
J1,J2	CONN, SMA, PANEL MOUNT JACK, FLANGE, 4 HOLE BLUNT POST	2
J3	HEADER RT>PLZ .1CEN LK 9POS	1
L10	INDUCTOR, CHIP, 6.8nH, 5%, 0603 SMT, DIGIKEY 712-1432-1-ND	1
Q1	CGHV40180	1

CGHV40180F-AMP Demonstration Amplifier Circuit



Electrical Characteristics When Tested in CGHV40180F-AMP3

Characteristics	Symbol	Тур.	Units	Conditions		
RF Characteristics1 (T _c = 25°C, F ₀ = 0.96 - 1.215 GHz unless otherwise noted)						
Small Signal Gain	G _{SS}	> 20	dB	$V_{DD} = 50 \text{ V}, I_{DQ} = 1.0 \text{ A}$		
Power Gain	G _P	> 16	dBm	V_{DD} = 50 V, I_{DQ} = 1.0 A, P_{IN} = 38 dBm, 128 μ s, 10% pulse		
Output Power	P _{out}	250	W			
Drain Efficiency	η	> 75	%			
Output Mismatch Stress	VSWR	3:1	Ψ	No damage at all phase angles, V_{DD} = 50 V, I_{DQ} = 1.0 A, P_{IN} = 38 dBm, 128 μ s, 10% pulse		

Notes:

Typical Performance in Application Circuit CGHV40180F-AMP3

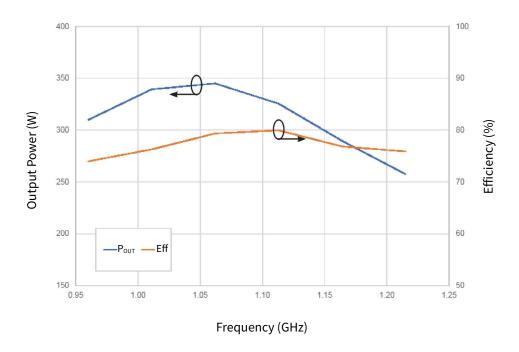
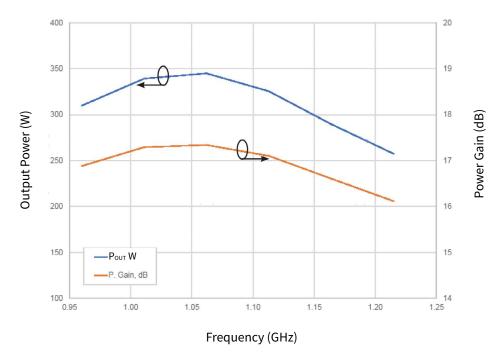
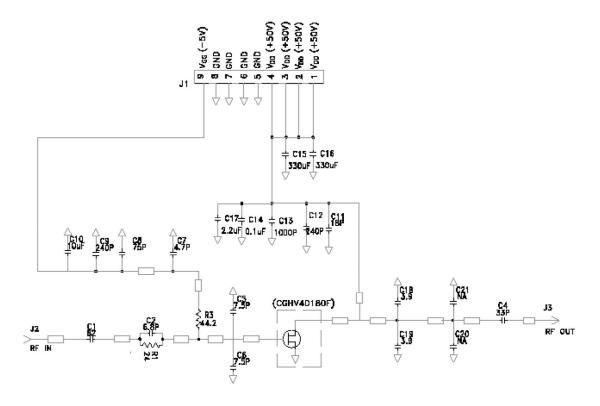
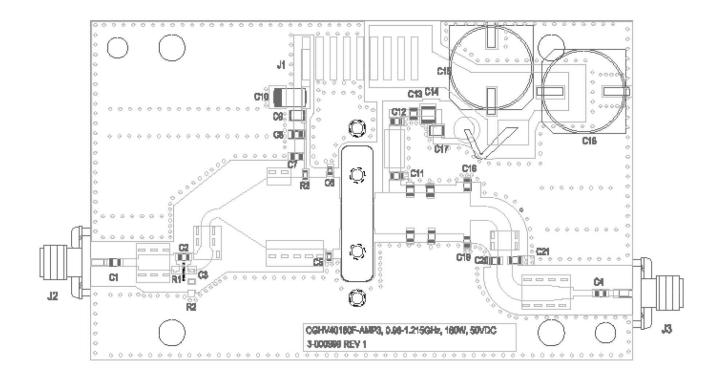


Figure 6. Small Signal Gain and Return Losses of the CGHV40180F Measured in Demonstration Amplifier Circuit CGHV40180F-AMP3 CW Operation, $V_{DD} = 50 \text{ V}$, $I_{DQ} = 1.0 \text{ A}$


¹ Measured in CGHV40180F-AMP3 Application Circuit

Typical Performance in Application Circuit CGHV40180F-AMP3

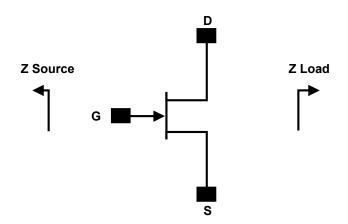

Figure 7. Pulsed Output Power and Drain Efficiency vs. Frequency of the CGHV40180F-AMP3 $V_{DD} = 50 \text{ V}$, $I_{DO} = 1.0 \text{ A}$, $P_{IN} = 38 \text{ dBm}$, 128 μ s, 10% pulse


