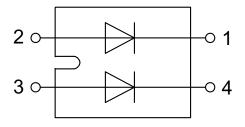

SiC Schottky Diode

prelimininary


 $V_{RRM} = 1200 V$ $I_{FAV} = 2x 60 A$

Ultra fast switching Zero reverse recovery

Part number **DCG130X1200NA**

UL pending

Features / Advantages:

- · Ultra fast switching
- Zero reverse recovery
- Zero forward recovery
- Temperature independent switching behavior
- Positive temperature coefficient of forward voltage
- $\bullet T_{VJM} = 175^{\circ}C$

Applications:

- Solar inverter
- Uninterruptible power supply (UPS)
- Welding equipment
- Switched-mode power supplies
- Medical equipment
- High speed rectifier

Package: SOT-227B (minibloc)

- Isolation Voltage: 3000 V~
- Industry standard outline
- RoHS compliant
- Epoxy meets UL 94V-0
- Base plate with Aluminium nitride isolation for low thermal resistance
- Advanced power cycling

Terms & Conditions of Usage

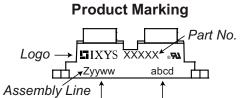
The data contained in this product data sheet is exclusively intended for technically trained staff. The user will have to evaluate the suitability of the product for the intended application and the completeness of the product data with respect to his application. The specifications of our components may not be considered as an assurance of component characteristics. The information in the valid application- and assembly notes must be considered. Should you require product information in excess of the data given in this product data sheet or which concerns the specific application of your product, please contact the sales office, which is responsible for you. Due to technical requirements our product may contain dangerous substances. For information on the types in question please contact the sales office, which is responsible for you. Should you intend to use the product in aviation, in health or live endangering or life support applications, please notify. For any such application we urgently recommend

to perform joint risk and quality assessments;

- the conclusion of quality agreements;
 to establish joint measures of an ongoing product survey, and that we may make delivery dependent on the realization of any such measures.

IXYS reserves the right to change limits, test conditions and dimensions.

20180115a


SiC Diode (per leg)			Ratings			
Symbol	Definitions	Conditions	min.	typ.	max.	
V _{RSM}	max. non-repetitive reverse blocking voltage	$T_{VJ} = 25^{\circ}C$			1200	V
V _{RRM}	max. repetitive reverse blocking voltage	$T_{VJ} = 25^{\circ}C$			1200	V
I _R	reverse current	$V_R = V_{RRM}$ $T_{VJ} = 25^{\circ}C$ $T_{VJ} = 175^{\circ}C$		140 480	800 1200	μA μA
V _F	forward voltage	$I_F = 30 \text{ A}$ $T_{VJ} = 25^{\circ}\text{C}$ $I_F = 60 \text{ A}$		1.3 1.6	1.8	V V
		$I_F = 30 \text{ A}$ $T_{VJ} = 175^{\circ}\text{C}$ $I_F = 60 \text{ A}$		1.55 2.3	3	V V
I _{FAV}	average forward current	$T_{C} = 80^{\circ}C$ rectangular, $d = 0.5$ $T_{C} = 100^{\circ}C$ $T_{VJ} = 175^{\circ}C$			60 53	A A
I _{F25} I _{F80} I _{F100}	forward current	based on typ. V_{F0} and r_{F} $ T_{C} = 25^{\circ}C $ $ T_{C} = 80^{\circ}C $ $ T_{C} = 100^{\circ}C $			105 81 71	A A A
I _{FSM}	max forward surge current	$t = 10$ ms,half sine (50 Hz) $T_{VJ} = 25^{\circ}C$ $T_{P} = 10 \mu s$, pulse $T_{R} = 0V$			1150	A A
V _{F0}	threshold voltage	$T_{VJ} = 125^{\circ}C$		0.80		V
r _F	slope resistance	$eq:total_$		0.73 20.0 24.6		V $m\Omega$
Q _c	total capacitive charge	$V_R = 800 \text{ V}, \ I_F = 60 \text{A}$ $T_{VJ} = 25 ^{\circ} \text{C}$ $dI/dt = 800 \text{ A}/\mu \text{s}$		300		nC
С	total capacitance	$ \begin{array}{c} V_{R} = 0 \ V \\ V_{R} = 400 \ V \\ V_{R} = 800 \ V \end{array} \right\} \hspace{1cm} T_{VJ} = 25^{\circ} C, f = 1 \ MHz \\ \end{array} $		4500 280 200		pF pF pF
R _{thJC}	thermal resistance junction to case thermal resistance junction to heatsink	with heatsink compound; IXYS test setup		0.55	0.43	K/W K/W

Package	Outlines SOT-227B (minibloc)			Ratings			
Symbol	Definitions	Conditions		min.	typ.	max.	Unit
I _{RMS}	RMS current	per terminal				100	Α
T _{stg} T _{op} T _{VJ}	storage temperature operation temperature virtual junction temperature			-40 -40 -40		150 150 175	°C °C °C
Weight					30		g
M _D	mounting torque 1)		screws to heatsink terminal connection screws			1.5 1.3	Nm Nm
d _{Spp}	creepage distance on surface		terminal to terminal terminal to backside	10.5 8.5			mm mm
d _{App}	striking distance through air		terminal to terminal terminal to backside	3.2 6.8			mm mm
V _{ISOL}	isolation voltage	t = 1 second t = 1 minute	50 / 60 Hz, RMS; $I_{ISOL} \le 1 \text{ mA}$	3000 2500			V
C _P	coupling capacity per switch	between shorted to metallization	erminals of diodes and back side				pF

