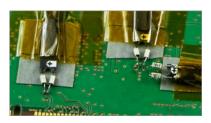


Oscilloscope Probes and Accessories

PROBE SELECTION


Teledyne LeCroy has a wide variety of world class probes and amplifiers to compliment its product line. From the ZS high impedance active probes to the DH Series Differential High-bandwidth Probes which offers bandwidths up to 30 GHz, Teledyne LeCroy probes and probe accessories provide optimum mechanical connections for signal measurement.

Front Cover: DH Series Differential High-bandwidth Probes

	WaveSurfer 3000z Oscilloscopes	HDO4000A High Definition Oscilloscopes	WaveSurfer 4000HD High Definition Oscilloscopes	HDO6000B High Definition Oscilloscopes	WaveRunner 9000 Oscilloscopes	WaveRunner 8000HD High Definition Oscilloscopes, MDA8000HD Motor Drive Analysers	WavePro HD High Definition Oscilloscopes	WaveMaster/SDA 8 Zi-B Oscilloscopes	WaveMaster/SDA 8000HD Oscilloscopes	LabMaster 10 Zi-A Oscilloscopes
		<u> </u>	≥' <u>∓</u>	<u> </u>	≥ő	≥∃∑∑	Šŏ	≥ŏ	Šŏ	<u> </u>
High Voltage Optically Isolated Pr	obes - p. 4 - 5									
DL03-ISO		<i>J</i>		✓ ✓	✓ ✓	<i>\</i>	<i>\</i>			
DL07-IS0		<u> </u>		✓ ✓	✓ ✓					
DL10-ISO 60 V Common Mode Differential F	Probes - p. 6 -									
DL02-HCM	/ vones - p. 6 -	<u>'</u> ✓	√	✓	✓	<i></i>	√	√	√	✓
DL05-HCM	<u> </u>	<u> </u>	<u> </u>					<u> </u>		
DL10-HCM		<u> </u>		<u> </u>	<u> </u>			<u> </u>		<u> </u>
Active Voltage Rail Probes - p. 8										
RP2060	1	✓	√	1	✓	1	√	1	√	1
RP4060	/	1	/	1	✓	/	✓	1	1	✓
Active Voltage Probes - p. 10 - 1	1									
ZS1000	1	✓	1	1	✓	1	√	1	1	1
ZS1500	✓	✓	✓	1	✓	1	√	1	1	√
ZS2500					✓		✓	✓	/	✓
ZS4000					✓		✓	✓	1	✓
Current Probes - p. 12 - 13										
CP030B	✓	✓	✓	✓	✓	· ·	√	· ·	· ·	
CP031	/	/	/	/	/	1	/	1	/	
CP031A	<i>\</i>	✓	√	✓	✓	<i>,</i>	<u>/</u>	/	<u>/</u>	
CP150B	<i></i>	· /	√	✓	✓	· /	<u> </u>	✓	<u>√</u>	
CP500	✓	<i></i>		✓ ✓	✓ ✓	<i></i>	<i>\</i>		✓ ✓	
CA10 Differential Probes - p. 14 -19								· ·		
ZD200	√	✓	√	✓	✓		√	√	√	√
ZD500		→								
ZD1000		<u> </u>		<u> </u>	<u> </u>			<u> </u>		√
ZD1500	✓	√	√	/	✓	1	✓		1	
AP033	/	✓	/	1	✓	/	/	1	/	
D410-A-PB2					✓		/	1	1	✓
D420-A-PB2					✓		1	1	✓	1
D400A-AT-PB2					✓			✓	/	✓
D610-A-PB2							✓	✓	1	✓
D610-A-PL								√	✓	✓
D620-A-PB2							√	✓	√	✓
D620-A-PL							,		√	√
D600A-AT-PB2							✓	√	√	√
D600A-AT-PL								√	<i></i>	√
DH08-PB2								· /	· /	<u> </u>
DH08-PL								<i></i>	<i>J</i>	
DH13-PL DH16-PL								/		
DH16-PL								✓	<u> </u>	
J2012								•	-	•

	WaveSurfer 3000z Oscilloscopes	HDO4000A High Definition Oscilloscopes	WaveSurfer 4000HD High Definition Oscilloscopes	HDO6000B High Definition Oscilloscopes	WaveRunner 9000 Oscilloscopes	WaveRunner 8000HD High Definition Oscilloscopes, MDA8000HD Motor Drive Analysers	WavePro HD High Definition Oscilloscopes	WaveMaster/SDA 8 Zi-B Oscilloscopes	WaveMaster/SDA 8000HD Oscilloscopes	LabMaster 10 Zi-A Oscilloscopes
Differential Probes - p. 14 -19 (cont'd)									
DH25-PX DH30-PX										
DH25-2.92MM								✓	√	
DH30-2.92MM										
High Voltage Differential Probes	s - n 20 - 21							•	·	·
HVD3102A	<i>y</i>				/		/			
HVD3106A	✓	/	1	1	✓	/	√	/	1	
HVD3106A-6M	✓	/	/	1		1	/		1	
HVD3206A	✓	√	√	√	/	1	/	1	√	
HVD3206A-6M	✓	√	✓	/	✓	1	√		/	
HVD3220	✓	/	/	1	/	1	/	/	1	
HVD3605A	✓	√	√	√	/	√	/		√	
AP031	✓	√	/	/	✓	1	√	1	/	
High Voltage Probes - p. 22 - 23										
HVP120	✓	✓	1	✓	✓	1	√	1	✓	
PPE6KV-A	✓	✓	1	1	1	1	✓	1	1	
High Voltage Fiber Optically Isol	lated Probes -									
HVFO108	✓	✓	✓	1	✓	✓	✓	✓	1	
Optical-To-Electrical Converters	- p. 26									
OE695G									✓	✓
Transmission Line Probes - p. 2	7									
PP066							✓	✓	✓	✓
Passive Probes - p. 28 - 29										
PP018	,	✓	/							
PP019 PP020	✓ ✓		,							
PP020	•					√		✓	√	
PP022						•			· · · · · · · · · · · · · · · · · · ·	
PP023				√	•		√			
PP024				<u> </u>	✓		•			
PP025						/		✓	√	
PP026		√	✓	√			√			
Probe Adapters - p. 30 - 31										
CA10		1		√	✓	1	✓	✓	√	
TPA10	✓		✓	✓	✓	✓	1	✓	✓	

Learn More: teledynelecroy.com/probes

HIGH VOLTAGE OPTICALLY ISOLATED PROBES

Teledyne LeCroy High Voltage Optically Isolated Probe Model Numbers:

DL03-ISO DL07-ISO DL10-ISO

Key Features

- 1 GHz bandwidth
- Ideal for GaN and SiC devices
- 1.5% system accuracy
- 435 ps rise time
- High CMRR 160 dB
- Flexible connectivity options
- Autozero without disconnection

Key Applications

- Servers
- Motherboards
- Mobiles
- Lighting and building automation
- Residential inverters
- UPS
- Switch Mode Power Supplies
- Motors in household and commercial appliances

The DL-ISO enables highest confidence in GaN and SiC device characterization with highest accuracy, best signal fidelity, and comprehensive connectivity.

Best Probe for GaN and SiC

With 1 GHz of bandwidth, 2500 V differential input range, and 60 kV common mode, DL-ISO probes are perfect for both GaN and SiC device characterization and system development engineers.

Highest Accuracy

Combine DL-ISO probes with industry-leading 12-bit resolution High Definition Oscilloscopes (HDOs) to get 1.5% system accuracy, nearly twice as good as the alternate solution in the market.

Best Signal Fidelity

During measurements, getting the most faithful representation of the signal can be elusive. DL-ISO overcomes that challenge by delivering the industry's best signal fidelity with the fastest rise time, lowest overshoot, and low DUT loading.

Comprehensive Connectivity

DL-ISO probes increase measurement confidence by employing high-quality coaxial attenuating tips that reject unwanted noise and terminate into test boards using industry standard MMCX connectors or high-voltage safe square pin headers.

