
Surface Mount – 800V

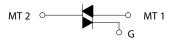
Description

The BTB12 is designed for high performance full-wave AC control applications where high noise immunity and high commutating di/dt are required.

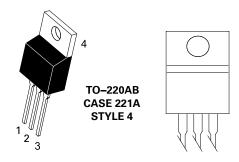
Features

- Blocking Voltage to 800 V
- On-State Current Rating of 12 Amperes RMS at 25°C
- Uniform Gate Trigger Currents in Three Quadrants
- High Immunity to dV/dt 1500 V/µs minimum at 125°C
- Minimizes Snubber Networks for Protection
- Industry Standard TO-220AB Package
- High Commutating dl/dt –
 3.0. A/ms minimum at 125°C
- These are Pb-Free Devices

Additional Information



Accessories



Samples

Functional Diagram

Pin Out

Surface Mount - 800V

Maximum Ratings (TJ = 25°C unless otherwise noted)

Rating		Symbol	Value	Unit
Peak Repetitive Off-State Voltage (Note 1) (Gate Open, Sine Wave 50 to 60 Hz, T ₁ = -40° to 125°C) BTB12-600BW3G BTB12-800BW3G		V _{DRM} , V _{RRM}	600 800	V
On-State RMS Current (Full Cycle Sine Wave, 60 Hz, $T_c = 8$	30°C)	I _{T (RMS)}	12	А
Peak Non-Repetitive Surge Current (One Full Cycle Sine Wave, 60 Hz, T_c = 25°C)	I _{TSM}	120	А	
Circuit Fusing Consideration (t = 10 ms)		l ² t	78	A²sec
Non–Repetitive Surge Peak Off–State Voltage (T ₁ = 25°C, t = 10 ms)		$V_{\rm DSM}/V_{\rm RSM}$	V _{DSM} /V _{RSM} +100	V
Peak Gate Current (T _J = 125°C, t = 20ms)	I _{GM}	4.0	W	
Peak Gate Power (Pulse Width ≤ 1.0 μs, T _C = 80°C)		P_{GM}	20	W
Average Gate Power ($T_J = 125^{\circ}C$)	$P_{G(AV)}$	1.0	W	
Operating Junction Temperature Range	T	-40 to +125	°C	
Storage Temperature Range		T _{stg}	-40 to +150	°C

Stresses exceeding Maximum Ratings may damage the device. Maximum Ratings are stress ratings only. Functional operation above the Recommended Operating Conditions is not implied. Extended exposure to stresses above the Recommended Operating Conditions may affect device reliability.

Thermal Characteristics

Rating		Symbol	Value	Unit
Thermal Resistance	Junction-to-Case (AC) Junction-to-Ambient	R _{ejc} R _{eja}	2.3 60	°C/W
Maximum Lead Temperature for Soldering Purpose	s, 1/8" from case for 10 seconds	TL	260	°C

Electrical Characteristics - OFF ($TJ = 25^{\circ}C$ unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Peak Repetitive Blocking Current	T ₁ = 25°C	I _{DRM} ,	-	-	0.005	mΛ
$(V_D = V_{DRM} = V_{RRM}; Gate Open)$	T _J = 125°C	I _{RRM}	-	-	1.0	mA

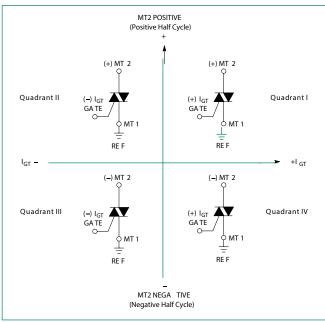
Electrical Characteristics - ON $(TJ = 25^{\circ}C)$ unless otherwise noted; Electricals apply in both directions)

