

SK225xD Series

Description

Excellent unidirectional switches for phase control applications such as heating and motor speed controls.

Standard phase control SCRs are triggered with few milliamperes of current at less than 1.5V potential.

Features & Benefits

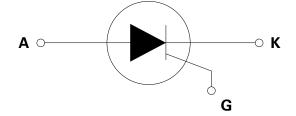
- RoHS compliant
- Voltage capability up to 1200 V
- Surge capability up to 300 A

 Electrically isolated package "LD-Package" and UL Recognized for 2500V_{RMS}

Agency Recognitions

Agency	Agency File Number
71.	E71639

Applications


Typical applications are AC solid-state switches, industrial power tools, line rectification 50/60Hz.

Internally constructed isolated packages are offered for ease of heat sinking with highest isolation voltage.

Main Features

S	ymbol	Value	Unit
	I _{T(RMS)}	25	А
V	DRM/V _{RRM}	1200	V
	I _{GT}	40	mA

Schematic Symbol

Thyristors 25 Amp Standard SCRs

Absolute Maximum Ratings — 25A SCR

Symbol	Parameter	Test Co	Test Conditions		Unit
$V_{_{\mathrm{DRM}}}/V_{_{\mathrm{RRM}}}$	Repetitive Peak off-state/Reverse Voltage				V
V_{DSM}/V_{RSM}	Non-repetitive peak off-state/Reverse voltage			1300	V
	RMS on-state current	SK225LD	T _c =75°C	25	A
I _{T(RMS)}	nivis on-state current	SK225RD	T _C =95°C	25	A
1	Augusta on atata august	SK225LD	T _c =75°C	16	^
I _{T(AV)}	Average on-state current	SK225RD	T _c =95°C	010	A
	Dealessan	single half cycle; $f = 50Hz$; T_J (initial) = 25°C		300	А
I _{TSM}	Peak non-repetitive surge current	single half cycle; $f = 6$ T_J (initial) = 25°C	single half cycle; $f = 60Hz$; T_J (initial) = 25°C		A
l²t	I²t Value for fusing	$t_p = 8.3 \text{ ms}$		540	A ² s
di/dt	Critical rate of rise of on-state current			50	A/µs
I _{GM}	Peak gate current	T _J = 125°C		3	А
P _{G(AV)}	Average gate power dissipation	T _J = 125°C		1	W
T _{stg}	Storage temperature range			-40 to 150	°C
TJ	Operating junction temperature range			-40 to 125	°C

Notes : x = package

Electrical Characteristics (T_J = 25°C, unless otherwise specified)

Symbol	Test Conditions	Value	Unit	
I _{GT}	V 12V. D 200	MAX.	40	mA
V _{GT}	$V_D = 12V; R_L = 30\Omega$	MAX.	1.5	V
dv/dt	$V_D = 2/3 V_{DRM}$; gate open; $T_J = 125$ °C	MIN.	1000	V/µs
V _{GD}	$V_{D} = V_{DRM}$; $R_{L} = 3.3 \text{ k}\Omega$; $T_{J} = 125^{\circ}\text{C}$	MIN.	0.2	V
I _H	$I_{T} = 500 \text{mA (initial)}$	MAX.	100	mA
t _q	$I_T=0.5A$; $t_p=50\mu s$; $dv/dt=5V/\mu s$; $di/dt=-30A/\mu s$	TYP.	15	μs
t _{ot}	$I_{G} = 2 \times I_{GT}$, PW = 15 μ s; $I_{T} = 50$ A	TYP.	3	μs

Notes : x = package

Static Characteristics

Symbol	Test Condition	Value	Unit		
V _{TM}	$I_{T} = 50A; t_{p} = 380 \mu s$		MAX.	1.6	V
1 /1	V (V	T _J = 25°C	MAX.	10	μΑ
I _{DRM} / I _{RRM}	$I_{\text{DRM}}/I_{\text{RRM}}$ $V_{\text{DRM}}/V_{\text{RRM}}$	T _J = 125°C	IVIAX.	4	mA

