

High Voltage, High Gain BIMOSFET™ Monolithic Bipolar MOS Transistor

IXBX25N250

 $V_{CFS} = 2500V$

 $I_{C90} = 25A$

V_{CE(sat)}≤ 3.3V

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _c = 25°C to 150°C	2500	V	
V _{CGR}	$T_J = 25^{\circ}C$ to 150°C, $R_{GE} = 1M\Omega$	2500	V	
V _{GES}	Continuous	± 20	V	
V _{GEM}	Transient	± 30	V	
I _{C25} I _{C90}	$T_{c} = 25^{\circ}C$ $T_{c} = 90^{\circ}C$ $T_{c} = 25^{\circ}C$, 1ms	55 25 180	A A A	
SSOA	$V_{_{GE}} = 15V, T_{_{VJ}} = 125^{\circ}C, R_{_{G}} = 4.7\Omega$	I _{CM} = 80	Α	
(RBSOA)	Clamped Inductive Load	V _{CES} ≤ 2000	V	
P _c	T _C = 25°C	300	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L T _{SOLD}	1.6mm (0.062 in.) From Case for 10s Plastic Body for 10 seconds	300 260	°C °C	
F _c	Mounting Force	20120 / 4.527	N/lb.	
Weight		6	g	

PLUS247™

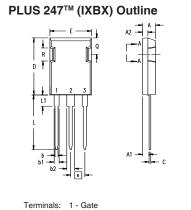
G = Gate E = Emitter C = Collector Tab = Collector

Features

- High Blocking Voltage
- International Standard Package
- Low Conduction Losses

Advantages

- Low Gate Drive Requirement
- High Power Density


Applications

- Switch-Mode and Resonant-Mode Power Supplies
- Uninterruptible Power Supplies (UPS)
- Laser Generator
- Capacitor Discharge Circuit
- AC Switches

•	Test Conditions C Unless Otherwise Specified)		Chara Min.	cteristic ⊢ Typ.	Values ⊢Max.	
BV _{CES}	$I_{c} = 250\mu\text{A}, V_{c} = 0\text{V}$		2500	ıyρ.	IVIAA.	
V _{GE(th)}	$I_{\rm C} = 250\mu\text{A}, V_{\rm CE} = V_{\rm GE}$		2.5		5.0	V
I _{CES}	V _{CE} = 0.8 • V _{CES} , V _{GE} = 0V	T _J = 125°C			50 3	μA mA
GES	$V_{CE} = 0V$, $V_{GE} = \pm 20V$				±100	nA
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{V}, \text{ Note 1}$				3.3	V
		$T_J = 125^{\circ}C$		3.4		V

Symbol Test Conditions Char		Charac	acteristic Values			
$(T_{J} = 25^{\circ})$	C U	nless Otherwise Specified)	Min.	Тур.	Max.	
g _{fS}		$I_{\rm C} = 25A, V_{\rm CE} = 10V, \text{ Note 1}$	11	18		S
C _{ies})			2450		pF
\mathbf{C}_{oes}	}	$V_{CE} = 25V$, $V_{GE} = 0V$, $f = 1MHz$		96		pF
C _{res}				35		pF
\mathbf{Q}_{g})			103		nC
\mathbf{Q}_{ge}	}	$I_{\rm C} = 25 {\rm A}, \ V_{\rm GE} = 15 {\rm V}, \ V_{\rm CE} = 1000 {\rm V}$		17		nC
\mathbf{Q}_{gc}	J			43		nC
t _{d(on)})	Posistive Switching times T = 25°C		55		ns
t _r		Resistive Switching times, T _J = 25°C		240		ns
$\mathbf{t}_{d(off)}$	d(off)	$I_{c} = 25A, V_{GE} = 15V$		145		ns
t _f	J	$V_{CE} = 1250V, R_{G} = 4.7\Omega$		640		ns
t _{d(on)})	Poolotive Switching times T = 125°C		54		ns
t,		Resistive Switching times, T _J = 125°C		640		ns
$\mathbf{t}_{d(off)}$	1	$I_{c} = 25A, V_{GE} = 15V$		140		ns
t _f		$V_{CE} = 1250V, R_{G} = 4.7\Omega$		510		ns
R _{thJC}					0.42	°C/W
R _{thCS}				0.15		°C/W

erminals: 1 - Gate 2 - Collector 3 - Emitter

Dim.	Milli	meter	Inches		
	Min.	Max.	Min.	Max.	
Α	4.83	5.21	.190	.205	
A,	2.29	2.54	.090	.100	
A ₂	1.91	2.16	.075	.085	
b	1.14	1.40	.045	.055	
b,	1.91	2.13	.075	.084	
b ₂	2.92	3.12	.115	.123	
С	0.61	0.80	.024	.031	
D	20.80	21.34	.819	.840	
E	15.75	16.13	.620	.635	
е	5.45 BSC		.215	BSC	
L	19.81	20.32	.780	.800	
L1	3.81	4.32	.150	.170	
Q	5.59	6.20	.220	0.244	
R	4.32	4.83	.170	.190	

