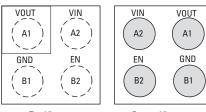

L0050210CS4


5 V, 2 A Ultra Low Consumption Load Switch With Slew Rate Control

PRELIMINARY & CONFIDENTIAL Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Pa numbers and specifications are subject to change until the datasheet is made final. Confidential and proprietary

Pinout Designation

Top View

Pin Description

Pin #	Pin Name	Description
A1	V _{OUT}	Switch output
A2	V _{IN}	Switch input. Supply voltage for IC
B1	GND	Ground
B2	EN	Enable to control the switch. The EN pin has an internal pull-down resistor

Description

The LQ05021QCS4 is an ultra-efficiency, 2.0 A rated, load switch with integrated slew rate control. The best in class efficiency makes it an ideal choice for use in IoT, mobile, and wearable electronics

It supports the lowest quiescent current (I_0) and shutdown current $({\rm I}_{\rm SD})$ in the industry. Low ${\rm I_{Q}}$ and ${\rm I_{SD}}$ solutions help designers to reduce parasitic leakage current, improve system efficiency, and increase battery lifetime.

The LQ05021QCS4 integrated slew rate control can also enhance system reliability by mitigating bus voltage swings during switching events. Where uncontrolled switches can generate high inrush currents that result in voltage droop and/or bus reset events, the slew rate control specifically limits inrush current during turn-on to minimize voltage droop.

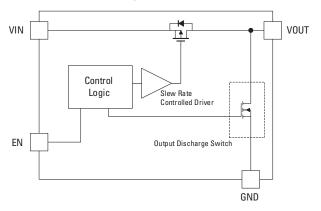
The LQ05021QCS4 load switch device supports an industry leading wide input voltage range and helps to improve operating life and system robustness. Furthermore, one device can be used in multiple voltage rail applications which helps to simplify inventory management and reduces operating cost.

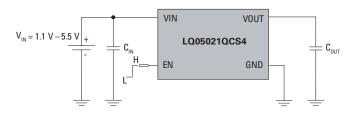
The LQ05021QCS4 load switch device is small utilizing a wafer level chip scale package with 4 bumps in a 0.77 mm x 0.77 mm x 0.46 mm die size and a 0.4 mm bump pitch.

Features and Benefits

- Ultra-low I_o: 1 nA Typ @ 5.5 $V_{\rm IN}$
- Ultra-low I_{sp}: 19 nA Typ @ 5.5 V_{IN}
- Low R_{on} = 34 mΩ Typ @ 5.5 $\mathsf{V}_{_{\rm IN}}$
- I_{OUT} max = 2.0 A
- Wide input range: 1.1 V to 5.5 V, 6 Vabs max
- Controlled rise time: 430 µs at 3.3 V
- Internal EN pull-down resistor
- Integrated output discharge switch
- Ultra small: 4 bumps in a 0.77 mm x 0.77 mm x 0.46 mm WLCSP

Applications


- Mobile devices
- Data storage, SSD
- IoT devices
- Wearables
- Low power subsystems


LQ05021QCS4 5 V, 2 A Ultra Low Consumption Load Switch With Slew Rate Control

PRELIMINARY & CONFIDENTIAL Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts numbers and specifications are subject to change until the datasheet is made final. Confidential and proprietary

Functional Block Diagram

Typical Applications

Absolute Maximum Rating

Symbol	Par	Min.	Max.	Unit	
$\rm V_{in'} V_{out'} V_{en}$	Each Pin Volta	-0.3	6	V	
I _{out}	Maximum Contir		2	А	
P _D	Power Dissipa		1	W	
T _{stg}	Storage Junc	-65	150	°C	
TJ	Maximum Jun		150	°C	
$\theta_{_{JA}}$	Thermal Resistance, Junctio		110	°C/W	
FCD		Human Body Model, JESD22-A114	6		kV
ESD	Electrostatic Discharge Capability	Charged Device Model, JESD22-C101	2		kV

Note: Stresses exceeding the absolute maximum ratings may damage the device. The device may not function or be operable above the recommended operating conditions; extended exposure to stresses above the recommended operating conditions may affect device reliability. The absolute maximum ratings are stress ratings only.

Recommend Operating Conditions

Symbol	Parameter	Min.	Max.	Unit
V _{IN}	Supply Voltage	1.1	5.5	V
T _A	Ambient Operating Temperature	-40	85	°C

Note: The device is not guaranteed to function outside of the recommended operating conditions.