Thermal Resistances

Symbol	Parameter	Value	Unit	
D	lunction to coop (AC)	SK225RD	1.0	°C/W
n _{⊖(1C)}	R _{euci} Junction to case (AC)	SK225LD	1.9	C/VV

Figure 1: Normalized DC Gate Trigger Current vs. Junction Temperature

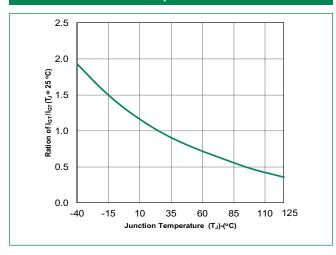


Figure 3: Normalized DC Holding Current vs. Junction Temperature

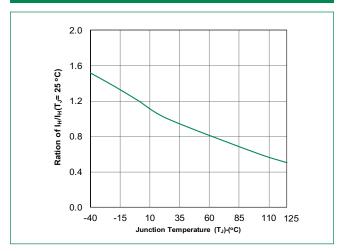


Figure 5: Power Dissipation (Typical) vs. RMS On-State Current

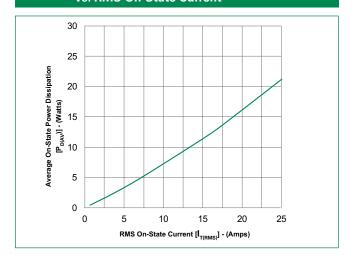


Figure 2: Normalized DC Gate Trigger Voltage vs. Junction Temperature

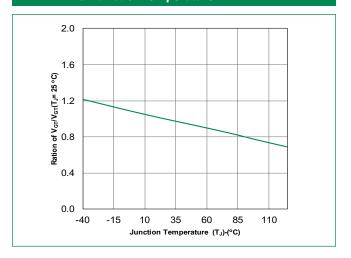


Figure 4: On-State Current vs. On-State Voltage (Typical)

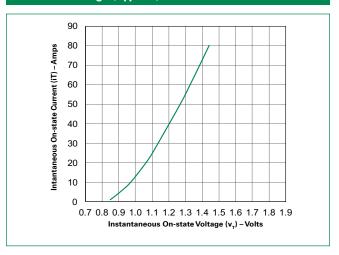


Figure 6: Maximum Allowable Case Temperature vs. RMS On-State Current

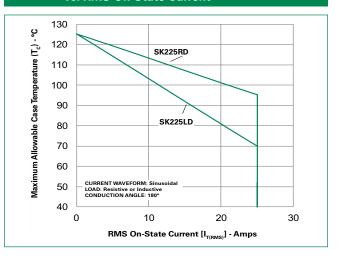


Figure 7: Maximum Allowable Case Temperature vs. Average On-State Current

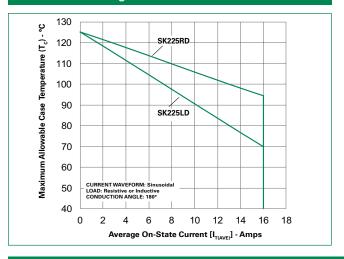
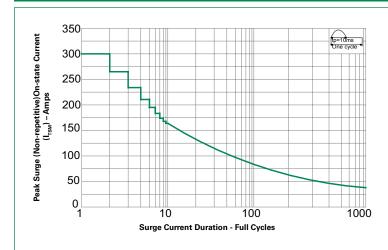



Figure 8: Surge Peak On-State Current vs. Number of Cycles

SUPPLY FREQUENCY: 50 Hz Sinusoidal

LOAD: Resistive

RMS On-State Current: $[I_{T(RMS)}]$: Maximum Rated Value at Specified Case Temperature

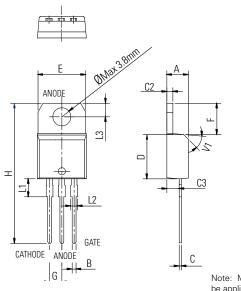
Notes:

- Gate control may be lost during and immediately following surge current interval.
- Overload may not be repeated until junction temperature has returned to steady-state rated value.

