

CGH55015F2/P2 10 W, C-Band, Unmatched, GaN HEMT

Description

The CGH55015F2/P2 is a gallium nitride (GaN) high electron mobility transistor (HEMT) designed specifically for high efficiency, high gain and wide bandwidth capabilities, which makes the CGH55015F2/P2 ideal for C-band pulsed or CW saturated amplifiers. The transistor is available in both screwdown, flange and solder-down, pill packages. Based on appropriate external match adjustment, the CGH55015F2/P2 is suitable for applications up to 6 GHz.

Features

- 4.5 to 6.0 GHz Operation ٠
- 12 dB Small Signal Gain at 5.65 GHz •
- 13 W typical P_{SAT} •
- 60% Efficiency at P_{SAT}
- 28 V Operation

Applications

- 2-Way Private Radio
- **Broadband Amplifiers**
- Cellular Infrastructure
- Test Instrumentation
- Class A, AB, Amplifiers suitable for OFDM, W-CDMA, EDGE, CDMA waveforms

Large Signal Models Available for ADS and MWO

MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit:

https://www.macom.com/support

Absolute Maximum Ratings (not simultaneous) at 25°C Case Temperature

Parameter	Symbol	Rating	Units	Conditions
Drain-Source Voltage	V _{DSS}	120	N	25°C
Gate-to-Source Voltage	V _{GS}	-10, +2	V	25 C
Storage Temperature	T _{STG}	-65, +150	°C	
Operating Junction Temperature	TJ	225		
Maximum Forward Gate Current	I _{GMAX}	4.0	mA	– 25°C
Maximum Drain Current ¹	I _{DMAX}	1.5	A	25°C
Soldering Temperature ²	Ts	245	°C	
Screw Torque	τ	40	in-oz	
Thermal Resistance, Junction to Case ³	R _{θJC}	8.0	°C/W	85°C
Case Operating Temperature ^{3, 4}	Tc	-40, +150	°C	30 seconds

Notes:

¹ Current limit for long term, reliable operation

² Refer to the Application Note on soldering

 $^{\rm 3}$ Measured for the CGH55015 at P_{DISS} = 14 W

⁴ See also, the Power Dissipation De-rating Curve on Page 5

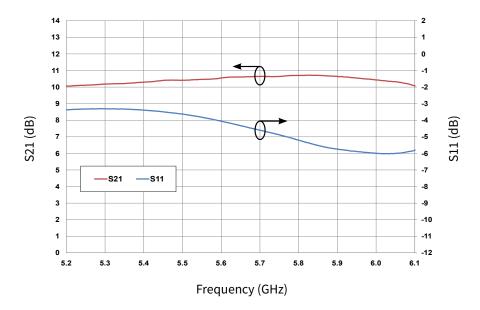
Electrical Characteristics ($T_c = 25^{\circ}C$)

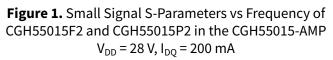
Characteristics	Symbol	Min.	Тур.	Max.	Units	Conditions				
DC Characteristics ¹										
Gate Threshold Voltage	V _{GS(th)}	-3.8	-3.0	-2.3	N N	V _{DS} = 10 V, I _D = 3.6 mA				
Gate Quiescent Voltage	V _{GS(Q)}	_	-2.7	—	V _{DC}	V _{DS} = 28 V, I _D = 200 A				
Saturated Drain Current	I _{DS}	2.9	3.5	—	A	$V_{DS} = 6.0 \text{ V}, V_{GS} = 2.0 \text{ V}$				
Drain-Source Breakdown Voltage	V _{BR}	84	-	_	V _{DC}	$V_{GS} = -8 V$, $I_D = 3.6 mA$				
RF Characteristics ² (T _c = 25°C, F ₀ = 5.65 GHz unless otherwise noted)										
Small Signal Gain	G _{SS}	10	12	—	dB	V = 20 V L = 200 m A				
Output Power ³	P _{SAT}	10	12.5		w	$V_{DD} = 28 \text{ V}, I_{DQ} = 200 \text{ mA}$				
Drain Efficiency ⁴	η	50	60	-	%	$V_{DD} = 28 \text{ V}, I_{DQ} = 200 \text{ mA}, P_{OUT} = 10 \text{ W}$				
Output Mismatch Stress	VSWR	_	_	10:1	Ψ	No damage at all phase angles, $V_{DD} = 28 \text{ V}$, $I_{DQ} = 200 \text{ mA}$, $P_{OUT} = 10 \text{ W CW}$				
Dynamic Characteristics										
Input Capacitance	C _{GS}	_	4.5	_						
Output Capacitance	C _{DS}	_	1.3	—	рF	V _{DS} = 28 V, V _{GS} = -8 V, <i>f</i> = 1 MHz				
Feedback Capacitance	C _{GD}	_	0.2	_						

