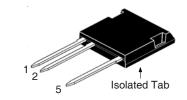


High Voltage IGBTFor Capacitor Discharge Applications

(Electrically Isolated Tab)

IXGF25N300



 $V_{CES} = 3000V$ $I_{C25} = 27A$ $V_{CE(sat)} \le 3.0V$

Symbol	Test Conditions	Maximum Ratings		
V _{CES}	T _J = 25°C to 150°C	3000	V	
V _{CGR}	$T_{_J} = 25^{\circ}C$ to $150^{\circ}C$, $R_{_{GE}} = 1M\Omega$	3000	V	
V _{GES}	Continuous	± 20	V	
V _{GEM}	Transient	± 30	V	
I _{C25}	T _C = 25°C	27	Α	
I _{C90}	$T_{C} = 90^{\circ}C$	16	Α	
I _{CM}	$T_{\rm C} = 25^{\circ}{\rm C}, V_{\rm GE} = 20{\rm V}, 1{\rm ms}$	140	Α	
SSOA	$V_{GE} = 20V, T_{VJ} = 125^{\circ}C, R_{G} = 5\Omega$	I _{CM} = 160	A	
(RBSOA)	Clamped Inductive Load	$V_{CE} \le 0.8 \bullet V_{CES}$		
P _c	T _C = 25°C	114	W	
T _J		-55 +150	°C	
T_{JM}		150	°C	
T _{stg}		-55 +150	°C	
T _L T _{SOLD}	1.6 mm (0.062 in.) from Case for 10s Plastic Body for 10s	300 260	°C °C	
F _c	Mounting Force	20120/4.527	Nm/lb-in.	
V _{ISOL}	50/60Hz, 1 Minute	4000	V~	
Weight		5	g	

Symbol (T _J = 25°C	Test Conditions , Unless Otherwise Specified)	Chara Min.	cteristi Typ.	c Value Ma	
BV _{CES}	$I_{c} = 1 \text{mA}, V_{GE} = 0 \text{V}$	3000			V
V _{GE(th)}	$I_{\text{C}} = 250 \mu \text{A}, V_{\text{CE}} = V_{\text{GE}}$	3.0		5.0	V
I _{CES}	$V_{CE} = 0.8 \bullet V_{CES}, V_{GE} = 0V$ Note 2, $T_{J} = 0$	125°C		50 1	μA mA
GES	$V_{CE} = 0V, V_{GE} = \pm 20V$			±100	nA
V _{CE(sat)}	$I_{c} = 25A, V_{GE} = 15V, Note 1$ $I_{c} = 75A$			3.0 5.5	V

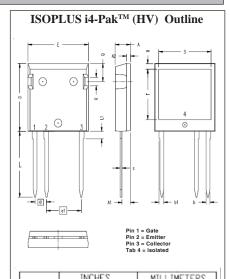
ISOPLUS i4-Pak™

1 = Gate 5 = Collector 2 = Emitter

Features

- Silicon Chip on Direct-Copper Bond (DCB) Substrate
- Isolated Mounting Surface
- 4000V Electrical Isolation
- High Peak Current Capability
- Low Saturation Voltage
- Molding Epoxies Meet UL 94 V-0 Flammability Classification

Applications


- Capacitor Discharge
- Pulser Circuits

Advantages

- High Power Density
- Easy to Mount

•		Char Min.	haracteristic Values in.		
g _{fs}	$I_{\rm C} = 50$ A, $V_{\rm CE} = 10$ V, Note 1	16	26	S	
I _{C(ON)}	$V_{GE} = 15V, V_{CE} = 20V, Note 1$		240	А	
C _{ies}			2970	pF	
\mathbf{C}_{oes}	$V_{CE} = 15V, V_{GE} = 20V, f = 1MHz$		98	pF	
C _{res}			36	pF	
$Q_{g(on)}$			75	nC	
\mathbf{Q}_{ge}	$I_{\rm C} = 50 \text{A}, \ V_{\rm GE} = 15 \text{V}, \ V_{\rm CE} = 0.5 \cdot V_{\rm CES}$		15	nC	
\mathbf{Q}_{gc}			30	nC	
t _{d(on)}	Resistive Switching Times		70	ns	
t,	I _C = 25A, V _{GF} = 15V		240	ns	
t _{d(off)}	$V_{CF} = 1500V, R_{G} = 5\Omega$		220	ns	
t _f	CE CE CE		500	ns	
R _{thJC}		·		1.10 °C/W	
H _{thCS}			0.15	°C/W	
R _{thJA}			30	°C/W	

MYZ	INCHE2		MILLIMETERS	
2114	MIN	MAX	MIN	MAX
Α	.190	.205	4.83	5.21
A1	.102	.118	2.59	3.00
A2	.046	.085	1.17	2.16
b	.045	.055	1.14	1.40
b1	.058	.068	1.47	1.73
С	.020	.029	0.51	0.74
D	.819	.840	20.80	21.34
Ε	.770	.799	19.56	20.29
е	.150 BSC		3.81 BSC	
e1	.450BSC		11.43 BSC	
L	.780	.840	19.81	21.34
L1	.083	.102	2.11	2.59
Q	.210	.244	5.33	6.20
R	.100	.180	2.54	4.57
S	.660	.690	16.76	17.53
Т	.590	.620	14.99	15.75
U	.065	.080	1.65	2.03

Notes:

- 1. Pulse test, $t < 300\mu s$, duty cycle, d < 2%.
- 2. Device must be heatsunk for high-temperature leakage current measurements to avoid thermal runaway.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

IXGF25N300