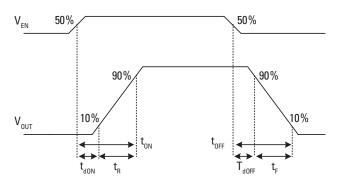
PRELIMINARY & CONFIDENTIAL Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts numbers and specifications are subject to change until the datasheet is made final. Confidential and proprietary

Electrical Characteristics (Values are at V_{IN} = 3.3 V and T_A = 25 °C unless otherwise noted.)

Symbol	Parameter	Test Cond	Min	Тур	Мах	Unit	
Basic Operati	on						
V _{IN}	Supply Voltage			1.1		5.5	V
		V _{IN} = V _{EN} =5.5 V,	I _{out} = 0 mA		520		nA
Ι _α	Quiescent Current	V _{IN} = V _{EN} =5.5 V,	$I_{OUT} = 0 \text{ mA}^1$		1		nA
		V _{IN} = V _{EN} = 5.5 V, I _{OUT} =	0 mA, T _A = 85 °C ¹		12		nA
		EN = Disable, $I_{OUT} = 0$	0 mA, V _{IN} = 1.1 V		3		nA
		EN = Disable, I _{out} = 0	0 mA, V _{IN} = 1.8 V		4		nA
		EN = Disable, I _{out} = 0) mA, V _{IN} = 3.3 V		6		nA
I _{sd}	Shutdown Current	EN = Disable, I _{out} = 0) mA, V _{IN} = 4.5 V		9		nA
		EN = Disable, I _{out} = 0) mA, V _{IN} = 5.5 V		19	50	nA
		EN = Disable, I _{out} = 0 mA,	V _{IN} = 5.5 V, T _A = 55 °C		110		nA
		EN = Disable, I _{out} = 0 mA,	, V _{IN} = 5.5V, T _A = 85 °C		600		nA
			T _A = 25 °C		34	47	mΩ
		V _{IN} = 5.5 V, I _{OUT} = 500 mA	T _A = 85 °C		40		mΩ
			T _A = 25 °C		42	56	mΩ
R _{on}	On-Resistance	VI _{IN} = 3.3 V, I _{OUT} = 500 mA	T _A = 85 °C		50		mΩ
		V _{IN} = 1.8 V, I _{OUT} = 300 mA	T _A = 25 °C		68		mΩ
		V _{IN} = 1.2 V, I _{OUT} = 100 mA	T _A = 25 °C		125		mΩ
		V _{IN} = 1.1 V, I _{OUT} = 100 mA	T _A = 25 °C		155		mΩ
R _{DSC}	Output Discharge Resistance	E _N = Low , I _{FORC}	_{ce} = 10 mA	70	85	100	Ω
		V _{IN} = 1.1 V - 1.8 V		0.9			V
V _{IH}	EN Input Logic High Voltage	V _{IN} = 1.8 V ·	- 5.5 V	1.2			V
		V _{IN} = 1.1 V	- 1.8 V			0.3	V
V _{IL}	EN Input Logic Low Voltage	V _{IN} = 1.8 V ·	- 5.5 V			0.4	V
R _{EN}	EN Internal resistance	Internal Pull-down Resistance:		7	10.1	13	mΩ
I _{en}	EN Current	E _N = 5.5	5 V			0.8	μA
witching Ch	aracteristics ²						
t _{don}	Turn-On Delay	D 150 0 0	0.4 F		275		μs
t _R	V _{out} Rise Time	R _L = 150 Ω, C _{ot}	_{υτ} = 0.1 μF		430		μs
t _{dON}	Turn-On Delay ⁴		0.4 5		245		μs
t _R	V _{out} Rise Time⁴	R _L = 500 Ω, C ₀	$R_{L} = 500 \ \Omega, \ C_{OUT} = 0.1 \ \mu F$		410		μs
t _{dOFF}	Turn-Off Delay ^{3.4}		0.4 5		0.38		μs
t _F	V _{out} Fall Time ^{3.4}	$R_{L} = 10 \Omega, C_{OU}$	_⊤ = 0.1 μ⊢		1.32		μs
t _{dOFF}	Turn-Off Delay ⁴				1.1		μs
t _F	V _{out} Fall Time ^{3.4}	R _L = 500 Ω, C ₀	_{υτ} = 0.1 μΗ		18		μs

Notes:

1. I_{0} does not include enable pull down current through the pull-down resistor RPD.


2. $t_{ON} = td_{ON} + t_{R'}$ $t_{OFF} = td_{OFF} + t_{F}$ 3. Output discharge path is enabled during off.