Learn More: teledynelecroy.com/powerprobes/#dl-iso

HIGH VOLTAGE OPTICALLY ISOLATED PROBES

Bandwidth		DL03-ISO:	350 MH:	z DL07-ISO :	700 MHz	DL10-ISO: 1	GHz					
Rise Time (10-90	%)	DL03-ISO:		DL07-ISO:		DL10-ISO: 4						
Differential Volta	_			lifferent attenuat		22.0.00.	.00 po					
Common Mode V	oltage Range	+60 kV (DC-	+Peak AC	(not for hand-he	eld use mus	t maintain aded	uate spac	ina hetw	een probe	componer	nts & earth	around
Maximum Input \												
Maximum Non-d				50 V	210 000, 11100	DL-ISO-10V-		100 V	cen probe	componer	ito a cartii	ground
(DC+Peak AC)	con act voltage	DL-ISO-40\		250 V		DL-ISO-200		300 V				
(DOTT CAR AO)		DL-ISO-100	00V-TIP:			DL-ISO-250		3,300 V				
Sensitivity		DL-ISO-2V- DL-ISO-40V	V-TIP:	20 mV/div to 25 400 mV/div to 5 10 V/div to 125	5 V/div	DL-ISO-10V- DL-ISO-200 DL-ISO-250	V-TIP:	2 V/div to	div to 1.3 \ 25 V/div			
DC Gain Accuracy	,			Gain Calibration				20 1, 0.1	.0 020 1,0			
DC Gain Drift		< 1 %/°C			./							
Offset		DL-ISO-2V-	·TIP:	±25 V		DL-ISO-10V-	TIP:	±50 V				
		DL-ISO-40\ DL-ISO-100		±150 V ±1000 V		DL-ISO-200 DL-ISO-250		±150 V ±2500 V				
Input Impedance		DL-ISO-2V- DL-ISO-40V DL-ISO-100	V-TIP:	200 kΩ 3.6 pF 1 MΩ 2.1 pF 8 MΩ 1.5 pF		DL-ISO-10V- DL-ISO-200' DL-ISO-250	V-TIP:	1 MΩ 2 7.5 MΩ 15 MΩ 3	2 pF			
Output Termination	on	50 Ω		0 14132 jj 1.0 pi		DE 100 E00		10 1112 2	pi			
Input/Output Cou		DC only										
Interface	<u> </u>	ProBus										
Cable Length			feet) fro	m probe tip to os	scilloscope	connection						
Noise, Rejection	, and Electroma	•										
Noise						IRR						
DL-ISO-2V-TIP	1 GHz		MHz	350 MHz		be Tip	DC	1 MHz		200 MHz		1 GHz
50 mV/div	1.98 mVrms		nVrms	1.12 mVrms		ISO-2V-TIP	160 dB	110 dB	90 dB	90 dB	80 dB	75 dB
100 mV/div	3.37 mVrms	0.00	nVrms	2.25 mVrm		ISO-10V-TIP	160 dB	100 dB	75 dB	75 dB	65 dB	65 dB
200 mV/div	9.22 mVrms	/.12 m	nVrms	4.49 mVrm	s DI-	ISO-40V-TIP	150 dB	100 dB	70 dB	60 dB	60 dB	50 dB
10 V tip noise will	l be 10/2 = 5x of	Ź V tip	, ,		DL- DL- DL-	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP	140 dB 125 dB 115 dB	95 dB 85 dB 80 dB	55 dB 30 dB 25 dB	50 dB 35 dB 30 dB	45 dB 25 dB 25 dB	
10 V tip noise will Electrostatic Dis Immunity Radiated RF Elec Field Immunity	be 10/2 = 5x of charge (ESD) ctromagnetic	2 V tip 8 kV contact Up to 25 V/	ct discha m (80 Ml	rge and 10 kV air Hz to 2.7 GHz) pe	DL- DL- DL- discharge per IEC61000	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A	140 dB 125 dB 115 dB -2, criteri	95 dB 85 dB 80 dB a A erating in	30 dB 25 dB standard	35 dB 30 dB configurat	25 dB 25 dB ion	20 dB
Noise scales prop 10 V tip noise will Electrostatic Dis Immunity Radiated RF Elec Field Immunity Immunity to Con Disturbance Indu RF Fields	the 10/2 = 5x of charge (ESD) ctromagnetic ducted	2 V tip 8 kV contact Up to 25 V/	ct discha m (80 Ml	rge and 10 kV air	DL- DL- DL- discharge per IEC61000	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A	140 dB 125 dB 115 dB -2, criteri	95 dB 85 dB 80 dB a A erating in	30 dB 25 dB standard	35 dB 30 dB configurat	25 dB 25 dB ion	20 dB
Electrostatic Dis Immunity Radiated RF Elec Field Immunity Immunity to Con Disturbance Indu RF Fields Environmental	the 10/2 = 5x of charge (ESD) ctromagnetic ducted	8 kV contact Up to 25 V/	et discha m (80 Ml	rge and 10 kV air Hz to 2.7 GHz) pe to 80 MHz) per l	DL- DL- DL- discharge per IEC61000 EC61000-4-	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh	140 dB 125 dB 115 dB -2, criteri when ope	95 dB 85 dB 80 dB a A erating in ting in sta	30 dB 25 dB standard	35 dB 30 dB configurat	25 dB 25 dB ion	20 dB
Electrostatic Dis- Immunity Radiated RF Elec Field Immunity Immunity to Con Disturbance Indu RF Fields Environmental Temperature Humidity	the 10/2 = 5x of charge (ESD) ctromagnetic ducted	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F	et discha m (80 Ml (150 kHz c (operati RH (non-c	rge and 10 kV air Hz to 2.7 GHz) pe to 80 MHz) per I ng in standard co condensing), 75%	DL- DL- discharge per IEC61000-4- configuration RH above 3	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh 6, criteria A wh 0, -20°C to 70°C 0°C, 45% RH ab	140 dB 125 dB 115 dB 2, criteri when ope en opera	95 dB 85 dB 80 dB a A erating in ting in sta	30 dB 25 dB standard	35 dB 30 dB configurat	25 dB 25 dB ion	20 dB
Electrostatic Dis- Immunity Radiated RF Elec Field Immunity Immunity to Con Disturbance Indu RF Fields Environmental Temperature Humidity Altitude	charge (ESD) ctromagnetic ducted uced by	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000	m (80 Ml (150 kHz (160 coperation) (160 coperation) (160 coperation) (160 coperation)	rge and 10 kV air Hz to 2.7 GHz) pe to 80 MHz) per I ng in standard co	DL- DL- discharge per IEC61000-4- configuration RH above 3	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh 6, criteria A wh 0, -20°C to 70°C 0°C, 45% RH ab	140 dB 125 dB 115 dB 2, criteri when ope en opera	95 dB 85 dB 80 dB a A erating in ting in sta	30 dB 25 dB standard	35 dB 30 dB configurat	25 dB 25 dB ion	20 dB
Electrostatic Dis- Immunity Radiated RF Elec Field Immunity Immunity to Con Disturbance Indu RF Fields Environmental Temperature	charge (ESD) ctromagnetic ducted uced by	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F	m (80 Ml (150 kHz (160 coperation) (160 coperation) (160 coperation) (160 coperation)	rge and 10 kV air Hz to 2.7 GHz) pe to 80 MHz) per I ng in standard co condensing), 75%	DL- DL- discharge per IEC61000-4- configuration RH above 3	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh 6, criteria A wh 0, -20°C to 70°C 0°C, 45% RH ab	140 dB 125 dB 115 dB 2, criteri when ope en opera	95 dB 85 dB 80 dB a A erating in ting in sta	30 dB 25 dB standard	35 dB 30 dB configurat	25 dB 25 dB ion	20 dB
Electrostatic Dis Immunity Radiated RF Elec Field Immunity Immunity to Con Disturbance Indu RF Fields Environmental Temperature Humidity Altitude Pollution Degree	charge (ESD) ctromagnetic ducted uced by	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us Low Voltage EMC Directi	m (80 Ml (150 kHz c (operati RH (non-c m (operase Only e Directivive 2014/	rge and 10 kV air Hz to 2.7 GHz) pe to 80 MHz) per I ng in standard co condensing), 75%	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh 6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera (non-op- pove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB configuration	25 dB 25 dB ion	35 dB 20 dB 15 dB
Electrostatic Dis Immunity Radiated RF Elec Field Immunity Immunity to Con Disturbance Indu RF Fields Environmental Temperature Humidity Altitude Pollution Degree Certifications	charge (ESD) ctromagnetic ducted uced by	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us Low Voltage EMC Directi RoHS2 Direct	m (80 Ml (150 kHz c (operati RH (non-c m (opera se Only e Directivive 2014/ ctive 2014/	rge and 10 kV air Hz to 2.7 GHz) per to 80 MHz) per I ng in standard co condensing), 75% ating), 10,000 m	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh -6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera c (non-op- ove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB configuration	25 dB 25 dB ion	20 dB
Electrostatic Disimmunity Radiated RF Electield Immunity Immunity to Con Disturbance Indu RF Fields Environmental Temperature Humidity Altitude Pollution Degree Certifications CE Declaration of	charge (ESD) ctromagnetic ducted uced by f Conformity ertifications	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us Low Voltage EMC Directi RoHS2 Direct	m (80 Ml (150 kHz c (operati RH (non-c m (opera se Only e Directivive 2014/ ctive 2014/	rge and 10 kV air Hz to 2.7 GHz) per to 80 MHz) per I ng in standard co condensing), 75% ating), 10,000 m re 2014/35/EU (IEC/EN 6 11/65/EU (IEC/EN 6	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh -6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera c (non-op- ove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB configuration	25 dB 25 dB	20 dB 15 dB
Electrostatic Disimmunity Radiated RF Electrication RF Electrication RF Field Immunity Immunity to Con Disturbance Industributes Environmental Temperature Humidity Altitude Pollution Degree Certifications CE Declaration of Laser Product Certifications	charge (ESD) ctromagnetic ducted uced by f Conformity ertifications	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us Low Voltage EMC Directi RoHS2 Dire IEC/EN 608	m (80 Mi (150 kHz c (operati RH (non-c m (opera se Only e Directivive 2014/ ctive 2014 225-1:201	rge and 10 kV air Hz to 2.7 GHz) per to 80 MHz) per I ng in standard co condensing), 75% ating), 10,000 m re 2014/35/EU (IEC/EN 6 11/65/EU (IEC/EN 6	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh -6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera c (non-op- ove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB configuration	25 dB 25 dB	20 dB 15 dB
Electrostatic Disimmunity Radiated RF Electrication Field Immunity Immunity to Con Disturbance Indu RF Fields Environmental Temperature Humidity Altitude Pollution Degree Certifications CE Declaration of Laser Product ce	charge (ESD) ctromagnetic ducted uced by f Conformity ertifications on ptically Isolat	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us Low Voltage EMC Directi RoHS2 Directi	m (80 Ml (150 kHz c (operati RH (non-c m (opera se Only e Directivive 2014/ ctive 2011 (25-1:201	rge and 10 kV air Hz to 2.7 GHz) per to 80 MHz) per I ng in standard co condensing), 75% ating), 10,000 m re 2014/35/EU (IEC/EN 6 1765/EU (IEC/EN 6 1765/EU (IEC/EN 8	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh -6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera c (non-op- ove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB configuration	25 dB 25 dB ion	20 dB 15 dB
Electrostatic Dis- Immunity Radiated RF Elec Field Immunity Immunity to Con Disturbance Indu RF Fields Environmental Temperature Humidity Altitude Pollution Degree Certifications CE Declaration of	charge (ESD) ctromagnetic ducted uced by f Conformity crtifications con ptically Isolated P ically Isolated P ically Isolated P	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us Low Voltage EMC Directi RoHS2 Directi ROHS2 Directi ROHS2 Directi ROHS2 Directi ROHS3 DIREC/EN 608	m (80 Mi (150 kHz c (operati RH (non-c m (opera see Only e Directivive 2014/ ctive 2014/ ctive 201 (25-1:201	rge and 10 kV air Hz to 2.7 GHz) per to 80 MHz) per I ng in standard co condensing), 75% ating), 10,000 m re 2014/35/EU (IEC/EN 6 17/65/EU (IEC/EN 6 17/65/EU (IEC/EN Part 4; US 21CFR Part width width	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh -6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera c (non-op- ove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB configuration	25 dB 25 dB ion Produ DL DL	20 dB 15 dB
Electrostatic Disimmunity Radiated RF Electield Immunity Immunity to Condition Disturbance Industributed RF Fields Environmental Temperature Humidity Altitude Pollution Degree Certifications CE Declaration of Laser Product ce Product Description High Voltage Opt Accessories (mu	charge (ESD) ctromagnetic ducted uced by f Conformity crtifications con ptically Isolate ically Isolated P ically Isolated P ically Isolated P ist be ordered s	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us EMC Directic ROHS2 Directic IEC/EN 608	m (80 Mi (150 kHz c (operati RH (non-c m (opera see Only e Directivive 2014/ ctive 2014/ ctive 201 (25-1:201	rge and 10 kV air Hz to 2.7 GHz) per to 80 MHz) per I ng in standard co condensing), 75% ating), 10,000 m re 2014/35/EU (IEC/EN 6 17/65/EU (IEC/EN 6 17/65/EU (IEC/EN Part 4; US 21CFR Part width width	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh -6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera c (non-op- ove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB configuration	25 dB 25 dB ion	20 dB 15 dB 15 dB
Electrostatic Disimmunity Radiated RF Electield Immunity Immunity to Condition Disturbance Industributed RF Fields Environmental Temperature Humidity Altitude Pollution Degree Certifications CE Declaration of Laser Product ce Product Description High Voltage Opt Accessories (mu DL-ISO 2 V MMC)	charge (ESD) ctromagnetic ducted aced by f Conformity crtifications con ptically Isolate ically Isolated P ically Isolated P ically Isolated P ically Isolated P ically Isolated S X Tip	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us EMC Directic ROHS2 Directic IEC/EN 608	m (80 Mi (150 kHz c (operati RH (non-c m (opera see Only e Directivive 2014/ ctive 2014/ ctive 201 (25-1:201	rge and 10 kV air Hz to 2.7 GHz) per to 80 MHz) per I ng in standard co condensing), 75% ating), 10,000 m re 2014/35/EU (IEC/EN 6 17/65/EU (IEC/EN 6 17/65/EU (IEC/EN Part 4; US 21CFR Part width width	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh -6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera c (non-op- ove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB configuration	25 dB 25 dB ion DL-ISO	20 dB 15 dB 15 dB
Electrostatic Disimmunity Radiated RF Elec Field Immunity Immunity to Con Disturbance Indu RF Fields Environmental Temperature Humidity Altitude Pollution Degree Certifications CE Declaration of Laser Product ce High Voltage Opt Accessories (mu DL-ISO 2 V MMC) DL-ISO 10 V MMC	charge (ESD) ctromagnetic ducted uced by f Conformity crtifications con ptically Isolated P ically Isolated P	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us EMC Directic ROHS2 Directic IEC/EN 608	m (80 Mi (150 kHz c (operati RH (non-c m (opera see Only e Directivive 2014/ ctive 2014/ ctive 201 (25-1:201	rge and 10 kV air Hz to 2.7 GHz) per to 80 MHz) per I ng in standard co condensing), 75% ating), 10,000 m re 2014/35/EU (IEC/EN 6 17/65/EU (IEC/EN 6 17/65/EU (IEC/EN Part 4; US 21CFR Part width width	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh -6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera c (non-op- ove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB configuration	25 dB 25 dB 25 dB	20 dB 15 dB 15 dB
Electrostatic Disimmunity Radiated RF ElecField Immunity Immunity to ConDisturbance Indu RF Fields Environmental Temperature Humidity Altitude Pollution Degree Certifications CE Declaration of Laser Product ce High Voltage Opt	charge (ESD) ctromagnetic ducted uced by f Conformity crtifications con ptically Isolated P ically I	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us EMC Directic ROHS2 Directic IEC/EN 608	m (80 Mi (150 kHz c (operati RH (non-c m (opera see Only e Directivive 2014/ ctive 2014/ ctive 201 (25-1:201	rge and 10 kV air Hz to 2.7 GHz) per to 80 MHz) per I ng in standard co condensing), 75% ating), 10,000 m re 2014/35/EU (IEC/EN 6 17/65/EU (IEC/EN 6 17/65/EU (IEC/EN Part 4; US 21CFR Part width width	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh -6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera c (non-op- ove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB configuration	25 dB 25 dB 25 dB 25 dB	20 dB 15 dB 15 dB 20 dB
Electrostatic Disimmunity Radiated RF Electield Immunity Immunity to Con Disturbance Indu RF Fields Environmental Temperature Humidity Altitude Pollution Degree Certifications CE Declaration of Laser Product ce High Voltage Opt	charge (ESD) ctromagnetic ducted uced by f Conformity crtifications con ptically Isolate ically Isolated P ically Isol	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us Low Voltage EMC Directi RoHS2 Dire IEC/EN 608	m (80 Mi (150 kHz c (operati RH (non-c m (opera se Only e Directivive 2014/ ctive 2014/ ctive 2014 totive 2014 hz Bandwid	rge and 10 kV air Hz to 2.7 GHz) per to 80 MHz) per I ng in standard co condensing), 75% ating), 10,000 m re 2014/35/EU (IEC/EN 6 17/65/EU (IEC/EN 6 17/65/EU (IEC/EN Part 4; US 21CFR Part width width	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh -6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera c (non-op- ove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB	25 dB 25 dB 25 dB 25 dB	20 dB 15 dB 15 dB 20 dB
Electrostatic Disimmunity Radiated RF Electield Immunity Immunity to Condition Disturbance Industributed RF Fields Environmental Temperature Humidity Altitude Pollution Degree Certifications CE Declaration of Laser Product ce Product Description High Voltage Opt Accessories (mu	charge (ESD) ctromagnetic ducted uced by f Conformity crtifications con ptically Isolated P ically I	8 kV contact Up to 25 V/ Up to 10 V (5°C to 40°C 5% to 95% F Up to 3000 2, Indoor Us Low Voltage EMC Directi RoHS2 Dire IEC/EN 608 ted Probe N Trobe, 350 M Trobe, 700 M Trobe, 1 GHz eparately)	m (80 Mi (150 kHz C (operati RH (non-c m (opera se Only e Directivive 2014/ ctive 2014/ ctive 2014 totive 2018 Hz Bandwid	rge and 10 kV air Hz to 2.7 GHz) per to 80 MHz) per I ng in standard co condensing), 75% ating), 10,000 m re 2014/35/EU (IEC/EN 6 17/65/EU (IEC/EN 6 17/65/EU (IEC/EN Part 4; US 21CFR Part width width	DI- DI- DI- discharge per IEC61000 EC61000-4- onfiguration RH above 3 (non-operat	ISO-200V-TIP ISO-1000V-TIP ISO-2500V-TIP Der IEC61000-4 -4-3, criteria A wh -6, criteria A wh), -20°C to 70°C 0°C, 45% RH at ing)	140 dB 125 dB 115 dB -2, criteri when opera en opera c (non-op- ove 40°C	95 dB 85 dB 80 dB a A erating in ting in statements	30 dB 25 dB standard andard co	35 dB 30 dB	25 dB 25 dB 25 dB 25 dB	20 dB 15 dB 15 dB 20 dB