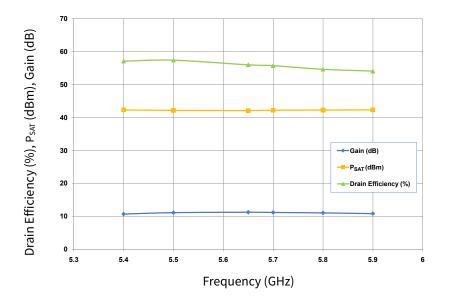
Notes:

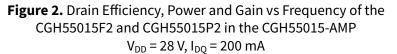
¹ Measured on wafer prior to packaging

² Measured in the CGH55015-AMP


 3 P_{SAT} is defined as I_G = 0.36 mA


⁴ Drain Efficiency = P_{OUT}/P_{DC}


²



Typical Performance

Typical Performance

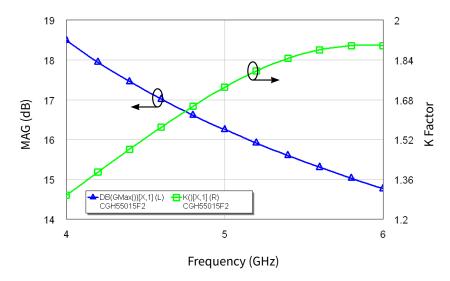


Figure 3. Simulated Maximum Available Gain and K Factor of the CGH55015F2 and CGH55015P2 V_{DD} = 28 V, I_{DQ} = 200 mA

Typical Noise Performance

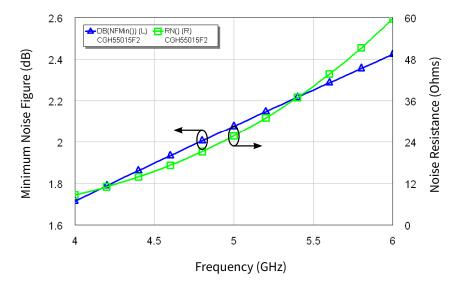
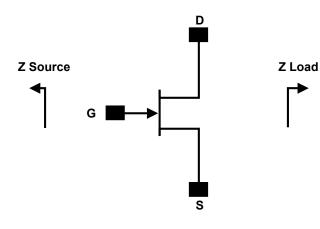


Figure 4. Simulated Minimum Noise Figure and Noise Resistance vs Frequency of the CGH55015F2 and CGH55015P2 $V_{DD} = 28 \text{ V}, I_{DQ} = 200 \text{ mA}$

Electrostatic Discharge (ESD) Classifications

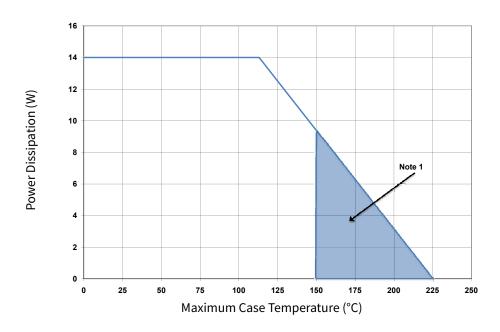

Parameter	Symbol	Class	Classification Level	Test Methodology
Human Body Model	НВМ	0 (< 200V)	ANSI/ESDA/JEDEC JS-001 Table 3	JEDEC JESD22 A114-D
Charge Device Model	CDM	С3	ANSI/ESDA/JEDEC JS-002 Table 3	JEDEC JESD22 C101-C

⁴ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit www.macom.com for additional data sheets and product information. For further information and support please visit: Rev. 4.2, 2022-12-13

https://www.macom.com/support

Source and Load Impedances

Frequency (MHz)	Z Source	Z Load
5500	8.7 – j30.2	21.6 – j4.7
5650	10.2 – j26.9	24.2 – j5.5
5800	12.3 – j24.3	26.5 – j7.5


Notes:

 1 V_{\text{DD}} = 28 V, I_{DQ} = 250mA in the 440166 package

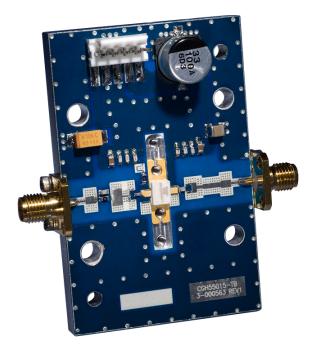
² Impedances are extracted from the CGH55015-AMP demonstration amplifier

and are not source andload pull data derived from the transistor

CGH55015F2 and CGH55015P2 Transient Power Dissipation De-rating Curve

Note:

