

Sonic Fast Recovery Diode

 $V_{RRM} = 3300 V$

 $I_{F80} = 50 A$

 $t_{rr} = 1650 \, \text{ns}$

High Performance Fast Recovery Diode Low Loss and Soft Recovery Single Diode

Part number

DHG55I3300FE

Backside: isolated see important note page 3

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
 - Turn-on loss in the commutating switch

Applications:

- Antiparallel diode for high frequency switching devices
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: i4-Pac

- Isolation Voltage: 4200 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.

DHG55I3300FE

Features / Advantages:

- Planar passivated chips
- Very low leakage current
- Very short recovery time
- Improved thermal behaviour
- Very low Irm-values
- · Very soft recovery behaviour
- Avalanche voltage rated for reliable operation
- Soft reverse recovery for low EMI/RFI
- Low Irm reduces:
 - Power dissipation within the diode
- Turn-on loss in the commutating switch

Applications:

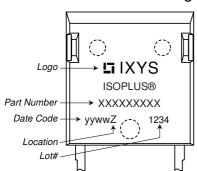
- Antiparallel diode for high frequency switching devices
- Snubber diode
- Free wheeling diode
- Rectifiers in switch mode power supplies (SMPS)
- Uninterruptible power supplies (UPS)

Package: i4-Pac

- Isolation Voltage: 4200 V~
- Industry convenient outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Soldering pins for PCB mounting
- Backside: DCB ceramic
- Reduced weight
- Advanced power cycling

Disclaimer Notice

Information furnished is believed to be accurate and reliable. However, users should independently evaluate the suitability of and test each product selected for their own applications. Littelfuse products are not designed for, and may not be used in, all applications. Read complete Disclaimer Notice at www.littelfuse.com/disclaimer-electronics.


Fast Diode					Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
V _{RSM}	max. non-repetitive reverse blocki	ng voltage	$T_{VJ} = 25^{\circ}C$			3300	V	
V _{RRM}	max. repetitive reverse blocking ve	oltage	$T_{VJ} = 25^{\circ}C$			3300	V	
IR	reverse current, drain current	V _R = 3300 V	$T_{VJ} = 25^{\circ}C$			100	μΑ	
		$V_R = 3300 \text{ V}$	$T_{VJ} = 125^{\circ}C$			2	mA	
V _F	forward voltage drop	I _F = 60 A	$T_{VJ} = 25^{\circ}C$			3.38	V	
		$I_F = 120 A$				4.35	٧	
		$I_F = 60 \text{ A}$	T _{vJ} = 125°C			3.39	V	
		$I_F = 120 A$				4.70	٧	
I _{FAV}	average forward current	T _C = 80°C	T _{vJ} = 150°C			50	Α	
		DC					1 1 1 1	
V _{F0}	threshold voltage		$T_{VJ} = 150$ °C			2.50	٧	
r _F	slope resistance	ss calculation only				14.5	mΩ	
R _{thJC}	thermal resistance junction to case	9				0.45	K/W	
R _{thCH}	thermal resistance case to heatsin	ık			0.15		K/W	
P _{tot}	total power dissipation		$T_{C} = 25^{\circ}C$			280	W	
I _{FSM}	max. forward surge current	$t = 10 \text{ ms}$; (50 Hz), sine; $V_R = 0 \text{ V}$	$T_{VJ} = 45^{\circ}C$			600	Α	
C¹	junction capacitance	$V_{R} = 1800 V$ $f = 1 MHz$	$T_{VJ} = 25^{\circ}C$		16		pF	
I _{RM}	max. reverse recovery current		$T_{VJ} = 25 ^{\circ}\text{C}$		55		Α	
		$I_F = 60 \text{ A}; V_R = 1800 \text{ V}$	$T_{VJ} = 125$ °C		65		Α	
t _{rr}	reverse recovery time	$I_F = 60 \text{ A}; V_R = 1800 \text{ V}$ -di _F /dt = 500 A/µs	$T_{VJ} = 25 ^{\circ}\text{C}$		1650		ns	
	,	l	$T_{VJ} = 125$ °C		2400		ns	