60 V COMMON MODE DIFFERENTIAL PROBES

Teledyne LeCroy
60 V Common Mode
Differential Probe Model
Numbers:

DL02-HCM DL05-HCM DL10-HCM

Key Applications

- 48 V motors and drives
- High-power DC-DC converters
- GaN-based PDNs
- AC-DC switch-mode power supplies
- Wireless charging systems
- Gate-drive measurements

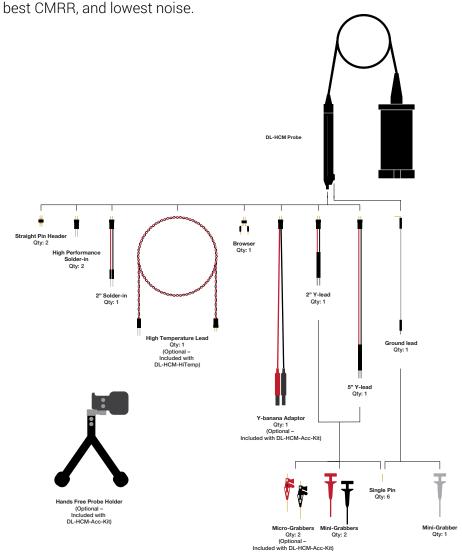
Key Features

Ideal probe for 48 V Power Conversion

- 250 MHz, 500 MHz and 1 GHz bandwidth
- 80 V dynamic range
- 60 V common mode

Highest accuracy

- 0.5% gain accuracy
- Precision gain calibration
- Best LF flatness (0.1 dB)


Lowest noise and highest rejection

Wide variety of tips

- High performance solder-in
- Browser
- Single pins and header
- Mini and micro grabbers
- Socketed connections
- High temp solder-in
- Y-banana adaptor

The 60 V Common Mode Differential Probes are the ideal probes for low voltage GaN power conversion measurement with the highest accuracy, best CMRR, and lowest pages.

60 V COMMON MODE DIFFERENTIAL PROBES

	DL02-HCM	DL05-HCM	DL10-HCM
Bandwidth*	250 MHz (gauranteed, without leads)	500 MHz (guaranteed, without leads)	
	250 MHz (Browser)	500 MHz (High performance solder-in	
	250 MHz (2"" Y-lead)	and browser)	and browser)
	250 MHz (5"" Y-lead)	500 MHz (2" Y-lead/solder-in)	800 MHz (2" Y-lead)
	30 MHz (Hi-Temp lead)	500 MHz (5" Y-lead)	700 MHz (solder-in)
		30 MHz (Hi-Temp lead)	500 MHz (5" Y-lead)
			30 MHz (Hi-Temp lead)
Rise Time (10-90%)*	1400 ps	700 ps	350 ps
Differential Voltage Range	80 V (DC + peak AC) from 200 mV/div	to 20 V/div	
Common Mode Voltage Range	±60 V (DC + peak AC)		
	80 V (DC + peak AC), max 60 V DC (eit)		
Maximum Safe Input Voltage		VDC (referenced to ground) per IEC/EN	61010-031:2015
Sensitivity	200 mV/div to 1 V/div (7.8x)		
	1.02 V/div to 2.5 V/div (17.5x)		
	2.55 V/div to 20 V/div (70x)		
DC Gain Accuracy	±0.5% (guaranteed)		
DC Gain Drift	≤ 0.075%/°C, can be calibrated out wit		
Frequency Response Flatness	DC to 50 MHz: 0.1dB	DC to 100MHz: 0.1 dB	
Offset Range	±60V		
Attenuation	7.8x / 17.5x / 70x	1011 5 () 1	
Input Impedance	200 kΩ 0.6 pF (between inputs), 100	kΩ 1 pF (either input to ground)	
Input/Output Coupling	DC		
Output Termination	50 Ω		
Interface	ProBus		
Cable Length	1.42 m from probe sockets to oscilloso	cope connection	
Noise and Rejection			
CMRR	DC - 10 kHz: 80 dB	DC - 10 kHz: 80 dB	DC - 10 kHz: 80 dB
	100 kHz: 70 dB 1 MHz: 55 dB	100 kHz: 70 dB 1 MHz: 55 dB	100 kHz: 70 dB 1 MHz: 55 dB
	100 MHz: 50 dB	100 MHz: 50 dB	100 MHz: 50 dB
	250 MHz: 40 dB	500 MHz: 35 dB	1 GHz: 30 dB
Noise (Probe)	200 mV/div to 1 V/div: 2.7 mVrms	200 mV/div to 1 V/div: 3.25mV _{rms}	200 mV/div to 1 V/div: 4.3mV _{rms}
	1.02 V/div to 2.5 V/div: 3.5 mVrms 2.55 V/div to 20 V/div: 10.25 mVrms	1.02 V/div to 2.5 V/div: 4.5mV _{rms}	1.02 V/div to 2.5 V/div: 6mV _{rms}
	2.55 V/div to 20 V/div: 10.25 mvrms	2.55 V/div to 20 V/div: 14.5mV _{rms}	2.55 V/div to 20 V/div: 20mV _{rms}
Environmental			
Temperature	0°C to 50°C (Operating), -40°C to 70°C	(Non-Operating)	
Humidity (Operating)		30°C, decreasing linearly to 45% RH at	50°C
Humidity (Non-Operating)	5% to 95% RH (Non-Condensing), 75%		
Altitude (Operating)	Up to 3000 m (9842 ft)	·	
Certifications			
CE Declaration of Conformity	Conforms to EN61010-031:2015, EN613	326-1:2013, and EN50581:2012	
•			

^{*} All Bandwidth and Rise Time measurements are made without leads and an oscilloscope bandwidth greater than the probe bandwidth.

Ordering Information

Product Description	Product Code
250 MHz 60V Common Mode Differential Probe. Includes standard set of leads and tips.	DL02-HCM
500 MHz 60V Common Mode Differential Probe. Includes standard set of leads and tips.	DL05-HCM
1 GHz 60V Common Mode Differential Probe. Includes standard set of leads and tips.	DL10-HCM
DL-HCM series high-temperature solder-in tip, 30 MHz bandwidth, 1 meter length.	DL-HCM-HiTemp
DL-HCM series accessories kit with probe holder, micro IC grabbers (Qty 2.), and Y-banana adaptor.	DL-HCM-Acc-Kit

DL02-HCM Standard leads and tips

Browser Y-lead socket (5") Ground lead Single pin (Qty. 6) Straight pin header (Qty. 2)

DL05-HCM and DL10-HCM Standard leads and tips

High performance solder-in tips (Qty. 2)

2" solder-in tip Browser

Y-lead socket (2" and 5") Mini grabbers (Qty. 3) Ground lead

Single pin (Qty. 6) Straight pin header (Qty. 2)

Learn More:

teledynelecroy.com/powerprobes/#dl-hcm

ACTIVE VOLTAGE RAIL PROBE

Teledyne LeCroy Active Voltage Rail Probe Model Number:

RP2060 RP4060

Up to 4 GHz Bandwidth

±60 V Offset Capability

±800 mV Dynamic Range 50 kΩ DC Input Impedance

1.2x Attenuation for low additive noise

MCX terminated cable with wide variety of connections:

- Solder-in (4 GHz)
- Coaxial Cable to U.FL receptacle (3 GHz)
- MCX PCB Mount (4 GHz)
- Browser (500 MHz)

ProBus Interface

The RP4060 and RP2060 probes are designed specifically to probe low-impedance DC power/voltage rails. Low attenuation means a low-noise view of small signal variations at high frequency, while the probe's built-in offset of up to ±60V enables compensation for the rail's DC voltage. The probe's high DC input impedance eliminates loading of the low-impedance DC rail.

Large Offset Range

Permits the DC signal to be displayed in the vertical center of the oscilloscope grid with a high-sensitivity gain setting.

Low Attenuation and Noise

The probe attenuation is a nominal 1.2x coupled to the oscilloscope at DC 50 Ω . This keeps additive noise to a minimum, and makes it exceptionally useful with Teledyne LeCroy's 12-bit High Definition oscilloscopes for lowest noise at highest sensitivity gain settings.

High DC Input Impedance

 $50~k\Omega$ input impedance at DC effectively eliminates probe loading on the DC power/voltage rail and provides for more accurate measurements and signal fidelity.