5

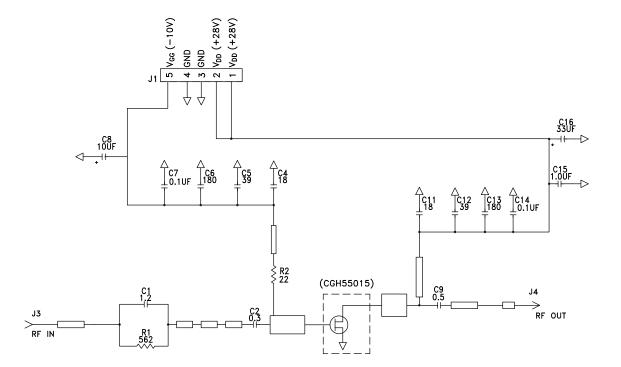

¹ Area exceeds Maximum Case Operating Temperature (See Page 2)

CGH55015-AMP Demonstration Amplifier Circuit Bill of Materials

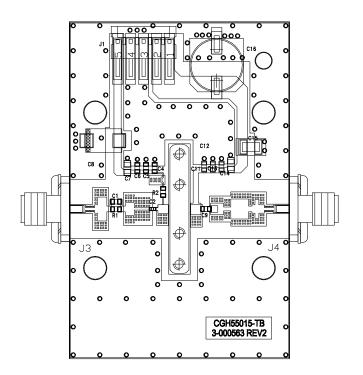
Designator	Description	Qty
C1	CAP, 1.2pF, +/-0.1pF, 0603, ATC 600S	1
C2	CAP, 0.3pF, +/-0.05pF, 0402, ATC 600L	1
С9	CAP, 0.5pF,+/-0.05pF, 0603, ATC 600S	1
C4, C11	CAP, 18pF, +/-5%, 0603, ATC 600S	2
C5, C12	CAP, 39pF +/-5%, 0603, ATC 600S	2
C6, C13	CAP, CER, 180pF, 50V, +/-5%, C0G, 0603	2
C7, C14	CAP, CER, 0.1µF, 50V, +/-10%, X7R, 0805	2
C8	CAP, 10μF, 16V, SMT, TANTALUM	1
C15	CAP, 1.0μF, ±10%, 100V, 1210, X7R	1
C16	CAP, 33μF, 100V, ELECT, FK, SMD	1
R1	RES, 1/16W, 0603, 1%, 562 OHMS	1
R2	RES, 1/16W, 0603, 1%, 22 OHMS	1
J1	HEADER RT> PLZ .1 CEN LK 5 POS	1
J3, J4	CONN, SMA, FLANGE	2
_	PCB, RO4350B, Er = 3.48, h = 20 mil	1
_	CGH55015	1

CGH55015-AMP Demonstration Amplifier Circuit


```
6 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice.


Visit www.macom.com for additional data sheets and product information.

For further information and support please visit:

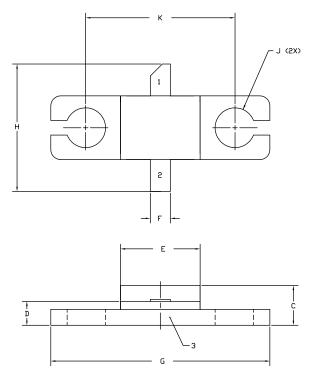

https://www.macom.com/support
```

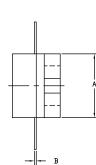

CGH55015-AMP Demonstration Amplifier Circuit Schematic

CGH55015-AMP Demonstration Amplifier Circuit Outline

7 MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: <u>https://www.macom.com/support</u>

Typical Package S-Parameters for CGH55015F2/P2 (Small Signal, V_{DS} = 28 V, I_{DQ} = 200 A, angle in degrees)