4. By design; characterized, not production tested.

L0050210CS4 5 V, 2 A Ultra Low Consumption Load Switch With Slew Rate Control

PRELIMINARY & CONFIDENTIAL Littelfuse, Inc. has characte erized initial samples of thi device and is currently conducting reliability testing. Pa numbers and specifications are subject to change until the datasheet is made final. Confidential and proprietary

Timing Waveforms

Typical Performance Characteristics

180

160

40

20

0

-40

V_{IN} = 1.1V

Figure 1 - On-Resistance vs. Supply Voltage

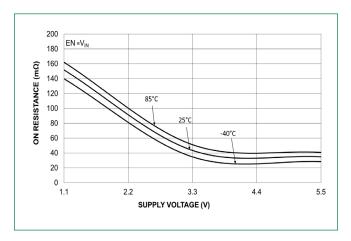
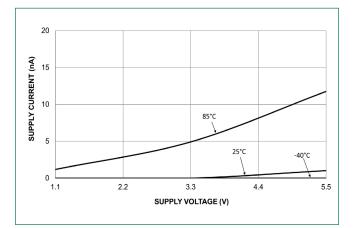



Figure 3 - Quiescent Current vs. Supply Voltage

Figure 4 - Quiescent Current vs. Temperature

10

T_J, JUNCTION TEMPERATURE (°C)

V_{IN} = 3.3V

-15

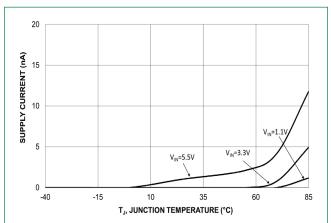


Figure 2 - On-Resistance vs. Temperature

Operating under $I_0 \le 1.5 \text{ A}$

35

V_{IN} = 5.5V

60

 $EN = V_{IN}$

85

LQ05021QCS4 5 V, 2 A Ultra Low Consumption Load Switch With Slew Rate Control

PRELIMINARY & CONFIDENTIAL Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts numbers and specifications are subject to change until the datasheet is made final. Confidential and preprietary

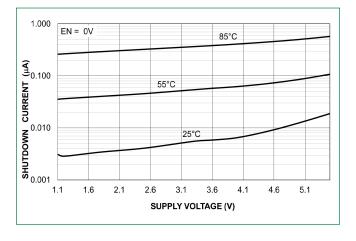


Figure 7 - EN Input Logic High Threshold

-40°C

25°C

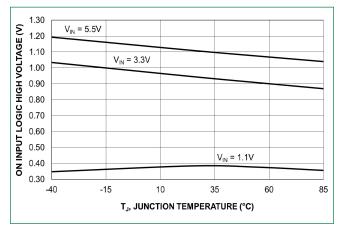
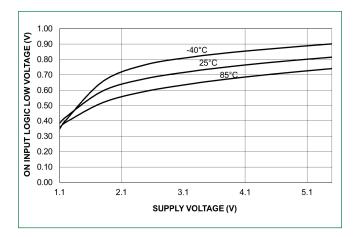

85°C

Figure 5 - Shutdown Current vs. Supply Voltage

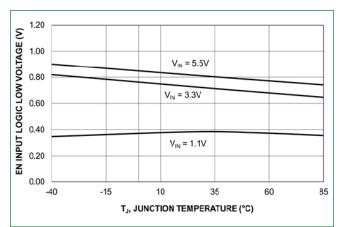
1.000 (Y_{IN} = 0.100 $V_{IN} = 5.5V$ $V_{IN} = 3.3V$ 0.001 -15 10 35 60 85 T_, JUNCTION TEMPERATURE (°C)

Figure 6 - Shutdown Current vs. Temperature

rigure 8 - EN input Logic High Infeshold VS. Temperatur



3.1


SUPPLY VOLTAGE (V)

4.1

5.1

Figure 10 - EN Input Logic Low Threshold Vs. Temperature

1.30

1.20

1.10

1.00

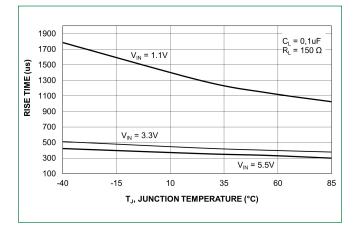
0.90

0.80

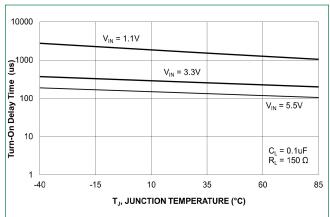
0.70

0.60

0.50


1.1

2.1


EN INPUT LOGIC HIGH VOLTAGE (V)