High Bandwidth

The RP4060 provides 4 GHz of bandwidth, for power integrity characterization of the highest performance computing and embedded systems. The RP2060 provides the same excellent noise and loading performance in a lower-cost 2 GHz probe.

Wide Assortment of Tips and Leads

The RP4060 and RP2060 are supplied standard with solder-in and coaxial cables with MCX and U.FL PCB receptacle mounts. Receptacles or leads can be left connected in circuit for easy connection of different signals. A browser tip is optionally available.

ACTIVE VOLTAGE RAIL PROBE

Specifications Electrical Characteristics	RP2060	RP4060
Bandwidth		
MCX receptacle	2 GHz	4 GHz
Solder-in lead	2 GHz	4 GHz
U.FL cable + receptacle	2 GHz	3 GHz
Browser	500	MHz
Rise Time (10-90%)	220 ps	110 ps
Input Capacitance	0.1 uF (in ser	ies with 50Ω)
DC Input Resistance	50	kΩ
Offset Range	±6	0V
Attenuation	1.3	2x
Input Dynamic Range	±800) mV
Non-destruct Voltage	±100 V (DC	+Peak AC)
Maximum Non-destruct AC Voltage	50 Ω oscillosc	ope input limit
Maximum Safe Input Voltage	For Hand-held	l use: 60 V DC
		l to ground)
	per IEC/EN 61	010-031:2015
Noise (probe only)	110 uVrms	160 uVrms
Oscilloscope Termination	DC	50Ω
Environmental		
Operating Temperature Range	0 to 5	50 °C
Non-operating Temperature Range	-40 to	+70 °C
Humidity		non-condensing)
	up to 30 °C, decr	
	45% RH	at 50 °C

Physical

Operating Altitude

RP2060/RP4060

Probe:

38.1 mm W x 15.9mm H x 73mm L
(1-1/2" x 5/8" x 2-7/8")

SMA to MCX Cable:
914mm L (36")

MCX to Solder-in Lead:
191mm (7-1/2") usable length
MCX to U.FL Plug Coaxial Cable:
102mm (4") usable length

RP4000-BROWSER

11.9mm W x 9.5mm H x 38mm L
(15/32" x 3/8" x 1-1/2")

SMA to SMA Cable:
1m (39-3/8") usable length

3000 meters maximum

Other

Oscilloscope Interface	Teledyne LeCroy ProBus		
Software Requirements	MAUI 10.2 or	MAUI 10.1 or	
	higher	higher	
Weight	119 g (0.26 lb)		

Ordering Information

Product Description	Product Code
Power/Voltage Rail Probe 2 GHz, 1.2x, ±60V offset, ±800mV dynamic range	RP2060
Power/Voltage Rail Probe 4 GHz, 1.2x, ±60V offset, ±800mV dynamic range	RP4060

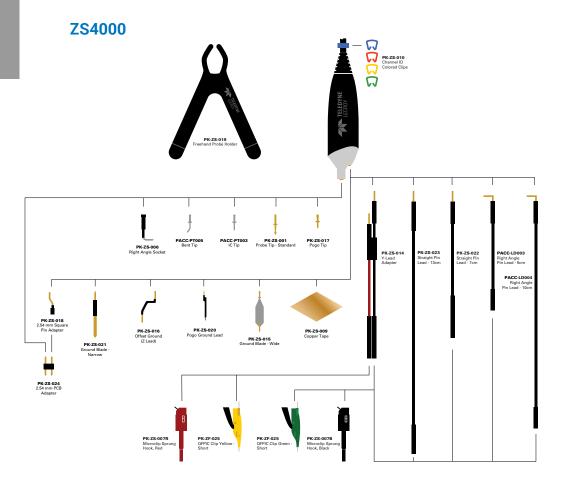
Includes Qty. 1 ProBus compatible probe offset amplifier with 50 k Ω DC input impedance and SMA input connection for provided 0.9m SMA to MCX extension cable. Also supplied are Qty. 3 MCX solder-in leads, Qty. 3 MCX PCB Mounts, Qty. 3 MCX to U.FL coaxial cables, Qty. 5 U.FL PCB Mounts, Qty. 1 MCX to SMA adapter, and soft carrying case. Browser tip sold separately.

500 MHz Browser Tip Accessory RP4000-BROWSER Includes 0 Ω (1x), 450 Ω (10x) and 950 Ω (20x) tips.

Accessories and Consumables

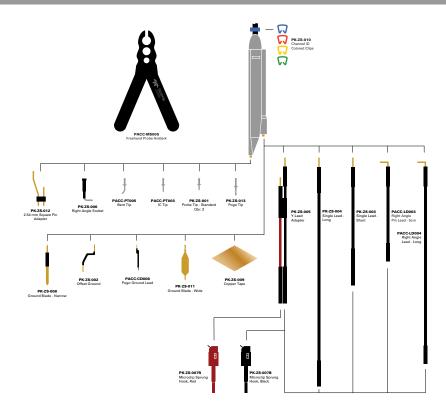
Qty. 3 MCX 4 GHz solder-in leads RP4000-MCX-LEAD-SI

Learn More: teledynelecroy.com/probes/ active-voltage-rail-probe


ZS SERIES ACTIVE PROBES

Teledyne LeCroy Active Voltage Probe Model Numbers:

ZS1000 ZS1500 ZS2500 ZS4000 The ZS Series probes are high impedance, low capacitance active probes that maintain high signal fidelity through 4 GHz. A small form factor and a wide variety of accessories ensures the ZS probe meets every difficult probing challenge.


Engineers must commonly probe high frequency signals with high signal fidelity. Typical passive probes with high input R and C provide good response at lower frequencies but inappropriately load the circuit and distort signals at higher frequencies. The ZS Series features both high input R (1 M Ω) and low input C (0.6 pF and 0.9 pF) to reduce circuit loading across the entire probe/oscilloscope bandwidth. The ZS1000 is ideal for 200–600 MHz oscilloscopes. The ZS1500 is ideal for 1 GHz oscilloscopes, the ZS2500 is ideal for 2 GHz oscilloscopes, and the ZS4000 is ideal for 2.5 GHz and 4 GHz oscilloscopes.

Learn More: teledynelecroy.com/probes/active-voltage-probes

ZS1000 ZS1500 ZS2500

Ordering Information

Product Description	Product Code
4 GHz, 0.6 pF, 1 M Ω High Impedance Active Probe	ZS4000
2.5 GHz, 0.9 pF, 1 M Ω High Impedance Active Probe	ZS2500
1.5 GHz, 0.9 pF, 1 M Ω High Impedance Active Probe	ZS1500
1 GHz, 0.9 pF, 1 MΩ High Impedance Active Probe	ZS1000
Set of 4 ZS2500, 2.5 GHz, 0.9 pF, 1 MΩ High Impedance Active Probes	ZS2500-QUADPAK
Set of 4 ZS1500, 1.5 GHz, 0.9 pF, 1 M Ω High Impedance Active Probes	ZS1500-QUADPAK
Set of 4 ZS1000, 1 GHz, 0.9 pF, 1 MΩ High Impedance Active Probes	ZS1000-QUADPAK

Standard Accessory/Quantity

Accessory Description	Replacement Part Number	ZS1000 ZS1500 ZS2500	ZS4000
2.54 mm PCB Adaptor	PK-ZS-024		5
2.54mm Square Pin Adapter	PK-ZS-012	1	
2.54mm Square Pin Adaptor	PK-ZS-018		1
IC Tip	PACC-PT003	1	1
Bent Tip	PACC-PT005	1	1
Channel ID Clips (Set of 4 colors)	PK-ZS-010	4	1
Copper Tape Pad	PK-ZS-009	2	2
Freehand Probe Holder	PK-ZS-019		1
Freehand Probe Holder	PACC-MS005	1	
Ground Blade – Narrow	PK-ZS-008	1	
Ground Blade – Wide	PK-ZS-011	1	
Ground Blade, Narrow	PK-ZS-021		1
Ground Blade, Wide	PK-ZS-015		2
Micro-Grabber Pair	PK-ZS-007R and PK-ZS-007B	1	2
Offset Ground	PK-ZS-016		2

Specifications ZS1000 ZS1500 ZS2500 ZS4000

Electrical Characteristics							
Probe Bandwidth	1 GHz	1.5 GHz	2.5 GHz	4 GHz			
Input Capacitance		0.9 pF		0.6 pF			
DC Input Resistance 1 $M\Omega$							
Probe Offset Range	N/A		±12 V				
Attenuation	÷10						
Input Dynamic Range		±8 V					
Non-destruct Voltage		2	20 V				

General Characteristics

Cable Length 1.3 m

Accessory Description	Replacement Part Number	ZS1000 ZS1500 ZS2500	ZS4000
Offset Ground – Z Lead	PK-ZS-002	1	
Pogo Ground Lead	PK-ZS-020		1
Pogo Ground Lead	PACC-CD008	1	
Pogo Tip	PK-ZS-017		3
Pogo Tip	PK-ZS-013	1	
Probe Tip – Standard	PK-ZS-001	3	3
QFPIC Clips (set of 2)	PK-ZS-025		1
Right Angle Lead – Long	PACC-LD004	1	1
Right Angle Lead – Short	PACC-LD003	1	1
Right Angle Socket	PK-ZS-006	1	1
Straight Pin Lead – Long	PK-ZS-023		1
Straight Pin Lead – Long	PK-ZS-004	1	
Straight Pin Lead - Short	PK-ZS-022		1
Straight Pin Lead – Short	PK-ZS-003	1	
Y Lead Adapter	PK-ZS-005	1	
Y Lead Adaptor	PK-ZS-014		1

CURRENT PROBES

Teledyne LeCroy Current Probe and Adapter Model Numbers: CP030 CP030A CP031A CP150 CP500 DCS025 CA10

Key Features

- ProBus active probe interface withautomatic scaling in A/div
- Autozero and degauss capabilities built into instrument's user interface
- Wide range of input currents and bandwidth capabilities

CP030B

- 30 A_{ms} continuous current
- 50 A_{peak} current
- 50 MHz bandwidth
- 1 mA/div sensitivity

CP031

- 30 A_{ms} continuous current
- 50 A_{neak} current
- 100 MHz bandwidth

CP031A

- 30 A_{ms} continuous current
- 50 A_{peak} current
- 100 MHz bandwidth
- 1 mA/div sensitivity

CP150B

- 150 A_{ms} continuous current
- 500 A_{peak} current
- 10 MHz bandwidth

CP500

- 500 A_{ms} continuous current
- 700 A_{neak} current
- 2 MHz bandwidth

DCS025

- Precise deskew of voltage and current probes.
- Compatible with the CP030, CP030A, CP031, CP031A, AP015, CP150, and CP500

Learn More: teledynelecroy.com/powerprobes/#current

CURRENT PROBES

CA10 Current Sensor Adapter

The CA10 enables a third-party current measurement device to operate like a Teledyne LeCroy probe. The CA10 is programmable and customizable to work with third-party current measurement devices that output voltage or current signals proportional to measured current. (See page 50 for more information and specifications).