Figure 8. Output Power and Power Gain vs. Frequency of the CGHV40180F-AMP3 V_{DD} = 50 V, I_{DQ} = 1.0 A, P_{IN} = 38 dBm, 128 µs, 10% pulse

CGHV40180F-AMP3 Application Circuit Schematic

CGHV40180F-AMP3 Application Circuit

CGHV40180F-AMP3 Bill of Materials


Designator	Description	Qty
C2	CAP, 8.2pF, +/-0.1pF, 250V, 0805, ATC600F	1
C1	CAP, 82pF, 1%, 250V, 0805, ATC600F	1
C5, C6	CAP,7.5pF, 1%, 0603, ATC600S	2
C9, C12	CAP, 240pF, 5%, 250V, 0805, ATC600F	1
C7	CAP, 4.7pF, +/-0.1pF, 250V, 0603, ATC600S	1
C8	CAP, 75pF, 5%, 250V, 0805, ATC600F	1
C11	CAP, 18pF, 1%, 250V, 0805, ATC600F	1
C13	CAP, 1000pF, 5%, 250V, 0603	1
C14	CAP, 0.1µF, 5%, 250V, 0805	1
C17	CAP, 2.2μF, 5%, 100V, 1210	1
C15, 16	CAP, 330μF, 20%, 100V, ELEC, Vishay, MAL215099911E3	2
C18, C19	CAP, 3.9pF, +/-0.1pF, 250V, 0805, ATC600F	2
C4	CAP, 33pF, 5%, 250V, 0805, ATC600F	1
C10	CAP, 10μF, 16V, TANTLUM	2
R1	RES, 24 OHM IMS, 1005	1
R3	RES, 1/16W, 0603, 1%, 44.2 OHMS	1
W1	WIRE, 18G, BALCK, 2.5"	1
J2, J3	CONN, SMA, PANEL MOUNT JACK, FL	2
J1	HEADER ST, .1CEN LK 9POS, PBC05SABN	1
-	BASEPLATE	1
-	PCB, RO4350B, 2.5"x4"x0.020"	1
-	#2, WASHER, SPLIT LK, SS	4
-	2-56 SOC HD SCREW 3/16 SS	4
Q1	CGHV40180F	1

CGHV40180F-AMP3 Demonstration Amplifier Circuit

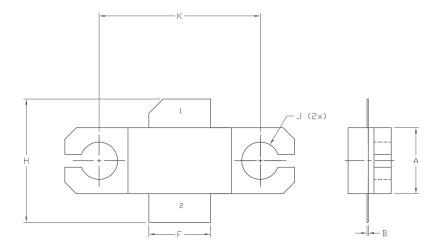
Source and Load Impedances

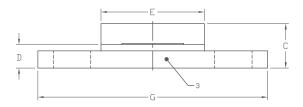
Frequency	Z Source	Z Load
50	23.7 + J25.9	7.6 + J0.6
150	7.4 + J8.3	8.1 + J0.7
250	4.2 +J7.9	7.9 + J2.2
500	1.4 + J1.5	4.7 + J2.7
750	1.0 + J0.0	3.9 + J2.3
1000	0.7 + J1.1	4.0 + J1.8

Notes:

Electrostatic Discharge (ESD) Classifications

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	1C	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C


 $^{^{1}\,}V_{DD}$ = 50 V, I_{DQ} = 1.0A in the 440223 package


² Optimized for Power Gain, P_{SAT} and Drain Efficiency

³ When using this device at low frequency, series resistor should be used to maintain amplifier stability

Product Dimensions CGHV40180F (Package Type - 440223)

NOTES

1. DIMENSIONING AND TOLERANICING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020' BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.

5. ALL PLATED SURFACES ARE NI/AU

	INC	HES	MILLIM	ETERS
DIM	MIN	MAX	MIN	MAX
Α	0.225	0.235	5.72	5.97
В	0.004	0.006	0.10	0.15
С	0.145	0.165	3.68	4.19
D	0.077	0.087	1.96	2.21
Е	0.355	0.365	9.02	9.27
F	0.210	0.220	5.33	5.59
G	0.795	0.805	20.19	20.45
Н	0.400	0.460	10.16	11.68
J	ø .130		3.30	
k	0.5	62	14.	27

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

Part Number System

Table 1.

Parameter	Value	Units
Upper Frequency ¹	4.0	GHz
Power Output	100	W
Package	Flange	_

Note:

Table 2.

Character Code	Code Value
А	0
В	1
С	2
D	3
E	4
F	5
G	6
Н	7
J	8
К	9
Examples	1A = 10.0 GHz 2H = 27.0 GHz

Alpha characters used in frequency code indicate a value greater than 9.9 GHz. See Table 2 for value.

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGHV40180F	GaN HEMT	Each	CELTY AD 18 OF
CGHV40180F-AMP3	Test board with GaN HEMT (flanged) installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

CGHV40180F-TB1 CGHV40180F CGHV40180F-AMP1 CGHV40180F-AMP3