Package	ackage i4-Pac				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal				70	Α	
T _{vJ}	virtual junction temperature			-40		150	°C	
T _{op}	operation temperature			-40		125	°C	
T _{stg}	storage temperature			-40		150	°C	
Weight					5.5		g	
F _c	mounting force with clip			20		120	N	
d _{Spp/App}	oroonago distanco on surface	e striking distance through air	terminal to terminal	13.8			mm	
$d_{\text{Spb/Apb}}$	creepage distance on surface	e Striking distance through an	terminal to backside	5.1			mm	
V _{ISOL}	isolation voltage	t = 1 second		4200			V	
.002		t = 1 minute	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA	2500			٧	

Product Marking

Part description

D = Diode

H = Sonic Fast Recovery Diode

G = extreme fast

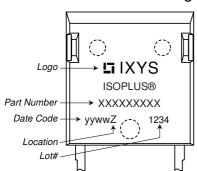
55 = Current Rating [A]

I = Single Diode

3300 = Reverse Voltage [V]

FE = i4-Pac (2HV)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DHG55l3300FE	DHG55l3300FE	Tube	25	516110


Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 150^{\circ}C$
I-V ₀)—[R ₀]-	Fast Diode		
V _{0 max}	threshold voltage	2.5		V
R _{0 max}	slope resistance *	14.5		mΩ

Package	ackage i4-Pac				Ratings			
Symbol	Definition	Conditions		min.	typ.	max.	Unit	
I _{RMS}	RMS current	per terminal				70	Α	
T _{vJ}	virtual junction temperature			-40		150	°C	
T _{op}	operation temperature			-40		125	°C	
T _{stg}	storage temperature			-40		150	°C	
Weight					5.5		g	
F _c	mounting force with clip			20		120	N	
d _{Spp/App}	oroonago distanco on surface	e striking distance through air	terminal to terminal	13.8			mm	
$d_{\text{Spb/Apb}}$	creepage distance on surface	e Striking distance through an	terminal to backside	5.1			mm	
V _{ISOL}	isolation voltage	t = 1 second		4200			V	
.002		t = 1 minute	50/60 Hz, RMS; I _{ISOL} ≤ 1 mA	2500			٧	

Product Marking

Part description

D = Diode

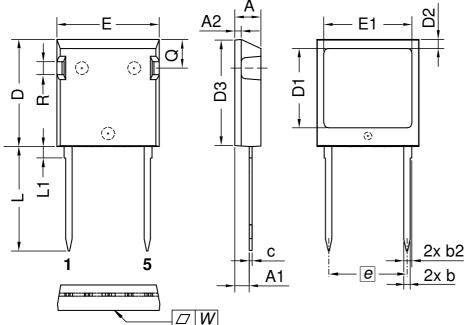
H = Sonic Fast Recovery Diode

G = extreme fast

55 = Current Rating [A]

I = Single Diode

3300 = Reverse Voltage [V]


FE = i4-Pac (2HV)

Ordering	Ordering Number	Marking on Product	Delivery Mode	Quantity	Code No.
Standard	DHG55l3300FE	DHG55l3300FE	Tube	25	516110

Equiva	alent Circuits for	Simulation	* on die level	$T_{VJ} = 150^{\circ}C$
I-V ₀)—[R ₀]-	Fast Diode		
V _{0 max}	threshold voltage	2.5		V
R _{0 max}	slope resistance *	14.5		mΩ