Specifications Electrical Characteristics	CP030-3M	CP030B	CP031	CP031A	CP150B (CP150-6M)	CP500	
Max. Continuous Input Current		30 /	A _{rms}		150 A _{rms}	500 A _{rms}	
Bandwidth	10 MHz	50 MHz	100	MHz	10 MHz (5 MHz)	2 MHz	
Rise Time (typical)	≤ 35 ns	≤7 ns	≤ 3.	5 ns	≤ 35 ns (≤ 70 ns)	≤ 175 ns	
Max. Peak Current		50 A _{peak} (non-	-continuous)		300 A _{peak} (non-continuous); 500 Apeak ≤ 30 µs	700 A _{peak} (non-continuous)	
Output Voltage	0.1 V/A	0.1 V/A & 1 V/A	0.1 V/A	0.1 V/A & 1 V/A	0.01 V/A & 0.1		
Max Continuous Input Current at 1 V/A (100mA/div or less)	-	5 A	-	5 A	-		
Offset Range at 1V/A (100mA/div or less)	-	±5 A	-	±5 A	-		
Minimum Sensitivity	10 mA/div	1 mA/div	10 mA/div	1 mA/div	100 mA/div		
Low-Frequency Accuracy				1%			
AC Noise at 20 MHz BWL	≤ 2.5 mA	≤ 150 µA	≤ 2.5 mA	≤ 150 µA	≤ 1.8 mA	≤ 8.0 mA	
Coupling				AC, DC, GND			
General Characteristics							
Cable Length	1.5 m (3 m)		1.5 m		2 m (6 m)	6 m	
Weight	240 g (290 g)	236 g	240 g	260 g	490 g (600 g)	630 g	
Max. Conductor Size (Diameter)		5 n	nm		20 mm		
Interface			F	ProBus, 1 MΩ only	/		
Usage Environment				Indoor			
Operating Temperature				0°C to 40°C			
Max. Relative Humidity	80%						
Max. Altitude	2000 m						
Measurement Category			No rated	d measurement c	ategory		

[&]quot;Not intended for measurements on circuits directly connected to Mains supply or within Measurement Categories II, III, or IV. These probes are compatible with any Teledyne LeCroy oscilloscope with a ProBus interface running firmware version 9.3.x.x or greater"

Ordering Information

Product Description	Product Code
30A; 10 MHz Current Probe - AC/DC, 30 Arms; 50 A Peak Pulse, 3 meter cable (not EMC compliant)	CP030-3M
30 A; 50 MHz High Sensitivity Current Probe – AC/DC; 30 Arms; 50 A Peak Pulse, 1.5 meter cable	CP030B
30 A; 100 MHz Current Probe – AC/DC; 30 A _{rms} ; 50 A Peak Pulse, 1.5 meter cable	CP031
30 A; 100 MHz High Sensitivity Current Probe – AC/DC; 30 Arms; 50 A Peak Pulse, 1.5 meter cable	CP031A
150 A; 10 MHz Current Probe – AC/DC; 150 A _{rms} ; 300 A Peak Pulse, 2 meter cable	CP150B
150 A; 5 MHz Current Probe – AC/DC; 150 Arms; 500 A Peak Pulse, 6 meter cable (not EMC compliant)	CP150-6M
500 A; 2 MHz Current Probe – AC/DC; 500 Arms; 700 A Peak Pulse, 6 meter cable	CP500
Deskew Calibration Source	DCS025

1.5 GHz DIFFERENTIAL PROBES

Teledyne LeCroy ≤1.5 GHz Differential Probe Model Numbers:

ZD200 ZD500 ZD1000 ZD1500 AP033 The ZD Series probes provide wide dynamic range, excellent noise and loading performance and an extensive set of probe tips, leads, and ground accessories to handle a wide range of probing scenarios. The low 1 pF capacitance means this probe is ideal for all frequencies. The ZD Series differential probes provide full system bandwidth for all Teledyne LeCroy Oscilloscopes 1.5 GHz and lower.

Fully Integrated

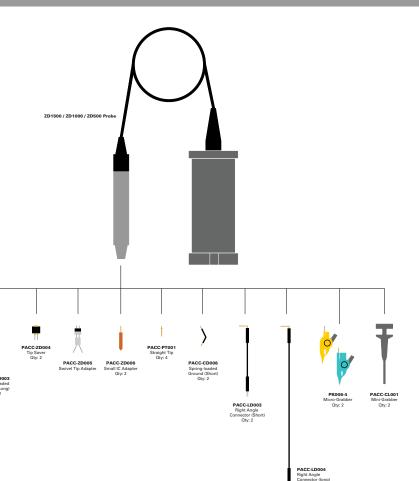
With the ProBus interface, the ZD500, 1000, and 1500 become an integral part of the oscilloscope. All probe gain and offset controls are transparent to the user, making it easier to probe the circuit without concern for which gain setting to choose. When used with a Teledyne LeCroy digital oscilloscope, no external power supply is required.

Wide Dynamic Range

The ZD500, 1000, 1500 probes provide transparent probe attenuation so signals are always optimized for the display. The differential range is $18 \, V_{p-p}$ with a differential offset of $\pm 8V$ and common mode range of $\pm 10 \, V$, making these probes versatile for every probing application.

Wide Applications

The wide dynamic range of $16 \text{ V}_{\text{p-p}}$ and offset range of $\pm 8 \text{V}$ suit this probe to a wide range of applications and signal types. The ZD differential probes are ideally suited for Automotive, Serial Data, power, and general purpose use.


Specifications	ZD200	ZD500 ZD1000		ZD1500	
Electrical Characteristics					
Bandwidth (Warranted)	200 MHz	500 MHz	1000 MHz	1500 MHz	
Bandwidth (Typical)	=	650 MHz	1200 MHz	1700 MHz	
Risetime 10–90% (Typical)	1.75 ns	650 ps	375 ps	270 ps	
Risetime 20-80% (Typical)	-	500 ps	280 ps	200 ps	
LF Attenuation Accuracy (Warranted)	1%		2%		
Zero Offset (Typical) (within 15 minutes after autozero)	-	5 mV			
System Noise (Typical)	-	1.3 mVrms 1.75 mVrms			
Probe Noise Density (Typical)	3 mV _{rms}	38 nV/rt (Hz)			
Input Differential Range (Nominal)	± 20 V	±8 V (16 V _{p-p})			
Differential Offset Range (Nominal)	=	±18 V			
Offset Gain Accuracy (Typical)	-		2%		
Common Mode Range (Nominal)	± 60 V		±10 V		
Maximum Non-destruct Voltage (Nominal)	-	30 V			
CMRR (Typical)	80 dB @ 60 Hz 50 dB@10 MHz	60 dB 50/60 Hz 30 dB 20 MHz 25 dB 500 MHz	60 dB 50/60 Hz 30 dB 20 MHz 25 dB @ 1000 MHz	60 dB 50/60 Hz 30 dB 20 MHz 25 dB @ 1500 MHz	
DC Input Resistance (Nominal)	250 k Ω (Common Mode) 1 M Ω (Differential Mode)	50 kΩ (Common Mode) 120 kΩ (Differential Mode)			
Differential Input Capacitance (Typical)	3.5 pF	< 1.0 pF			

Learn More: teledynelecroy.com/probes/ differential-probes-1500-mhz

Ordering Information

Product Description	Product Code
200 MHz, 3.5 pF, 1 M Ω Active Differential Probe	ZD200
500 MHz, 1.0 pF Active Differential Probe, ±8 V	ZD500
1 GHz, 1.0 pF Active Differential Probe, ±8 V	ZD1000
1.5 GHz, 1.0 pE Active Differential Probe, +8 V	7D1500

High bandwidth, excellent common-mode rejection ratio (CMRR) and low noise make these active differential probes ideal for applications such as disk drive design and failure analysis, as well as wireless and data communication design.

Specifications

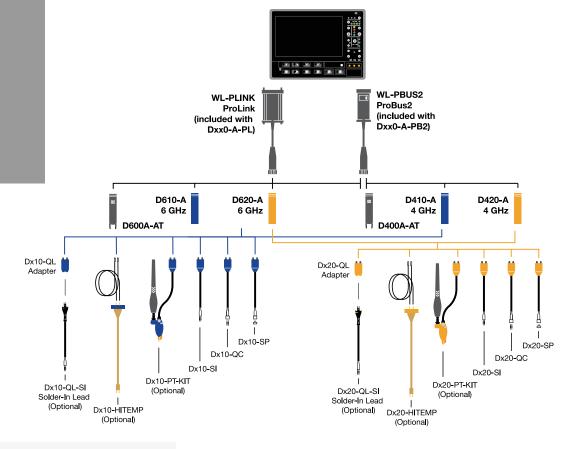
500 MHz
x10, x1, ÷10 (÷100 with plug-on ÷10 attenuator)
1% in x1 without external attenuator
1 M Ω each input to ground 2 M Ω differential between inputs
±400 mV (x1) ±40 mV (x10) ±4 V (÷10) ±40 V (÷100)
±400 mV (x1, x10) ±4 V (±10) ±40 V (±100)
±42 V peak (±10) +4.2 V peak (±100)
70 Hz 10,000:1 (80 dB) 100 kHz 10,000:1 (80 dB) 1 MHz 1000:1 (60 dB) 10 MHz 100:1 (40 dB) 250 MHz 5:1 (14 dB)

Ordering Information

Product Description 500 MHz Differential Probe

Product Code AP033

4 GHz - 6 GHz DIFFERENTIAL PROBES



Teledyne LeCroy 4 GHz - 6 GHz Differential Probe Model Numbers:

D410-A-PB2 D420-A-PB2 D400A-AT-PB2 D610-A-PB2 D610-A-PL D620-A-PB2 D620-A-PL D600A-AT-PB2 Teledyne LeCroy's WaveLink 4-6 GHz Differential Probes are a general purpose probing solution with high-input dynamic range and offset range capability. The range of capabilities is ideal for a variety of high-speed DDR signals where high dynamic range and large offset requirements are common.

Key Features

- 4 GHz or 6 GHz models
- Up to 5 Vpk-pk dynamic range with low noise
- ±3 V offset range
- Ideal for DDR2, LPDDR2, DDR3
- Innovative QuickLink architecture
- Wide variety of tips and leads
 - Solder-In Lead
 - QuickLink Solder-In Lead
 - Positioner (Browser) Tip
 - Adjustable (Browser) Tip
- Quick Connect Lead
- Square Pin Lead
- Hi-Temp Solder-In Lead
- Low loading and high impedance for minimal signal disturbance
- Deluxe soft carrying case

