LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-On Only

Technical Data **Super Flux LEDs** GaN

LTL911TBKS Blue LTL912TBKS Blue LTL911TGKS Green LTL912TGKS Green

Benefits

- Fewer LEDs required due to GaN technology
- Lower lighting system cost
- Higher luminous efficiency than incandescent

Feature

- High current operation / High flux output
- Low thermal resistance / Low profile
- Wide viewing angle
- Tube package for automatic loading and insertion process

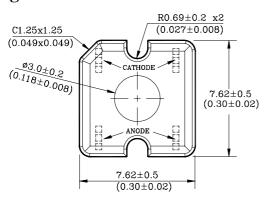
Application

- Signal board
- **Exterior Lighting**

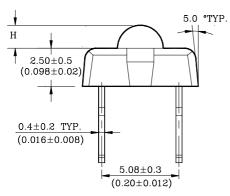
Description

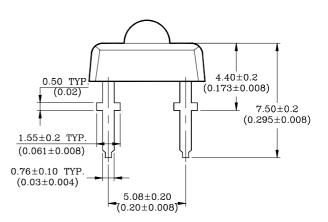
These parts are designed for high current operation and high flux output applications. In order to solve the high temperature produced by the higher current operation, the package's design features better thermal management characteristics than other LED solutions coupled with an efficient optical design.

This package design allows the lighting designer to reduce the number of LEDs required as well as the overall lighting system cost. The low profile package can be easily coupled to reflectors or lenses to efficiently distribute light and provide the desired illuminated appearance. This product family employs the world's brightest blue and green LED materials, which allow designers to match the color of popular lighting applications, such as signal board, exterior lighting, and traffic lighting.


LITEON LITE-ON ELECTRONICS, INC.

Property of Lite-On Only


Devices


Part No.	Lens		Source	ee
LTL*	Color	Diffusion	Dice Source	Color
911TBKS/912TBKS	Water Clear	Non-Diffused	GaN on Sapphire	Blue
911TGKS/912TGKS	Water Clear	Non-Diffused	GaN on Sapphire	Green

Package Dimensions

Part No.	Н
LTL911XXXXX	1.50(0.059)
LTL912XXXXX	1.90(0.075)

NOTES:

- 1. All dimensions are in millimeters (inches).
- 2. Protruded resin is 1.0mm(.04") max.
- 3. Lead spacing is measured where the leads emerge from the package.
- 4. Specifications are subject change to without notice.

Part No.: LTL91xTxKS 5 Page: 2 of

LITEON ELECTRONICS, INC.

Property of Lite-On Only

Absolute Maximum Ratings at Ta=25℃

Parameter	Blue	Green	Unit		
Power Dissipation	190	mW			
Peak Forward Current (1/10 Duty Cycle, 0.1ms Pulse Width)	100	mA			
Continuous Forward Current	50	50	mA		
Derating Linear From 45°℃	0.91	0.91	mA/°C		
Reverse Voltage ($I_R = 100 \mu A$)	5	V			
Operating Temperature Range	-40°C to + 100°C				
Storage Temperature Range	-55°C to + 100°C				
LED Junction Temperature	125℃				
Soldering Preheat Temperature	100°C for 30 Seconds				
Lead Soldering Temperature	260°C for 5 Seconds [1.5mm (.06") From Seating Plane]				

Notes:

- 1. Operation at currents below 10mA is not recommended.
- 2. Derating linear as shown in Fig. 3

Part No.: LTL91xTxKS	Page:	3	of	5	
----------------------	-------	---	----	---	--

LITEON ELECTRONICS, INC.

Property of Lite-On Only

Electrical / Optical Characteristics at TA=25°C

Parameter	Symbol	Part No. LTL*	Min.	Тур.	Max.	Unit	Test Condition
Total Flux	øv	LTL91xTBKS LTL91xTGKS		450 1000		mlm	IF = 50mA Note 1
Luminous Intensity / Total Flux	Iv / ØV	LTL911TxKS LTL912TxKS		0.8 1.2		mcd /mlm	
Viewing Angle	2 0 1/2	LTL911TxKS LTL912TxKS		75 60		deg	Note 2 (Fig.5)
Peak Emission Wavelength	λΡ	LTL91xTBKS LTL91xTGKS		465 518		nm	Measurement @Peak (Fig.1)
Dominant Wavelength	λd	LTL91xTBKS LTL91xTGKS		470 525		nm	Note 3
Spectral Line Half-Width	Δλ	LTL91xTBKS LTL91xTGKS		25 35			
Forward Voltage	VF	LTL91xTBKS LTL91xTGKS		3.6	4.2	V	IF = 50mA
Reverse Voltage	VR		5	10		V	$IR = 100 \muA$

Note: 1. ØV is the total luminous flux output as measured with an integrating sphere.

- 2. θ 1/2 is the off-axis angle at which the luminous intensity is half the axial luminous intensity.
- 3. The dominant wavelength, λ d is derived from the CIE chromaticity diagram and represents the single wavelength which defines the color of the device.

Part No.: LTL91xTxKS	Page:	4	of	5	
Part No.: L1L91x1xKS	Page:	4	OI	3	

Property of Lite-On Only

Typical Electrical / Optical Characteristics Curves

(25°C Ambient Temperature Unless Otherwise Noted)

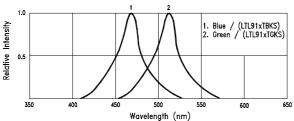


Fig.1 Relative Intensity v.s Wavelength

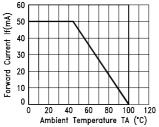


Fig.3 Forward Current v.s Ambient Temperature

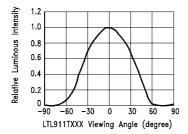


Fig.5-1 Relative Luminous Intensity v.s Off Axis Angle

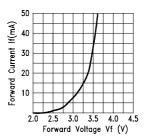


Fig.2 Forward Current v.s Forward Voltage

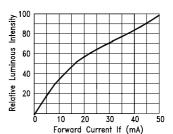


Fig.4 Relative Luminous Intensity v.s Forward Current

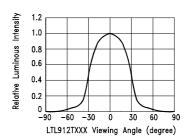


Fig.5-2 Relative Luminous Intensity v.s Off Axis Angle

Part No.: LTL91xTxKS 5 Page: 5 of

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

LITEON:

LTL912TBKS