Outlines i4-Pac

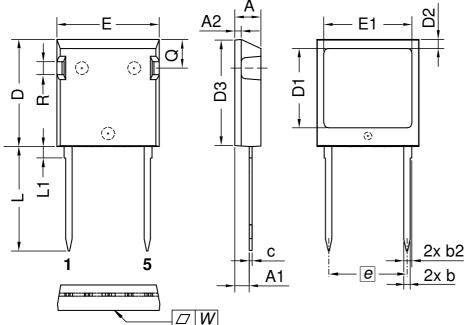
Dim.	Millimeter		Inches		
ווווט.	min	max	min	max	
Α	4.83	5.21	0.190	0.205	
A1	2.59	3.00	0.102	0.118	
A2	1.17	2.16	0.046	0.085	
b	1.14	1.40	0.045	0.055	
b2	1.47	1.73	0.058	0.068	
С	0.51	0.74	0.020	0.029	
D	20.80	21.34	0.819	0.840	
D1	14.99	15.75	0.590	0.620	
D2	1.65	2.03	0.065	0.080	
D3	20.30	20.70	0.799	0.815	
Е	19.56	20.29	0.770	0.799	
E1	16.76	17.53	0.660	0.690	
е	15.24	BSC	0.600	BSC	
L	19.81	21.34	0.780	0.840	
L1	2.11	2.59	0.083	0.102	
Q	5.33	6.20	0.210	0.244	
R	2.54	4.57	0.100	0.180	
W	-	0.10	-	0.004	

Die konvexe Form des Substrates ist typ. < 0.05 mm über der Kunststoffoberläche der Bauteilunterseite The convexbow of substrate is typ. < 0.05 mm over plastic surface level ofdevice bottom side

Important note:

External clearances between pins and between pins and tab may be insufficient to prevent flash over under all conditions. It is the customer's responsibility to apply additional insulation appropriate to the application.

ISOPLUS264 is designed to isolate a max continuous operation voltage (DC) of 1700 V. The peak test voltage of 4200 V assures safety for transient voltages only. The package is not tested for partial discharge.


If the product is used outside the package design voltage range the customer must use additional electrical insulation. Extra insulation layers should be used both between the tab and any heatsink and between any conducting clip and the top surface of the package particularly when metal parts (such as a heatsink or a clip) are in contact. Please note that the intention of this package is to provide customers with an encapsulated die for high voltage application but the responsibility rests entirely with the customer to ensure for safe operation. Bodily injury cannot be excluded if this warning is disregarded. Device implementation is the end user's responsibility.

For a low FIT rate over lifetime failures due to SEB (Single Event Burnout) and an adequate voltage derating should be considered.

Outlines i4-Pac

Dim.	Millimeter		Inches		
ווווט.	min	max	min	max	
Α	4.83	5.21	0.190	0.205	
A1	2.59	3.00	0.102	0.118	
A2	1.17	2.16	0.046	0.085	
b	1.14	1.40	0.045	0.055	
b2	1.47	1.73	0.058	0.068	
С	0.51	0.74	0.020	0.029	
D	20.80	21.34	0.819	0.840	
D1	14.99	15.75	0.590	0.620	
D2	1.65	2.03	0.065	0.080	
D3	20.30	20.70	0.799	0.815	
Е	19.56	20.29	0.770	0.799	
E1	16.76	17.53	0.660	0.690	
е	15.24	BSC	0.600	BSC	
L	19.81	21.34	0.780	0.840	
L1	2.11	2.59	0.083	0.102	
Q	5.33	6.20	0.210	0.244	
R	2.54	4.57	0.100	0.180	
W	-	0.10	-	0.004	

Die konvexe Form des Substrates ist typ. < 0.05 mm über der Kunststoffoberläche der Bauteilunterseite The convexbow of substrate is typ. < 0.05 mm over plastic surface level ofdevice bottom side

Important note:

External clearances between pins and between pins and tab may be insufficient to prevent flash over under all conditions. It is the customer's responsibility to apply additional insulation appropriate to the application.

ISOPLUS264 is designed to isolate a max continuous operation voltage (DC) of 1700 V. The peak test voltage of 4200 V assures safety for transient voltages only. The package is not tested for partial discharge.

If the product is used outside the package design voltage range the customer must use additional electrical insulation. Extra insulation layers should be used both between the tab and any heatsink and between any conducting clip and the top surface of the package particularly when metal parts (such as a heatsink or a clip) are in contact. Please note that the intention of this package is to provide customers with an encapsulated die for high voltage application but the responsibility rests entirely with the customer to ensure for safe operation. Bodily injury cannot be excluded if this warning is disregarded. Device implementation is the end user's responsibility.

For a low FIT rate over lifetime failures due to SEB (Single Event Burnout) and an adequate voltage derating should be considered.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

DHG55I3300FE