Learn More: teledynelecroy.com/probes/ differential-probes-4-6-ghz

4 GHz - 6 GHz DIFFERENTIAL PROBES

	D610-A-PB2, D610-A-PL	D620-A-PB2, D620-A-PL	D410-A-PB2	D420-A-PB2	D600A-AT-PB2, D600A-AT-PL	D400A-AT-PB2
Bandwidth* (Probe only, guaranteed) (System bandwidth, typical)	Dx10-SI, Dx10-QL-SI and Dx10-PT Tips 6 GHz	Dx20-SI, Dx20-QL-SI and Dx20-PT Tips 6 GHz	Dx10-SI, Dx10-QL-SI, Dx10-HiTemp, Dx10-QC and Dx10-PT Tips 4 GHz	Dx20-SI, Dx20-QL-SI, Dx20-HiTemp, Dx20-QC and Dx20-PT Tips 4 GHz	6 GHz	4 GHz
	Dx10-HiTemp 5 GHz	Dx20-HiTemp 5 GHz	Dx10-SP Tip	Dx20-SP Tip		
	Dx10-QC Tip 4 GHz	Dx20-QC Tip 4 GHz	0 0112	0 0112		
	Dx10-SP Tip 3 GHz	Dx20-SP Tip 3 GHz				
Rise Time* (10-90%)	Dx10-SI, Dx10-QL-SI and Dx10-PT Tips 75 ps (typical)	Dx20-SI, Dx20-QL-SI and Dx20-PT Tips 75 ps (typical)	Dx10-SI, Dx10-QL-SI, Dx10-HiTemp, and Dx10-PT Tips 112 ps (typical)	Dx20-SI, Dx20-QL-SI, Dx20-HiTemp, and Dx20-PT Tips 112 ps (typical)	<75 ps (typical)	<112 ps (typical)
	Dx10-HiTemp 90 ps (typical)	Dx20-HiTemp 90 ps (typical)	Dx10-QC Tip 122.5 ps (typical)	Dx20-QC Tip 122.5 ps (typical)		
	Dx10-QC Tip 122.5 ps (typical)	Dx20-QC Tip 122.5 ps (typical)	Dx10-SP Tip 150 ps (typical)	Dx20-SP Tip 150 ps (typical)		
	Dx10-SP Tip 150 ps (typical)	Dx20-SP Tip 150 ps (typical)				
Rise Time* (20-80%)	Dx10-SI, Dx10-QL-SI and Dx10-PT Tips 56 ps (typical)	Dx20-SI, Dx20-QL-SI and Dx20-PT Tips 56 ps (typical)	Dx10-SI, Dx10-QL-SI, Dx10-HiTemp, and Dx10-PT Tips 84 ps (typical)	Dx20-SI, Dx20-QL-SI, Dx20-HiTemp, and Dx20-PT Tips 84 ps (typical)	56 ps (typical)	84 ps (typical)
	Dx10-HiTemp 67.5 ps (typical)	Dx20-HiTemp 67.5 ps (typical)	Dx10-QC Tip 92 ps (typical)	Dx20-QC Tip 92 ps (typical)		
	Dx10-QC Tip 92 ps (typical)	Dx20-QC Tip 92 ps (typical)	Dx10-SP Tip 113 ps (typical)	Dx20-SP Tip 113 ps (typical)		
	Dx10-SP Tip 113 ps (typical)	Dx20-SP Tip 113 ps (typical)	- F- (4) F 7	- 1- (31)		
Noise (System)	<36 nV/vHz (2.8 mV _{rms}) (typical) Referred to input, 6 GHz bandwidth	<61 nV/vHz (4.8 mV _{rms}) (typical) Referred to input, 6 GHz bandwidth	<36 nV//Hz (2.3 mV _{rms}) (typical) Referred to input, 4 GHz bandwidth	<67 nV/vHz (4.3 mV _{rms}) (typical) Referred to input, 4 GHz bandwidth	<74 nV/vHz (5.8 mV _{rms}) (typical) Referred to input, 6 GHz bandwidth	<74 nV/√Hz (4.7 mV _{rms}) (typical) Referred to input, 4 GHz bandwidth
Input						
Input Dynamic Range (Nominal)	2.5V _{pk-pk} , ±1.25V	5V _{pk-pk} , ±2.5V	2.5V _{pk-pk} , ±1.25V	5V _{pk-pk} , ±2.5V	4.8V _{pk-p}	ok, ±2.4V
Input Common Mode Voltage Range (Nominal)	±4 V			±2.4	Vmax	
Input Offset Voltage Range		±3 V Diffe	erential (nominal)		n,	/a
Non-destructive Input Range (Nominal)	±20 V				±1	8 V
Attenuation	1.7X / 1.0X (nominal)	3.2X / 1.9X (nominal)	1.7X / 1.0X (nominal)	3.2X / 1.9X (nominal)		5X
DC Input Resistance (Nominal)	200 kΩ Differential 50 kΩ Common Mode				ferential mon Mode	
*All Bandwidth and Rise Time measurements are made with an oscilloscope bandwidth greater or equal to the probe bandwidth						

Product Description

Probe Deskew and Calibration Test Fixture

(200 individual guides/package)

Accessories

Product Code

D410-A-PB2

4 GHz ProBus2 Differential Probe with Dx10-SI Solder-In Tip (Qty. 1), Dx10-SP Square Pin (Qty. 1), and Dx10-QC Quick Connect (Qty. 1) 4 GHz ProLink Differential Probe with Dx10-SI Solder-In Tip (Qty. 1), Dx10-SP Square Pin (Qty. 1), and Dx10-QC Quick Connect (Qty. 1) D410-A-PL D420-A-PB2 4 GHz ProBus2 Differential Probe with Dx20-SI Solder-In Tip (Qty. 1), Dx20-SP Square Pin (Qty. 1), and Dx20-QC Quick Connect (Qty. 1) D420-A-PL 4 GHz ProLink Differential Probe with Dx20-SI Solder-In Tip (Qty. 1), Dx20-SP Square Pin (Qty. 1), and Dx20-QC Quick Connect (Qty. 1) 6 GHz ProBus2 Differential Probe with Dx10-SI Solder-In Tip (Qty. 1), D610-A-PB2 Dx10-SP Square Pin (Qty. 1), and Dx10-QC Quick Connect (Qty. 1) 6 GHz ProLink Differential Probe with Dx10-SI Solder-In Tip (Qty. 1), D610-A-PL Dx10-SP Square Pin (Qty. 1), and Dx10-QC Quick Connect (Qty. 1) 6 GHz ProBus2 Differential Probe with Dx20-SI Solder-In Tip (Qty. 1), Dx20-SP Square Pin (Qty. 1), and Dx20-QC Quick Connect (Qty. 1) D620-A-PB2 D620-A-PL 6 GHz ProLink Differential Probe with Dx20-SI Solder-In Tip (Qty. 1), Dx20-SP Square Pin (Qty. 1), and Dx20-QC Quick Connect (Qty. 1) 4 GHz ProBus2 Differential Probe with Adjustable Tip D400A-AT-PB2 6 GHz ProBus2 Differential Probe with Adjustable Tip D600A-AT-PB2 6 GHz ProLink Differential Probe with Adjustable Tip D600A-AT-PL

Product Description

Complete Differential Probes

Positioner Tip (Browser) Kits	
WaveLink Dx10-PT Adjustable Positioner Tip Kit.	Dx10-PT-KIT
For use with Dx10 amplifiers.	
WaveLink Dx20-PT Adjustable Positioner Tip Kit.	Dx20-PT-KIT
For use with Dx20 amplifiers.	

QuickLink Solder-In Tip Set	
QuickLink Solder-In starter pack for use with Dx10 amplifier. Includes one QuickLink adapter and three QL-SI tips.	Dx10-QL-3SI
QuickLink Solder-In starter pack for use with Dx20 amplifier. Includes one QuickLink adapter and three QL-SI tips.	Dx20-QL-3SI
Hi-Temp Leads	

WaveLink Temperature Extension Cables for Dx10. Includes set of Matched 30" High Temperature Cables (Qty. 1) and solder-in lead set (Qty. 1)	Dx10-HiTemp
WaveLink Temperature Extension Cables for Dx20.	Dx20-HiTemp

Includes set of Matched 30" High Temperature Cables (Qty. 1) and solder-in lead set (Qty. 1)

Calibration Options	
NIST Calibration for D410-A. Includes test data.	D410-A-CCNIST
NIST Calibration for D420-A. Includes test data.	D420-A-CCNIST
NIST Calibration for D610-A. Includes test data.	D610-A-CCNIST
NIST Calibration for D620-A. Includes test data.	D620-A-CCNIST
NIST Calibration for D400A-AT. Includes test data.	D400A-AT-CCNIST
NIST Calibration for D600A-AT. Includes test data.	D600A-AT-CCNIST
Replacement Parts	
Single replacement QuickLink Solder-In Tip	QL-SI-1Pack
9-pack of replacement QuickLink Solder-In Tip	QL-SI-9Pack
Replacement Dx10-SI 4 & 6 GHz Solder-In Lead with	Dx10-SI
Qty. 5 Spare Resistors.	
Replacement Dx20-SI 4 & 6 GHz Solder-In Lead with	Dx20-SI
Qty. 5 Spare Resistors.	
Replacement Dx10-QC 4 & 6 GHz Quick Connect Lead	Dx10-QC
Replacement Dx20-QC 4 & 6 GHz Quick Connect Lead	Dx20-QC
Replacement Dx10-SP 4 & 6 GHz Square Pin Lead	Dx10-SP
Replacement Dx20-SP 4 & 6 GHz Square Pin Lead	Dx20-SP
Replacement SI Resistor Kit for Dx10/Dx20 - Kit of 20	PKxx0-SI
Replacement QC Resistor Kit for Dx10/Dx20 - 2 kits of 20	PKxx0-QC
Qty. 4 Replacement Pogo Pin Tips and Qty. 2	Dxx0-PT-TIPS
Replacement Sockets for Dx10-PT and	
Dx20-PT Adjustable Positioner Tips.	
Replacement Probe Tip Holder Kit	PK600ST-3
Replacement Platform/Cable Assembly Mounting Kit	PK600ST-4
Quantity 1 Package of Black Adhesive Pads (10/pkg) and	Dxx0-PT-TAPE
Quantity 1 Package of White Adhesive Pads (10/pkg)	
Quantity 1 Package of Adhesive Probe Connection Guides	Dxx0-PT-GUIDES

Product Code

TF-DSQ

[†] Through entire frequency range

8 GHz - 30 GHz DIFFERENTIAL PROBES

Teledyne LeCroy 8 GHz - 30 GHz Differential Probe Model Numbers:

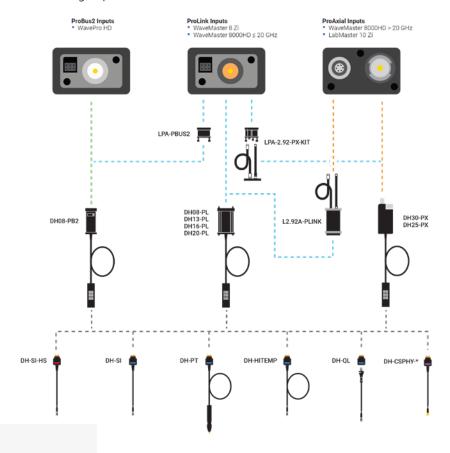
DH08-PB2

DH08-PL

DH13-PL

DH16-PL

DH20-PL


DH25-2.92MM

DH30-2.92MM

The DH series of 8 to 30 GHz active differential probes provides high input dynamic range, large offset capability, low loading and excellent signal fidelity with a range of connection options.

Key Features

- Bandwidth models from 8 GHz to 30 GHz
- Low loading and high impedance for minimal signal disturbance
- Wide variety of tips:
 - Standard and high-sensitivity 30 GHz solder-in tips
 - High-temperature solder-in tip with 1-meter lead
 - QuickLink adapter for mixed-signal probing
 - Handheld browser tip
 - Tips for direct connection to CrossSync PHY™ protocol analyzer interposers
- Built-in tip identification for simple setup and precise signal reproduction
- Ideal for debug and validation of:
 - DDR3/LPDDR3
 - DDR4/LPDDR4
 - DDR5/LPDDR5
 - Other high-speed serial interfaces

Learn More: teledynelecroy.com/probes/ dh-series-differential-probes

8 GHz - 30 GHz DIFFERENTIAL PROBES

	DH08	DH13	DH16	DH20	DH25	DH30
Bandwidth						
Bandwidth (probe only)	8 GHz	13 GHz	16 GHz	20 GHz	25 GHz	30 GHz
Bandwidth with DH-SI or DH-SI-HS tip	8 GHz	13 GHz	16 GHz	20 GHz	25 GHz	30 GHz
Bandwidth with DH-HITEMP tip	8 GHz	13 GHz	16 GHz	16 GHz	16 GHz	16 GHz
Bandwidth with DH-PT browser	8 GHz	13 GHz	16 GHz	16 GHz	16 GHz	16 GHz
Bandwidth with DH-QL adapter and QL-SI tip	8 GHz					
Rise Time*						
Rise Time (10-90%)	56 ps	34.5 ps	28 ps	22.5 ps	18 ps	15 ps
Rise Time (20-80%)	37.5 ps	23 ps	19 ps	15 ps	12 ps	10 ps
Probe noise (referred to input)*						
With DH-SI-HS tip	2.1 mV _{rms}	2.2 mV _{rms}	2.3 mV _{rms}	2.6 mV _{rms}	2.9 mV _{rms}	3.2 mV _{rms}
With all other tips	3.5 mV _{rms}	3.8 mV _{rms}	4.2 mV _{rms}	4.6 mV _{rms}	4.8 mV _{rms}	5.0 mV _{rms}
Probe noise density (referred to input)						
With DH-SI-HS tip			18 nV,	/rt(Hz)		
With all other tips			30 nV	/rt(Hz)		
Input						
Input Dynamic Range						
With DH-SI-HS tip	2.0 Vpp (±1.0 V)					
With all other tips	3.5 Vpp (±1.75 V)					
Input Common Mode Voltage Range	±5.0 V					
Input Offset Voltage Range				0 V		
Non-destructive Input Range			±1	6 V		
Attenuation						
With DH-SI-HS tip				cally by oscilloscope		
With all other tips		3.2x / 5.8x		cally by oscilloscope	e software)	
Attenuation Accuracy			±2	2%		
DC Input Resistance (nominal)						
Differential	200 kΩ differential					
Common mode			50 kΩ di	fferential		
Input Resistance > 10 kHz (typical)						
With DH-SI-HS tip	1100 Ω differential					
With all other tips	2100 Ω differential					
Environmental						
Temperature						
Non-operating				:o 70 °C		-
Operating (DH-HITEMP tip)	-40 °C to 125 °C					
Operating (Probe and all other tips)	0 °C to 40 °C					

