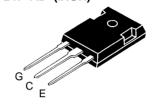
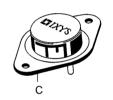


Low V_{CE(sat)} IGBT High speed IGBT

IXGH/IXGM 20 N60 IXGH/IXGM 20 N60A


\mathbf{V}_{CES}	I _{C25}	V _{CE(sat)}
600 V	40 A	2.5 V
600 V	40 A	3.0 V


Symbol	Test Conditions	Maximum Ratings	
V _{ces}	$T_{J} = 25^{\circ}C \text{ to } 150^{\circ}C$	600	V
V _{CGR}	$T_J = 25^{\circ}C$ to $150^{\circ}C$; $R_{GE} = 1 \text{ M}\Omega$	600	V
V _{GES}	Continuous	±20	V
$V_{\rm GEM}$	Transient	±30	V
I _{C25}	T _C = 25°C	40	Α
I _{C90}	$T_{c} = 90^{\circ}C$	20	Α
I _{CM}	$T_{\rm C} = 25$ °C, 1 ms	80	Α
SSOA (RBSOA)	V_{GE} = 15 V, T_{VJ} = 125°C, R_{G} = 82 Ω Clamped inductive load, L = 100 μH	$I_{CM} = 40$ @ 0.8 V_{CES}	Α
P _c	T _C = 25°C	150	W
T _J		-55 +150	°C
\mathbf{T}_{JM}		150	°C
T _{stg}		-55 + 150	°C
$\mathbf{M}_{\mathtt{d}}$	Mounting torque (M3)	1.13/10	Nm/lb.in.
Weight		TO-204 = 18 g, TO-	247 = 6 g
Maximum lead temperature for soldering 1.6 mm (0.062 in.) from case for 10 s		300	°C

Symbol	Test Conditions	$(T_J = 25^{\circ}C, \text{ unless } 0)$	ristic Va se speci max.	
BV _{CES}	$I_{C} = 250 \mu A, V_{GE} = 0 V$	600		V
$\mathbf{V}_{GE(th)}$	I_{C} = 250 μ A, V_{CE} = V_{GE}	2.5	5	V
I _{CES}	$egin{array}{lll} V_{\text{CE}} &= 0.8 \bullet V_{\text{CES}} \ V_{\text{GE}} &= 0 \ V \end{array}$	$T_J = 25^{\circ}C$ $T_J = 125^{\circ}C$	200 1	μA mA
I _{GES}	$V_{CE} = 0 \text{ V}, V_{GE} = \pm 20 \text{ V}$		±100	nA
V _{CE(sat)}	$I_{\rm C} = I_{\rm C90}, V_{\rm GE} = 15 \text{ V}$	20N60 20N60A	2.5 3.0	V V

TO-247 AD (IXGH)

TO-204 AE (IXGM)

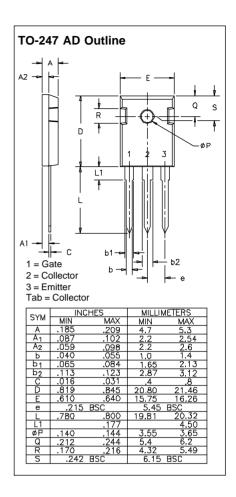
G = Gate. C = Collector. E = Emitter. TAB = Collector

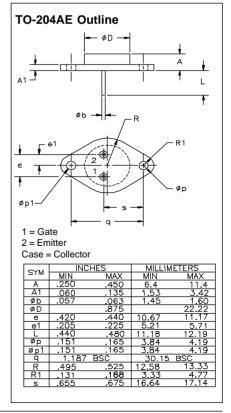
Features

- · International standard packages
- 2nd generation HDMOS[™] process
- Low $V_{CE(sat)}$ for low on-state conduction losses
- · High current handling capability
- MOS Gate turn-on
 - drive simplicity
- · Voltage rating guaranteed at high temperature (125°C)

Applications

- · AC motor speed control
- · DC servo and robot drives
- · DC choppers
- Uninterruptible power supplies (UPS)
- · Switch-mode and resonant-mode power supplies


Advantages


- Easy to mount with 1 screw (TO-247) (isolated mounting screw hole)
- · High power density

Symbol	Test Conditions Character (T $_{\rm J}$ = 25°C, unless a min.	aracteriotherwis		
g _{fs}	$I_{\text{C}} = I_{\text{C90}}$; $V_{\text{CE}} = 10 \text{ V}$, Pulse test, $t \le 300 \mu\text{s}$, duty cycle $\le 2 \%$	14		S
C _{ies} C _{oes} C _{res}		1500 200 40		pF pF pF
Q _g Q _{ge} Q _{gc}		100 20 60	120 30 90	nC nC nC
$\mathbf{t}_{d(on)}$ \mathbf{t}_{ri} $\mathbf{t}_{d(off)}$ \mathbf{t}_{fi} \mathbf{E}_{off}	$eq:local_$	100 200 600 200 1.5		ns ns ns ns
$t_{d(on)}$ t_{ri} E_{on} $t_{d(off)}$ t_{fi}	Inductive load, T_J = 25°C $I_C = I_{C90}, V_{GE} = 15 \text{ V},$ $L = 300 \mu\text{H}$ $V_{CE} = 0.8 V_{CES},$ $R_G = R_{off} = 82 \Omega$ Remarks: Switching times 20N60 and increase for V_{CE} (Clamp) > 0.8 • V_{CES} , 20N60 higher T_J or increased R_G 20N60A	100 200 2 900 530 250 3.2 2.0	1500 2000 600	ns ns mJ ns ns ns mJ mJ
R _{thJC}		0.25	0.83	K/W K/W

IXGH 20N60 and IXGH 20N60A characteristic curves are located on the IXGH 20N60U1 and IXGH 20N60AU1 data sheets.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

IXYS:

IXGH20N60