Frequency	Mag S11	Ang S11	Mag S21	Ang S21	Mag S12	Ang S12	Mag S22	Ang S22
500 MHz	0.911	-130.86	18.44	105.32	0.022	19.38	0.302	-113.00
600 MHz	0.906	-139.86	15.82	99.40	0.023	14.28	0.299	-120.56
700 MHz	0.902	-146.89	13.81	94.44	0.023	10.15	0.298	-126.20
800 MHz	0.900	-152.58	12.23	90.14	0.023	6.68	0.299	-130.51
900 MHz	0.898	-157.33	10.97	86.29	0.023	3.69	0.302	-133.91
1.0 GHz	0.897	-161.38	9.93	82.79	0.023	1.03	0.305	-136.65
1.1 GHz	0.896	-164.92	9.06	79.53	0.023	-1.36	0.309	-138.93
1.2 GHz	0.895	-168.07	8.33	76.47	0.023	-3.55	0.314	-140.86
1.3 GHz	0.895	-170.92	7.71	73.56	0.023	-5.58	0.320	-142.55
1.4 GHz	0.895	-173.52	7.17	70.77	0.023	-7.47	0.326	-144.06
1.5 GHz	0.894	-175.93	6.70	68.08	0.023	-9.25	0.332	-145.44
1.6 GHz	0.894	-178.19	6.29	65.47	0.023	-10.93	0.338	-146.73
1.7 GHz	0.894	179.68	5.92	62.93	0.023	-12.52	0.345	-147.96
1.8 GHz	0.894	177.66	5.60	60.44	0.023	-14.04	0.351	-149.13
1.9 GHz	0.894	175.72	5.31	58.01	0.022	-15.49	0.358	-150.28
2.0 GHz	0.894	173.85	5.04	55.62	0.022	-16.88	0.365	-151.42
2.1 GHz	0.895	172.04	4.80	53.26	0.022	-18.21	0.372	-152.54
2.2 GHz	0.895	170.28	4.59	50.93	0.022	-19.48	0.379	-153.66
2.3 GHz	0.895	168.57	4.39	48.64	0.022	-20.69	0.386	-154.78
2.4 GHz	0.895	166.88	4.21	46.37	0.021	-21.85	0.393	-155.92
2.5 GHz	0.895	165.22	4.04	44.11	0.021	-22.96	0.400	-157.06
2.6 GHz	0.895	163.58	3.88	41.88	0.021	-24.02	0.407	-158.21
2.7 GHz	0.895	161.97	3.74	39.67	0.021	-25.02	0.413	-159.37
2.8 GHz	0.896	160.36	3.61	37.47	0.020	-25.97	0.420	-160.55
2.9 GHz	0.896	158.76	3.49	35.28	0.020	-26.87	0.426	-161.75
3.0 GHz	0.896	157.17	3.37	33.11	0.020	-27.72	0.433	-162.96
3.2 GHz	0.896	153.99	3.17	28.79	0.019	-29.24	0.445	-165.43
3.4 GHz	0.896	150.81	2.99	24.49	0.019	-30.53	0.456	-167.97
3.6 GHz	0.897	147.59	2.83	20.21	0.018	-31.57	0.467	-170.58
3.8 GHz	0.897	144.34	2.69	15.94	0.018	-32.35	0.477	-173.26
4.0 GHz	0.897	141.03	2.56	11.67	0.017	-32.86	0.487	-176.01
4.2 GHz	0.897	137.66	2.45	7.39	0.017	-33.08	0.496	-178.84
4.4 GHz	0.897	134.20	2.35	3.09	0.017	-33.02	0.504	178.25
4.6 GHz	0.897	130.65	2.26	-1.24	0.016	-32.67	0.511	175.25
4.8 GHz	0.897	127.01	2.18	-5.61	0.016	-32.06	0.517	172.16
5.0 GHz	0.896	123.25	2.11	-10.03	0.016	-31.23	0.523	168.97
5.2 GHz	0.896	119.37	2.04	-14.50	0.016	-30.22	0.528	165.68
5.4 GHz	0.896	115.36	1.98	-19.04	0.016	-29.11	0.532	162.26
5.6 GHz	0.896	111.21	1.92	-23.65	0.016	-27.99	0.536	158.72
5.8 GHz	0.895	106.92	1.87	-28.34	0.017	-26.98	0.539	155.04
6.0 GHz	0.895	102.47	1.83	-33.12	0.017	-26.15	0.541	151.21


To download the s-parameters in s2p format, go to the CGH55015F2/P2 Product page.