Reverse Diode

.,		acteristic Values		
$(T_{J} = 2)$	5°C Unless Otherwise Specified) Min.	Тур.	Max.	
V _F	$I_{\rm F} = 25A, \ V_{\rm GE} = 0V$		2.3	V
t _{rr}	$I_F = 25A, -di_F/dt = 100A/\mu s$	1.6		μs
I _{RM}	$V_{R} = 100V, V_{GE} = 0V$	37.2		Α

Note 1. Pulse test, $t \le 300\mu s$, duty cycle, $d \le 2\%$.

*Additional provisions for lead to lead voltage isolation α are required at $V_{DS} > 1200V$.

Fig. 1. Output Characteristics @ $T_J = 25^{\circ}C$

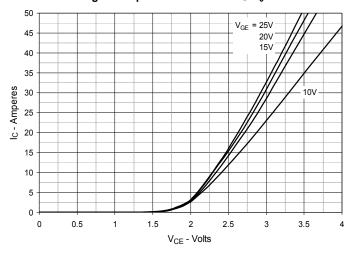


Fig. 2. Extended Output Characteristics @ T_J = 25°C

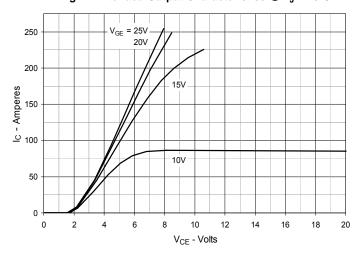


Fig. 3. Output Characteristics @ T_J = 125°C

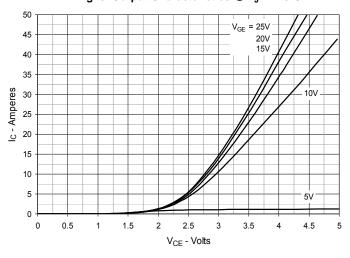


Fig. 4. Dependence of V_{CE(sat)} on Junction Temperature

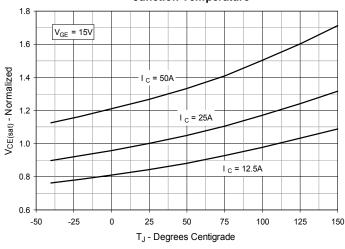
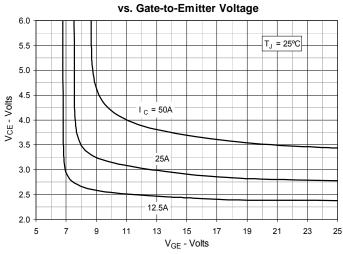
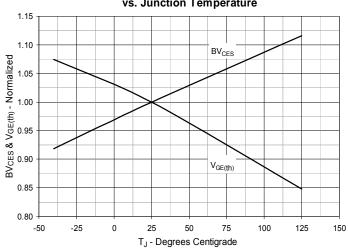
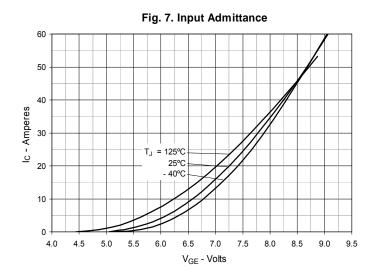
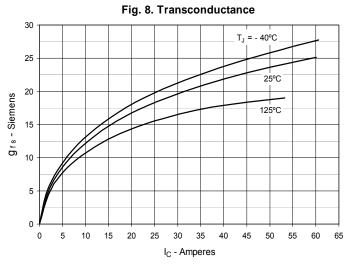
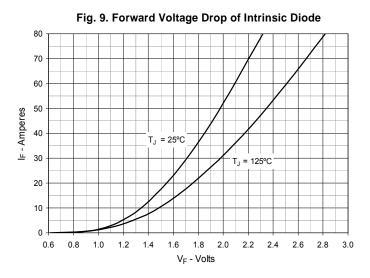
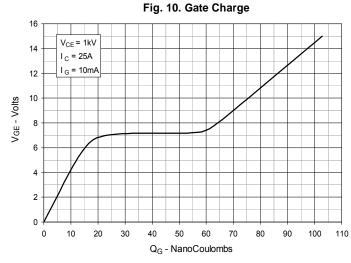
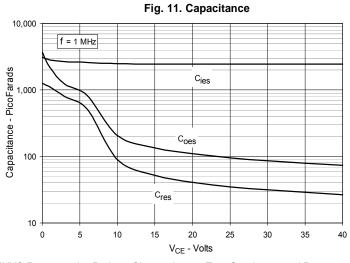