Environmental Specifications

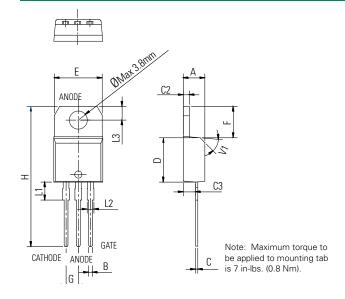
Test	Specifications and Conditions
AC Blocking	JESD22-A108C, 80% V _{DRM} @125°C for 168 hours
Temperature Cycling	MIL-STD-750, M-1051, 100 cycles; -40°C to +150°C; 15-min dwell-time
Temperature/Humidity	EIA / JEDEC, JESD22-A101 168 hours; 100V - DC: 85°C; 85% rel humidity
Resistance to Solder Heat	JESD22-B106C
Solderability	J-STD-022, category 3, test A

Physical Specification


Terminal Finish	100% Matte Tin-Plated
Body Material	UL Recognized compound meeting flammability rating V-0

Design Considerations

Careful selection of the correct component for the application's operating parameters and environment will go a long way toward extending the operating life of the Thyristor. Good design practice should limit the maximum continuous current through the main terminals to 75% of the component rating. Other ways to ensure long life for a power discrete semiconductor are proper heat sinking and selection of voltage ratings for worst case conditions. Overheating, overvoltage (including dv/dt), and surge currents are the main killers of semiconductors. Correct mounting, soldering, and forming of the leads also help protect against component damage.


Dimensions — TO-220AB (RD-Package) — Non-Isolated Mounting Tab Common with Center Lead

Note:	Maximum torque to
be app	lied to mounting tab
is 3 in-	lbs (0.3Nm).

Z	Г	Millimeter	s		Inches	
Dimension	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.40		4.60	0.173		0.181
В	0.61		0.88	0.024		0.035
С	0.46		0.70	0.018		0.028
C2	1.21		1.32	0.048		0.052
C3	2.40		2.72	0.094		0.107
D	8.60		9.70	0.339		0.382
E	9.60		10.4	0.378		0.409
F	6.20		6.60	0.244		0.260
G		2.54			0.1	
Н	28.0		29.8	1.102		1.173
L1		3.75			0.148	
L2	1.14		1.70	0.045		0.067
L3	2.65		2.95	0.104		0.116
V1		45°			45°	

Dimensions — TO-220AB (LD-Package) — Isolated Mounting Tab

Dimension	Г	Millimeters			Inches	
Dimension	Min.	Тур.	Max.	Min.	Тур.	Max.
Α	4.40		4.60	0.173		0.181
В	0.61		0.88	0.024		0.035
С	0.46		0.70	0.018		0.028
C2	1.21		1.32	0.048		0.052
C3	2.40		2.72	0.094		0.107
D	8.60		9.70	0.339		0.382
E	9.80		10.4	0.386		0.409
F	6.55		6.95	0.258		0.274
G		2.54			0.1	
Н	28.0		29.8	1.102		1.173
L1		3.75			0.148	
L2	1.14		1.70	0.045		0.067
L3	2.65		2.95	0.104		0.116
V1		45°			45°	


Thyristors25 Amp Standard SCRs

Part Number Gate Sensitivity Type Package SK225LD 40mA Standard SCR TO-220L SK225RD 40mA Standard SCR TO-220R

Packing Options				
Part Number	Marking	Weight	Packing Mode	Base Quantity
SK225LDTP	SK225LD	2.2g	Tube	1000
SK225RDTP	SK225RD	2.0g	Tube	1000

Part Numbering System S K2 25 LD TP DEVICE TYPE S: SCR VOLTAGE RATING K2: 1200V PACKAGING TYPE TP: Tube Pack PACKAGE TYPE LD: TO-220 Isolated RD: TO-220 Non-Isolated 25: 25A

Part Marking System

XXX: Lot Trace Code

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Littelfuse:

SK225LDTP SK225RDTP