¹⁾ further information see application note IXAN0073 on www.ixys.com/TechnicalSupport/appnotes.aspx (General / Isolation, Mounting, Soldering, Cooling)

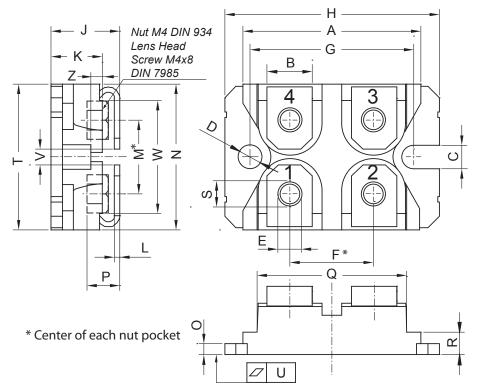
Assembly Code

DateCode

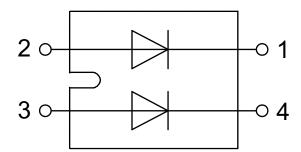

Part description

D = Diode

C = SiC
G = Extreme fast
130 = Current Rating [A]
X = Parallel legs
1200 = Reverse Voltage [V]
NA = SOT-227 (minibloc)


Standard DCG130X1200NA DCG130X1200NA Tube	10 521458

Equival	Equivalent Circuits for Simulation *on die level, typical			
$I \rightarrow V_0$	$ R_0$ $-$	T _{vJ} = 125°C	T _{vJ} = 175°C	
V _{0 max}	threshold voltage	0.80	0.73	V
$R_{0 \text{ max}}$	slope resistance *	20.0	24.6	mΩ



Outlines SOT-227B (minibloc)

Dim.	Millimeter		Inches			
יוווט.	min	max	min	max		
Α	31.50	31.88	1.240	1.255		
В	7.80	8.20	0.307	0.323		
O	4.09	4.29	0.161	0.169		
D	4.09	4.29	0.161	0.169		
Ε	4.09	4.29	0.161	0.169		
F	14.91	15.11	0.587	0.595		
G	30.12	30.30	1.186	1.193		
Н	37.80	38.23	1.488	1.505		
J	11.68	12.22	0.460	0.481		
K	8.92	9.60	0.351	0.378		
L	0.74	0.84	0.029	0.033		
М	12.50	13.10	0.492	0.516		
Ν	25.15	25.42	0.990	1.001		
0	1.95	2.13	0.077	0.084		
Р	4.95	6.20	0.195	0.244		
Q	26.54	26.90	1.045	1.059		
R	3.94	4.42	0.155	0.167		
S	4.55	4.85	0.179	0.191		
Т	24.59	25.25	0.968	0.994		
U	-0.05	0.10	-0.002	0.004		
V	3.20	5.50	0.126	0.217		
W	19.81	21.08	0.780	0.830		
Ζ	2.50	2.70	0.098	0.106		

SiC Diode (per leg)

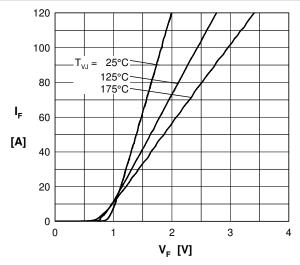


Fig. 1 Typ. forward characteristics

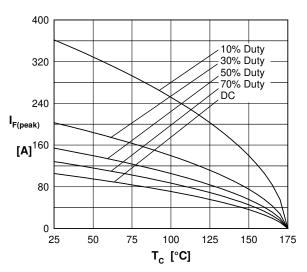


Fig. 3 Typ. current derating

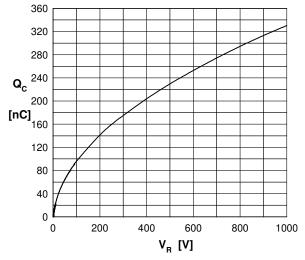


Fig. 5 Typ. recovery charge vs. reverse voltage

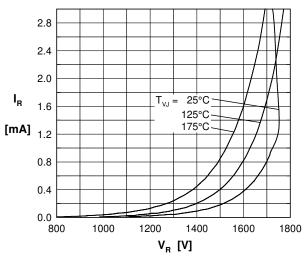


Fig. 2 Typ. reverse characteristics

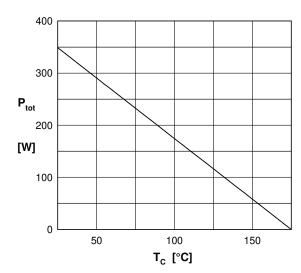


Fig. 4 Power derating

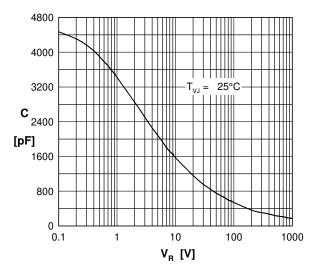


Fig. 6 Typ. junction capacitance vs. reverse Voltage

SiC Diode (per leg)

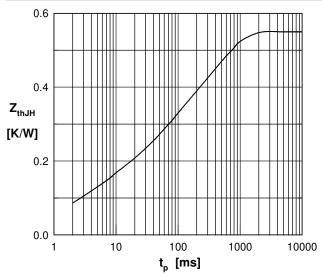


Fig. 7 Typ. transient thermal impedance

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

DCG130X1200NA