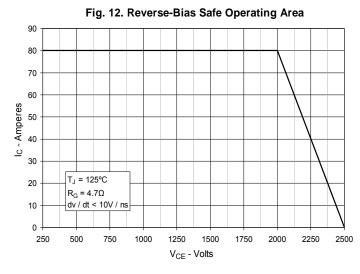
Fig. 5. Collector-to-Emitter Voltage


Fig. 6. Breakdown & Threshold Voltages vs. Junction Temperature







IXYS Reserves the Right to Change Limits, Test Conditions and Dimensions.

Fig. 13. Resistive Turn-on Rise Time vs.
Junction Temperature

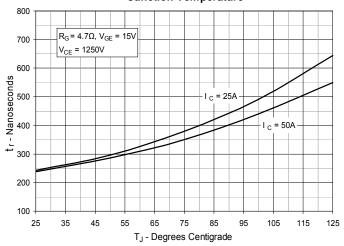


Fig. 14. Resistive Turn-on Rise Time vs.

Drain Current

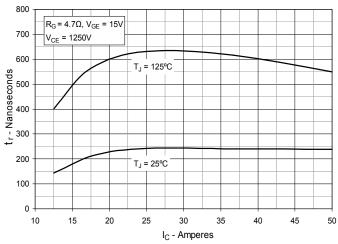


Fig. 15. Resistive Turn-on Switching Times vs.
Gate Resistance

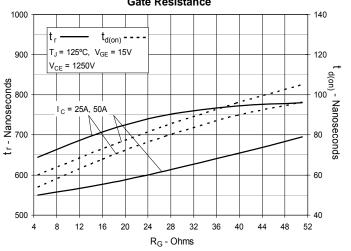


Fig. 16. Resistive Turn-off Switching Times vs.
Junction Temperature

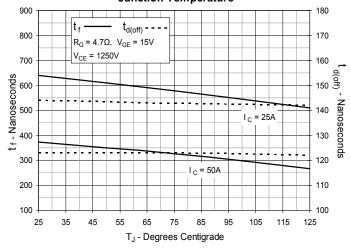


Fig. 17. Resistive Turn-off Switching Times vs.

Drain Current

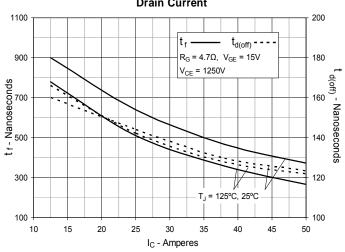
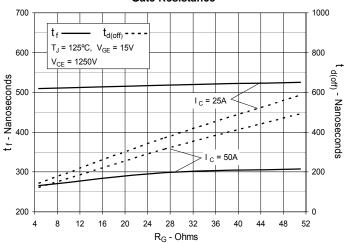



Fig. 18. Resistive Turn-off Switching Times vs.
Gate Resistance

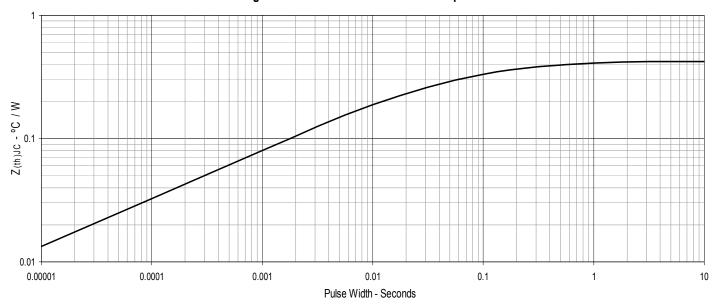


Fig. 19. Maximum Transient Thermal Impedance

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

IXBX25N250