⁸ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. Rev. 4.2, 2022-12-13 For further information and support please visit:

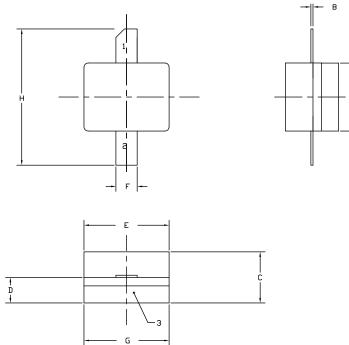
Product Dimensions CGH55015F2 (Package Type – 440166)

INCHES MILLIMETERS MIN DIM MIN MAX MAX 0.155 0.165 3.94 4.19 Α в 0.004 0.006 0.10 0.15 С 0.115 0.135 2.92 3.43 D 0.057 0.067 1.70 1.45 Е 0.195 0.205 4.95 5.21 F 0.045 0.055 1.40 1.14 G 0.545 0.555 13.84 14.09 н 0.280 0.360 7.11 9.14 ø .100 2.54 J 0.375 9.53 κ

1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008' IN ANY DIRECTION.


2. CONTROLLING DIMENSION: INCH.

5. ALL PLATED SURFACES ARE NI/AU

PIN 1. GATE PIN 2. DRAIN PIN 3. SOURCE

NOTES:

Product Dimensions CGH55015P2 (Package Type – 440196)

NOTES 1. DIMENSIONING AND TOLERANCING PER ANSI Y14.5M, 1982.

2. CONTROLLING DIMENSION: INCH.

3. ADHESIVE FROM LID MAY EXTEND A MAXIMUM OF 0.020" BEYOND EDGE OF LID.

4. LID MAY BE MISALIGNED TO THE BODY OF THE PACKAGE BY A MAXIMUM OF 0.008" IN ANY DIRECTION.

INCHES

MIN

0.155

0.003

0.115

0.057

0.195

0.045

0.195

0.280

5.	ALL	PLATED	SURFACES	ARE	NI/AU	

э.	ALL	FLAILD	SOKLACE?	AKE	N17 AU	

5.	ALL	PLAIED	SORF ACES	ARE	NI/AU	

MAX

0.165

0.006

0.135

0.067

0.205

0.055

0.205

0.360

ALL PLATED SURFACES ARE NI/AL

	5. A	ALL	PLATED	SURFACES	ARE	NI/AU
--	------	------------	--------	----------	-----	-------

5.	ALL	PLATED	SURFACES	ARE	NI/AU	

MILLIMETERS

MAX

4.19

0.15

3.17

1.70

5.21

1.40

5.21

9.14

MIN

3.94

0.10

2.92

1.45

4.95

1.14

4.95

7.11

5. ALL	PLATED	SURFACES	ARE	NI/AU	

PIN 1. GATE PIN 2. DRAIN PIN 3. SDURCE

DIM

А

В

С

D

Е

F

G

н

Product Ordering Information

Order Number	Description	Unit of Measure	Image
CGH55015F2	GaN HEMT	Each	COTRACTOR
CGH55015P2	GaN HEMT	Each	CG1555015P2 CB75655
CGH55015F2-AMP1	Test board with GaN HEMT installed	Each	

Notes & Disclaimer

MACOM Technology Solutions Inc. ("MACOM"). All rights reserved.

These materials are provided in connection with MACOM's products as a service to its customers and may be used for informational purposes only. Except as provided in its Terms and Conditions of Sale or any separate agreement, MACOM assumes no liability or responsibility whatsoever, including for (i) errors or omissions in these materials; (ii) failure to update these materials; or (iii) conflicts or incompatibilities arising from future changes to specifications and product descriptions, which MACOM may make at any time, without notice. These materials grant no license, express or implied, to any intellectual property rights.

THESE MATERIALS ARE PROVIDED "AS IS" WITH NO WARRANTY OR LIABILITY, EXPRESS OR IMPLIED, RELATING TO SALE AND/OR USE OF MACOM PRODUCTS INCLUDING FITNESS FOR A PARTICULAR PURPOSE, MERCHANTABILITY, INFRINGEMENT OF INTELLECTUAL PROPERTY RIGHT, ACCURACY OR COMPLETENESS, OR SPECIAL, INDIRECT, INCIDENTAL, OR CONSEQUENTIAL DAMAGES WHICH MAY RESULT FROM USE OF THESE MATERIALS.

MACOM products are not intended for use in medical, lifesaving or life sustaining applications. MACOM customers using or selling MACOM products for use in such applications do so at their own risk and agree to fully indemnify MACOM for any damages resulting from such improper use or sale.

¹¹ MACOM Technology Solutions Inc. (MACOM) and its affiliates reserve the right to make changes to the product(s) or information contained herein without notice. Visit <u>www.macom.com</u> for additional data sheets and product information. For further information and support please visit: https://www.macom.com/support

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

MACOM:

CGH55015F2 CGH55015F2-AMP