LQ05021QCS4 5 V, 2 A Ultra Low Consumption Load Switch With Slew Rate Control

PRELIMINARY & CONFIDENTIAL Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts numbers and specifications are subject to change until the datasheet is made final. Confidential and verorietary

Figure 11 - V_{OUT} Rise Time vs. Temperature

Figure 12 - Turn-On Delay Time vs. Temperature

Figure 13 - Pull-down Resistance vs. Temperature

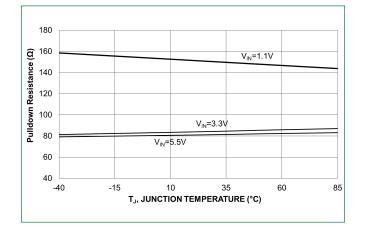


Figure 15 - Turn-On Response V $_{\rm IN}$ = 3.3 V, C $_{\rm IN}$ = 1.0 μ F, C $_{\rm OUT}$ = 0.1 μ F, R $_{\rm L}$ = 150 Ω

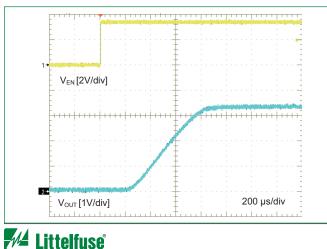
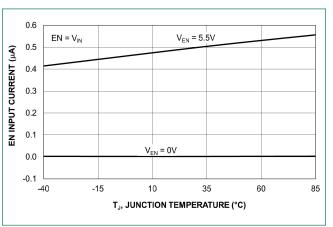
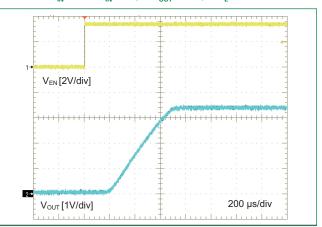
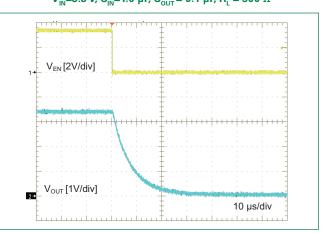




Figure 14 - Enable Input Current vs. Temperature

Figure 16 - Turn-On Response V_{IN}=3.3 V, C_{IN}=1.0 \ \mu\text{F}, C_{OUT}=0.1 \ \mu\text{F}, R_{L}=500 \ \Omega


© 2023 Littelfuse, Inc. Specifications are subject to change without notice. Revised: FW.09/12/23

L0050210CS4 5 V, 2 A Ultra Low Consumption Load Switch With Slew Rate Control

PRELIMINARY & CONFIDENTIAL Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts numbers and specifications are subject to change until the datasheet is made final. Contidential and unranietax

Figure 17 - Turn-Off Response, Output Discharge $V_{IN} = 3.3 \text{ V}, C_{IN} = 1.0 \text{ }\mu\text{F}, C_{OUT} = 0.1 \text{ }\mu\text{F}, R_L = 150 \Omega$

Figure 18 - Turn-Off Response, Output Discharge V_{IN} =3.3 V, C_{IN} =1.0 µF, C_{OUT} = 0.1 µF, R_L = 500 Ω

Application Information

The LQ05021QCS4 integrated 2.0 A, ultra-efficient load switch devices with a fixed slew rate control to limit the inrush current during turn on. Each device is capable of operating over a wide input range from 1.1 V to 5.5 V with very low on-resistance to reduce conduction loss. In the off state, these devices consume very low leakage current to avoid unwanted standby current and save limited input power. The package is a 0.77 mm x 0.77 mm x 0.46 mm wafer level chip scale package, saving space in compact applications. It is constructed using 4 bumps, with a 0.4 mm pitch for manufacturability.

Input Capacitor

A capacitor is recommended to be placed close to the VIN pin to reduce the voltage drop on the input power rail caused by transient inrush current at start-up. A higher input capacitor value can be used to further attenuate the input voltage drop.

Output Capacitor

An output capacitor is recommended to mitigate voltage undershoot on the output pin the moment when the switch is turned off. Undershoot can be caused by parasitic inductance from board traces or intentional load inductances. If load inductances do exist, use of an output capacitor can improve output voltage stability and system reliability. The C_{out} capacitor should be placed close to the VOUT and GND pins.