* All Fige Time and Probe noise measurements are made using a full-bandwidth solder-in tip, and with an oscilloscope bandwidth greater than or equal to the probe bandwidth. When using other tips, rise time and probe more upgreated to these of the party that bandwidth bandwidth and build it in

and noise measurements correspond to those of the equivalent-bandwidth prob	oe model with a DH-SI tip.
Product Description	Product Code
Differential Probes (tips not included)	
8 GHz differential probe with ProBus2 interface	DH08-PB2
8 GHz differential probe with ProLink interface	DH08-PL
13 GHz differential probe with ProLink interface	DH13-PL
16 GHz differential probe with ProLink interface	DH16-PL
20 GHz differential probe with ProLink interface	DH20-PL
25 GHz differential probe with 2.92 mm interface	DH25-2.92MM
25 GHz differential probe with ProAxial interface	DH25-PX
30 GHz differential probe with 2.92 mm interface	DH30-2.92MM
30 GHz differential probe with ProAxial interface	DH30-PX
Solder-in Tips	
DH series solder-in tip, 30 GHz BW, 3.5 Vpp range	DH-SI
DH series high-sensitivity solder-in tip, 30 GHz BW,	DH-SI-HS
2.0 Vpp range	
Positioner (Browser) Tips	
DH series PT browser tip, 16 GHz BW, 3.5 Vpp range	DH-PT
High-temperature Tips	
DH series high-temperature solder-in tip, 16 GHz BW, 3.5 Vpp range	DH-HITEMP
QuickLink Adapters and Kits	
DH series QuickLink adapter, 8 GHz BW	DH-QL
DH series QuickLink adapter kit with 3 x QL-SI tips	DH-QL-3SI
CrossSync PHY Tips	•
DH series tip for PCIE 5.0 CEM interposer - DH-CSF	PHY-PCIE5-CEMX16
connects to PE120ACA-X interposer accessory	
Accessories	
ProLink to 2.92 mm adapter with probe power and communication pass through	LPA-2.92
2.92 mm to ProLink adapter with probe power and communication pass through	L2.92A-PLINK
commandation pado tinoagn	

Product Description Calibration Options	Product Code
3-year warranty	DH08-W3, DH13-W3, DH16-W3, DH20-W3, DH25-W3, DH30-W3
5-year warranty	DH08-W5, DH13-W5, DH16-W5, DH20-W5, DH25-W5, DH30-W5
3-year annual NIST calibration	DH08-C3, DH13-C3, DH16-C3, DH20-C3, DH25-C3, DH30-C3
5-year annual NIST calibration	DH08-C5, DH13-C5, DH16-C5, DH20-C5, DH25-C5, DH30-C5
3-year warranty with annual NIST calibration	DH08-T3, DH13-T3, DH16-T3, DH20-T3, DH25-T3, DH30-T3
5-year warranty with annual NIST calibration	DH08-T5, DH13-T5, DH16-T5, DH20-T5, DH25-T5, DH30-T5
NIST traceable calibration with test data	DH08-CCNIST, DH13-CCNIST, DH16-CCNIST, DH20-CCNIST, DH25-CCNIST, DH30-CCNIST
Replacement Parts	
Replacement SI resistor kit for DH-SI and DH-SI-HS solder-in tips	DH-SI-RESISTORS

HIGH VOLTAGE DIFFERENTIAL PROBES

Teledyne LeCroy High Voltage Differential Probe Model Numbers:

HVD3102A HVD3106A HVD3106A-6M HVD3206A HVD3206A-6M HVD3220 HVD3605A AP031

- 1 kV, 2 kV, 6 kV CAT safety rated models
- Widest differential voltage ranges available
- Exceptional common-mode rejection ratio (CMRR) across a broad frequency range
- 1% gain accuracy
- High offset capability at both high and low attenuation
- AC and DC coupling
- ProBus active probe interface with automatic scaling
- AutoZero with auto disconnect switch
- Wide oscilloscope compatibility

The HVD3000A series high voltage differential probes provide high CMRR over a broad frequency range to simplify the measurement challenges found in noisy, high common-mode power electronics environments. The probe's design is easy-to-use and enables safe, precise high voltage floating measurements.

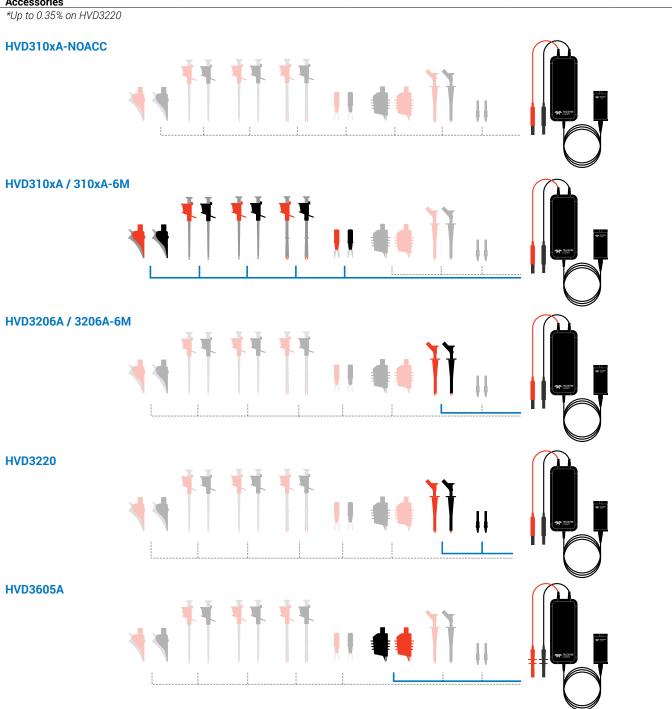
Product Description	Product Code
1 kV, 25 MHz High Voltage Differential Probe with 2 m cable	HVD3102A
1 kV, 120 MHz High Voltage Differential Probe with 2 m cable	HVD3106A
1 kV, 80 MHz High Voltage Differential Probe with 6 m cable	HVD3106A-6M
1 kV, 25 MHz High Voltage Differential Probe with 2 m cable without tip Accessories	HVD3102A-NOACC
1 kV, 120 MHz High Voltage Differential Probe with 2 m cable without tip Accessories	HVD3106A-NOACC
2 kV, 120 MHz High Voltage Differential Probe with 2 m cable	HVD3206A
2 kV, 80 MHz High Voltage Differential Probe with 6 m cable	HVD3206A-6M
2 kV, 400 MHz High Voltage Differential Probe with 2 m cable	HVD3220
6 ky, 100 MHz High Voltage Differential Probe with 6 m cable	HVD3605A
High Voltage Replacement Accessories Kit (Includes 2 each): High Bandwidth 4 mm Probe Tip Adapters, Safety Alligator Clips, Plunger Pincer Clips, Plunger Hook Clips, Plunger Alligator Clips, Spade Terminals	PK-HV-001
700 V, 25 MHz HighVoltage Differential Probe (÷10, ÷100)	AP031

Key Features

- Safe floating measurements
- 15 MHz bandwidth
- 700 V maximum input voltage
- Works with any 1 M Ω input oscilloscope

Specifications

Attenuation	÷10 / ÷100
Bandwidth	15 MHz
Input R	4 ΜΩ
Differential Mode Range	±70 V / ±700 V DC + Peak AC
Common Mode Range	±700 V DC + Peak AC
CMRR	86 dB @ 50 Hz
	56 dB @ 200 kHz


Power Requirements: four AA batteries

Learn More: teledynelecroy.com/powerprobes/

HIGH VOLTAGE DIFFERENTIAL PROBES

	HVD3102A	HVD3106A/ HVD3106A-6M	HVD3206A/ HVD3206A-6M	HVD3220	HVD3605A
Bandwidth	25 MHz	120 MHz/ 80 MHz	120 MHz/ 80 MHz	400 MHz	100 MHz
Differential Voltage Range	1500 V (DC + peak AC) (1750V maximum typical measurable before saturation)	1500 V (DC + peak AC) (2000V maximum typical measurable before saturation)	2000 V (DC + peak A(C)	7000 V (DC + peak AC) (7600 V maximum typical measurable before saturation)
Max Safe Input Voltage	1000 V _{rms} CAT III		2000 V (DC + peak A 1500 Vdc CAT 1000 Vrms CA	IIÍ	8485 V (DC + peak AC) CAT I 6000 V _{rms} CAT I 1000 V _{rms} CAT III 1000 V _{dc} CAT III
Gain Accuracy	1%*				
Cable Length	2.25 meters	2.25 meters/ 6.8 meters	2.25 meters/ 6.8 meters	2 meters	6.8 meters
Included Tip Accessories			Yes		

HIGH VOLTAGE PASSIVE PROBES

Key Features

- 2000 V_{rms} input
- 6000 V_{peak} transients
- Up to 500 MHz bandwidth
- Ideal for Surge/EFT testing

The PPE6KV-A and HVP120 can handle up to 6000 Vpeak transient overvoltages and are designed for probing up to 2000 Vrms and 1000 Vrms respectively. Fast rise times, excellent frequency response, and a variety of standard accessories make these probes safe and ideal for high voltage measurement applications.

Electrical Characteristics	PPE6KV-A	HVP120
Bandwidth	500 MHz 400 MHz	
Risetime (10% - 90%)	800 ps (typical) 900 ps (typical)	
Maximum Input Voltage		
Measurement Category II*	1000 V _{rms} 1500 V _{dc}	1000 V _{rms}
Measurement Category I**	6 kV transient at 0 V _{rms}	6 kV transient at 0 V _{rms}
	4 kV transient at 2000 V _{rms}	4 kV transient at 1000 V _{rms}
Pollution Degree*		2
Input Capacitance	2.8 pF (typical)	7.5 pF (typical)
Compensation Range	10 pF - 30 pF (typical)	10 pF - 50 pF (typical)
Attenuation Ratio	100:1 ± 2%	

Environmental

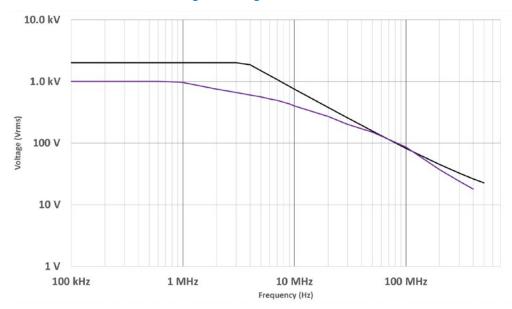
Temperature (Operating)	0°C to 50°C
Temperature (Non-Operating)	-40°C to 70°C
Humidity (Operating)	90% RH (non-condensing)
	up to 31°C, decreasing linearly to 50% RH at 50°C
Altitude (Operating)	up to 2,000 m
Altitude (Non-Operating)	up to 15.000 m

General Characteristics

Weight (probe)	80 g (2.8 oz)	68 g (2.4 oz)
Cable Length	2 m (6.56 ft)
Probe Tip Diameter	8.6 mm (0.34 inches)	5 mm (0.20 inches)

^{*} As defined in IEC 61010-031:2015
** Category I as defined in IEC 61010-031:2008. No Rated Measurement Category as defined in IEC 61010-031:2015.