Characteristic		Symbol	Min	Тур	Max	Unit
Forward On-State Voltage (Note 2) ($I_{TM} = \pm 17 \text{ A Peak}$)		V_{TM}	-	-	1.55	V
	MT2(+), G(+)		2.0	_	35	
Gate Trigger Current (Continuous dc) $(V_D = 12 \text{ V}, R_L = 30 \Omega)$	MT2(+), G(-)	l _{GT}	2.0	_	35	mA
	MT2(-), G(-)		2.0	-	35	
Holding Current ($V_D = 12 \text{ V}$, Gate Open, Initiating Current = $\pm 100 \text{ mA}$)		I _H	_	_	45	mA
	MT2(+), G(+)		_	_	50	
Latching Current ($V_D = 12 \text{ V}, I_G = 42 \text{ mA}$)	MT2(+), G(-)	I _L	_	-	80	mA
	MT2(-), G(-)		-	_	50	
	MT2(+), G(+)		0.5	-	1.7	
Gate Trigger Voltage ($V_D = 12 \text{ V}, R_I = 30 \Omega$)	MT2(+), G(-)	V_{GT}	0.5	_	1.1	V
	MT2(-), G(-)		0.5	-	1.1	
	MT2(+), G(+)		0.2	_	_	
Gate Non-Trigger Voltage ($T_J = 125^{\circ}C$)	MT2(+), G(-)	V_{gd}	0.2	_	_	V
	MT2(-), G(-)	-	0.2	_	_	

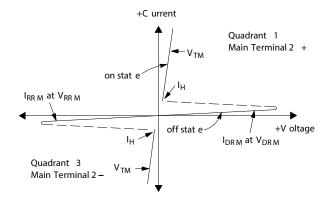
2. Indicates Pulse Test: Pulse Width ≤ 2.0 ms, Duty Cycle ≤ 2%.

^{1.} V_{DBM} and V_{DBM} for all types can be applied on a continuous basis. Ratings apply for zero or negative gate voltage; however, positive gate voltage shall not be applied concurrent with negative potential on the anode. Blocking voltages shall not be tested with a constant current source such that the voltage ratings of the devices are exceeded.

Surface Mount – 800V


Dynamic Characteristics

Characteristic	Symbol	Min	Тур	Max	Unit
Rate of Change of Commutating Current, See Figure 10. (Gate Open, $T_J = 125^{\circ}$ C, No Snubber)	(dl/dt)c	3.0	_	-	A/ms
Critical Rate of Rise of On–State Current ($T_J = 125$ °C, $f = 120$ Hz, $I_G = 2 \times I_{GT}$, $tr \le 100$ ns)	dl/dt	_	_	50	A/µs
Critical Rate of Rise of Off-State Voltage $(V_D = 0.66 \times V_{DRM}, Exponential Waveform, Gate Open, T_1 = 125°C)$	dV/dt	1500	_	_	V/µs


Voltage Current Characteristic of SCR

Symbol	Parameter
V_{DRM}	Peak Repetitive Forward Off State Voltage
I _{DRM}	Peak Forward Blocking Current
V_{RRM}	Peak Repetitive Reverse Off State Voltage
I _{RRM}	Peak Reverse Blocking Current
V_{TM}	Maximum On State Voltage
I _H	Holding Current

Quadrant Definitions for a Triac

All polarities are referenced to MT1.
With in–phase signals (using standard AC lines) quadrants I and III are used

Figure 1. RMS Current Derating

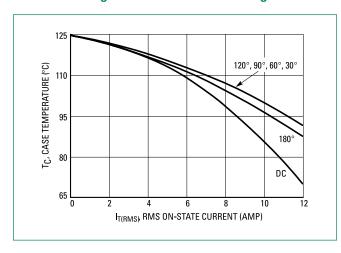
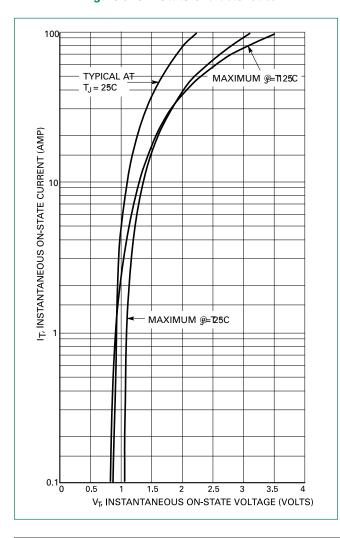
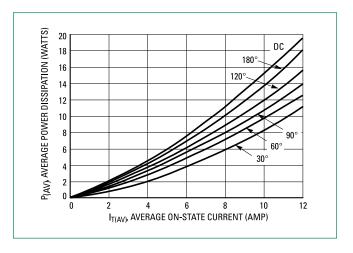
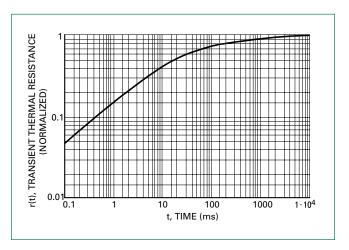