EN pin

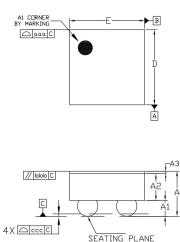
The LQ05021QCS4 can be activated by EN pin high level. Note that the EN pin has an internal pull-down resistor to help pull the main switch to a known "off state" when no EN signal is applied from an external controller.

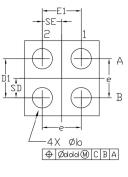
Output Discharge Function

The LQ05021QCS4 has an internal discharge N-channel FET switch on the VOUT pin. When EN signal turns the main power FET to an off state, the N-channel switch turns on to discharge an output capacitor quickly.

Board Layout

All traces should be as short as possible to minimize parasitic inductance effects. Wide traces for VIN, VOUT, and GND will help reduce voltage drops and parasitic effects during dynamic operation as well as improve the thermal performance at high load current.

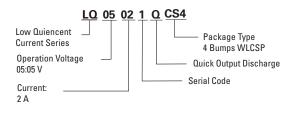



L0050210CS4

5 V, 2 A Ultra Low Consumption Load Switch With Slew Rate Control

PRELIMINARY & CONFIDENTIAL Littelfuse, Inc. has characterized initial samples of this device and is currently conducting reliability testing. Parts numbers and specifications are subject to change until the datasheet is made final. Confidential and proprietary

Dimensions

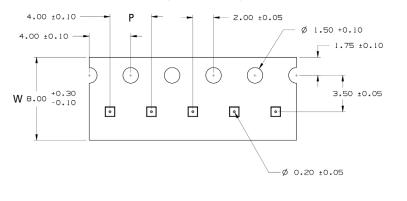


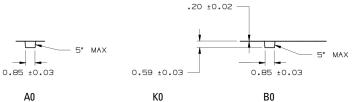
	F ^{A3}
// bbb C	
	SEATING PLANE

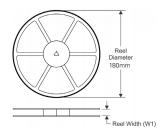
Dimension	Millimeters							
Dimension	Min	Nom	Max					
А	0.410	0.460	0.510					
A1	0.135	0.160	0.185					
A2	0.250	0.275	0.300					
A3	0.020	0.025	0.030					
D	0.755	0.770	0.785					
E	0.755	0.770	0.785					
D1	0.350	0.400	0.450					
E1	0.350	0.400	0.450					
В	0.170	0.210	0.250					
E	0.400 BSC							
SD	0.200 BSC							
SE	0.200 BSC							
	Tol. of Form	n & Position						
aaa	0.100							
bbb	0.100							
CCC	0.050							
ddd	0.050							

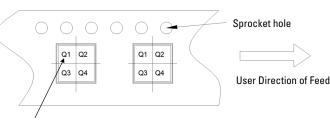
Part Numbering

Part Marking




Pin 1 mark B = Device Code XX = Lot Run Code


LQ05021QCS4 5 V, 2 A Ultra Low Consumption Load Switch With Slew Rate Control



Carrier Tape & Reel Specification

Quandrant assignments pin 1 orientation Dimensions are in millimeters

Device	Package	Pins	SPQ	Reel Diameter	Reel Width W1	A0	B0	К0	Р	w	Pin1
LQ05021QCS4	4 Bumps WLCSP	4	4000	180	9	0.85	0.85	0.59	4	8	Q1

Product Disclaimer - Littelfuse products are not designed for, and shall not be used for, any purpose (including, without limitation, automotive, military, aerospace, medical, lifesaving, life-sustaining or nuclear facility applications, devices intended for surgical implant into the body, or any other application in which the failure or lack of desired operation of the product may result in personal injury, death, or property damage) other than those expressly set forth in applicable Littelfuse product documentation. Warranties granted by Littelfuse shall be deemed void for products used for any purpose not expressly set forth in applicable Littelfuse documentation. Littelfuse shall not be liable for any claims or damages arising out of products used in applications not expressly intended by Littelfuse as set forth in applicable Littelfuse documentation. The sale and use of Littelfuse products is subject to Littelfuse Terms and Conditions of Sale, unless otherwise agreed by Littelfuse. "Littelfuse" includes Littelfuse, Inc., and all of its affiliate entities.

https://www.littelfuse.com/legal/disclaimers/product-disclaimer.aspx

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Littelfuse:

LQ05021QCS4