Figure 3. On-State Characteristics

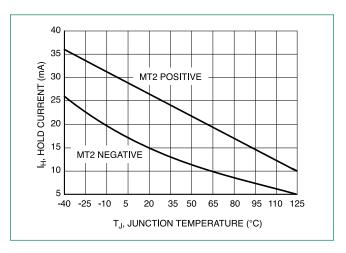

Figure 2. On-State Power Dissipation

Figure 4. Thermal Response

Figure 5. Typical Hold Current Variation

Surface Mount – 800V

Figure 6. Typical Gate Trigger Current Variation

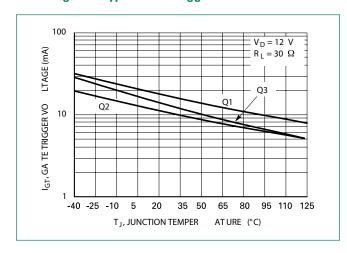


Figure 8. Critical Rate of Rise of Off-State Voltage (Exponential Waveform)

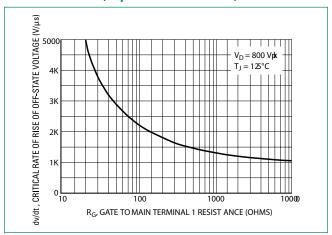


Figure 7. Typical Gate Trigger Voltage Variation

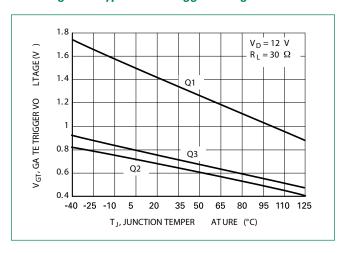
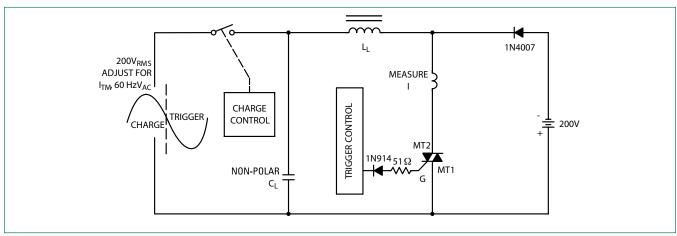
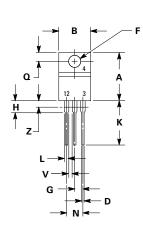
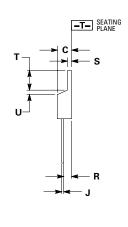
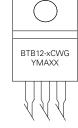



Figure 9. Simplified Test Circuit to Measure the Critical Rate of Rise of Commutating Current (di/dt)




Note: Component values are for verification of rated (di/dt)c. See AN1048 for additional information

Surface Mount – 800V


Dimensions

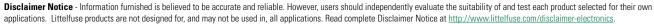
Part Marking System

x =6 or 8 Y = Year =Year M =Month

A =Assembly Site

XX	=Lot Serial Code
G	=Pb-Free Package

D:	Inc	hes	Millin	neters
Dim	Min	Max	Min	Max
Α	0.590	0.620	14.99	15.75
В	0.380	0.420	9.65	10.67
С	0.178	0.188	4.52	4.78
D	0.025	0.035	0.64	0.89
F	0.142	0.147	3.61	3.73
G	0.095	0.105	2.41	2.67
Н	0.110	0.130	2.79	3.30
J	0.018	0.024	0.46	0.61
K	0.540	0.575	13.72	14.61
L	0.060	0.075	1.52	1.91
N	0.195	0.205	4.95	5.21
Q	0.105	0.115	2.67	2.92
R	0.085	0.095	2.16	2.41
S	0.045	0.060	1.14	1.52
T	0.235	0.255	5.97	6.47
U	0.000	0.050	0.00	1.27
V	0.045		1.15	
Z		0.080		2.04


Z		0.0
1. Dimensioning and	tolerancing per ansi y1	4.5m, 1982.

Controlling dimension: inch.
 Dimension z defines a zone where all body and lead irregularities are allowed.

Pin Assignment				
1	Main Terminal 1			
2	Main Terminal 2			
3	Gate			
4	No Connection			

Ordering Information

Device	Package	Shipping
BTB12-600CW3G	TO-220AB (Pb-Free)	1000 Units / Box
BTB12-800CW3G	TO-220AB (Pb-Free)	1000 Units / Box

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Littelfuse:

BTB12-600CW3G BTB12-800CW3G