HIGH VOLTAGE PASSIVE PROBES


Product Description	Product Code
2 kV HV Probe, 6 kV overvoltage capability	PPE6KV-A
1 kV HV Probe, 6 kV overvoltage capability	HVP120
PPE6KV-A Replacement Accessories Kit	PK-112
HVP120 Replacement Accessories Kit	PK-HV-002

Standard Accessories

PPE6KV-A and HVP120 are sold with the following standard accessories. No extra purchase necessary.

	PPE6KV-A	HVP120
Trimming Tool	✓	✓
Color Coding Rings	✓	✓
Ground Lead (22 cm)	✓	✓
Security Ground Lead	✓	✓
Crocodile Clips	✓	✓
Flexible Security Adapter	✓	✓
Sprung Hook	✓	✓
BNC Adapter	✓	✓
Insulating Tip	✓	✓
Swivel Ground Lead and Lead Adapter	✓	×
Solid and Spring Tips	×	✓

PPE6KV-A and HVP120 Voltage Derating

Learn More: teledynelecroy.com/probes/high-voltage-passive-probes

HIGH VOLTAGE FIBER OPTICALLY ISOLATED PROBES


Teledyne LeCroy High Voltage Fiber Optically Isolated Probe Model Number:

HVF0108

The HVFO is an affordable, optimally designed probe for measurement of small signals floating on an HV bus in power electronics designs or for EMC, EFT, ESD, and RF immunity testing sensor monitoring. It far surpasses the measurement capabilities and signal fidelity of both conventional HV differential probes and acquisition systems that rely on galvanic high voltage isolation. Furthermore, it mitigates the need to rely on dangerous test setups that require floating the oscilloscope and probe.

Key Features

- 150 MHz bandwidth
- 35 kV common-mode voltage rating (fiber optic isolation)
- Superior Noise and Rejection
 - 140 dB CMRR
 - Low loop inductance
 - Low attenuation
- Optical isolation reduces adverse loading of DUT
- Selectable tips from ±1V to ±40V
- Applications
 - Upper-side gate drive signal measurements
 - Floating control signal or sensor voltage measurements
 - EMC, EFT, ESD, and RF immunity testing and system optimization
 - Any small signal measurements with high common-mode voltage

Learn More: teledynelecroy.com/powerprobes/#hvfo

HIGH VOLTAGE FIBER OPTICALLY ISOLATED PROBES

Electrical	
Bandwidth	150 MHz (typical, with tip attached)
Rise Time (10-90%)	3.3 ns (typical)
Input Dynamic Range	±1V, ±5V, ±10V, ±20V, ±40V (DC+peak AC) respectively with 1X, 5X, 10X, 20X or 40X attenuating tips.
	All tips are purchased as accessories (none are included with HVF0108 probe).
Maximum Non-destruct Voltage	
Common Mode Voltage Range	±35 kV (DC+Peak AC) (not for hand-held use, with adequate spacing between probe components and earth ground)
Maximum Input Voltage to Earth	1 ±35 kV (DC+Peak AC) (not for hand-held use, with adequate spacing between probe components and earth ground)
Maximum Safe Input Voltage	For hand-held use, 30 Vrms / 60 Vdc per IEC/EN 61010-031:2015
Offset	Offset capability determined by oscilloscope offset available in a given gain (V/div) setting after accounting for total probe attenuation (total probe attenuation is twice the tip attenuation).
Sensitivity	10 mV/div to 1 V/div (1X tip), 50 mV/div to 5 V/div (5X tip), 100 mV/div to 10 V/div (10X tip), 200 mV/div to 20 V/div (20X tip), 400 mV/div to 40 V/div (40X tip)
Gain Accuracy	2.5% (typical), 4% (guaranteed)
Input Impedance	1 MΩ 34 pF (1X tip); 5 MΩ 26 pF (5X tip); 8 MΩ 23 pF (10X tip); 10 MΩ 22 pF (20X tip); 10 MΩ 22 pF (40X tip)
Input/Output Coupling	DC only
Interface	ProBus
Cable Length	1.25 m (4.1 feet) from input lead to oscilloscope connection (using included 1 meter fiber optic cable)
Battery	6 hour battery life (typical). 2.5 hour re-charge time (typical, with user-supplied dedicated USB charger). 5 hour re-charge time (typical) using supplied USB charging cable connected to oscilloscope USB port
Noise, Rejection, and Electroma	
CMRR (typical)	140 dB (100 Hz), 120 dB (to 1 MHz), 85 dB (to 10 MHz), 60 dB (to 60 MHz), 35 dB (to 150 MHz)
Noise (Probe only)	7 mVrms (1X tip), 35 mVrms (5X tip), 70 mVrms (10X tip), 140 mVrms (20X tip), 280 mVrms (40X tip)
Noise Density (Probe only)	570 nV/√Hz
Electrostatic Discharge (ESD) Immunity	8 kV contact discharge and 10 kV air discharge per IEC61000-4-2, criteria A
Radiated RF Electromagnetic Field Immunity	25 V/m (80 MHz to 2.7 GHz) per IEC61000-4-3, criteria A
Immunity to Conducted Disturbance Induced by RF Fields	10 V/m (150 kHz to 80 MHz) per IEC61000-4-6, criteria A
Environmental	
Temperature	10°C to 40°C (operating), -20°C to 70°C (non-operating)
Humidity	5% to 80% RH (non-condensing) up to 30°C, decreasing linearly to 45% RH at 50°C (operating) 5% to 95% RH (non-condensing), 80% RH above 30°C, 45% RH above 50°C (non-operating)
Altitude	Up to 3000 m (operating), 10,000 m (non-operating)
Pollution Degree	2, Indoor Use Only
Certifications	
CE Declaration of Conformity	Low Voltage Directive 2014/35/EU (IEC/EN 61010-031:2015 EMC Directive 2014/30/EU (IEC/EN 61326-1:2013) RoHS2 Directive 2011/65/EÙ

Ordering Information

Product Description	Product Code
High Voltage Fiber Optically-isolated Probe Models and Accessories	
High Voltage Fiber Optic Probe, 150 MHz Bandwidth. Includes soft-carrying case, Qty. 1 Amplifier/Modulating Transmitter, Qty. 1	HVF0108
Demodulating Receiver, Qty. 1 1m Fiber Optic Cable, Qty. 1 USB Charging Cable, Qty. 1 Micro-gripper set.	
Attenuating Tips must be ordered separately.	
HVF010X +/-1V (1x Attenuation) Universal Tip Accessory	HVF0100-1X-TIP-U
HVF010X +/-5V (5x Attenuation) Universal Tip Accessory	HVF0100-5X-TIP-U
HVF010X +/-10V (10x Attenuation) Universal Tip Accessory	HVF0100-10X-TIP-U
HVF010X +/-20V (20x Attenuation) Universal Tip Accessory	HVF0100-20X-TIP-U
HVF010X +/-40V (40x Attenuation) Universal Tip Accessory	HVF0100-40X-TIP-U
NIST Traceable Calibration Certificate	HVF0108-CCNIST

OPTICAL-TO-ELECTRICAL CONVERTERS

Teledyne LeCroy Optical Probe Model Numbers: **0E695G**

- Compatible with LabMaster 10 Zi oscilloscopes
- Frequency range DC to 9.5 GHz (electrical, -3 dB)
- Reference receiver support from 8GFC to 10GFC FEC, or Custom (<12.5Gb/s)
- Full bandwidth mode (no reference receiver applied)
- 62.5/125 μm multi-mode or single-mode fiber input
- Broad wavelength range (750 to 1650 nm)
- +7 dBm (5 mW) max peak optical power
- Low noise (as low as 25 pW/ $\sqrt{\text{Hz}}$)
- Ideal for Eye Mask, Extinction Ratio, and Optical Modulation Amplitude (OMA) testing

OE695G

The OE695G wide-band optical-to-electrical converter is ideal for measuring optical datacom and telecom signals with data rates from 622 Mb/s to 12.5+ Gb/s. Connection to a real-time Teledyne LeCroy oscilloscope is through the 2.92 mm interface, with a provided adapter to connect to ProLink interfaces.

Ordering Information

Product Description

Optical-to-Electrical Converter, 785 to 1550 nm, 2.92 mm connector with ProLink adapter

Product Code

OE695G

Learn More: teledynelecroy.com/probes/ optical-to-electrical-converters

TRANSMISSION LINE PROBES

Teledyne LeCroy Transmission Line Probe Model Number: PP066

PP066

The PP066 is a high-bandwidth passive probe designed for use with the WaveMaster and other high-bandwidth oscilloscopes with 50 Ω input termination. This very low capacitance probe provides an excellent solution for higher frequency applications, especially the probing of transmission lines with 20–100 Ω impedance. The PP066 accommodates a wide range of applications, including probing of analog and digital ICs commonly found in computer, communications, data storage, and other high-speed designs.

Specifications

Electrical Characteristics

Electrical characteristics	
Bandwidth	DC to 7.5 GHz
Risetime	< 47 ps
Input Capacitance	< 0.20 pF
Input Resistance	500 Ω (÷10 cartridge)
•	1000 Ω (÷20 cartridge)
Maximum Voltage	15 V rms
Cable Length	1 m

Ordering Information

Product DescriptionProduct Code7.5 GHz Low Capacitance Passive Probe
 $(\div 10, 1 \text{ k}\Omega; \div 20, 500 \Omega)$ PP066

Included with PP0066

PACC-AD001, SMA to BNC Adapter

Key Features:

- Interchangeable attenuator tips
- Signal integrity at high bandwidth
- Standard SMA cable connection
- Ultra low capacitance

Learn More: teledynelecroy.com/probes/ transmission-line-probes

PASSIVE PROBES

Teledyne LeCroy Passive Probe Model Numbers:

PP016

PP018

PP019

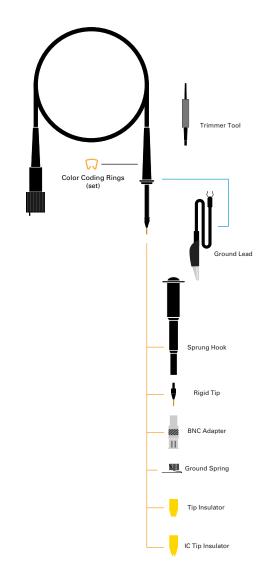
PP020

PP021

PP022

PP023

PP024

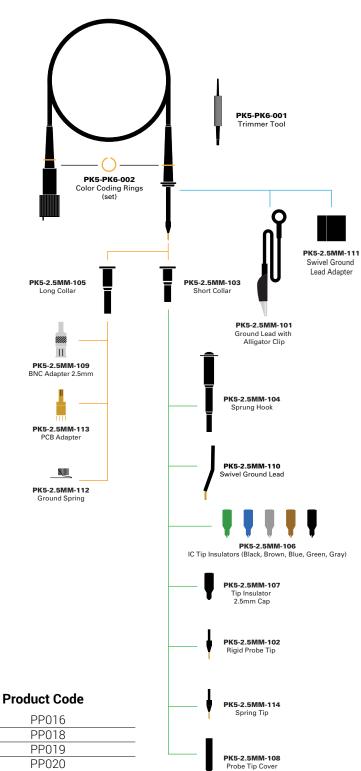

PP026

Each passive probe is recommended for a certain oscilloscope, using the right passive probe with the right oscilloscope means that the probe can be properly compensated across the entire bandwidth. Using probes with a different oscilloscope will only let you compensate for low frequencies.

Specifications

Types	Bandwidth	Input R	Input C	Attenuation	Maximum Voltage	Diameter
PP016	300 MHz/	$10~\text{M}\Omega/$	12 pF/	÷10/	600 V	5 mm
	10 MHz	1 ΜΩ	46 pF	÷1		
PP018	500 MHz	10 ΜΩ	10 pF	÷10	350 V	5 mm
PP019	200 MHz	10 ΜΩ	12 pF	÷10	500 V	5 mm
PP020	500 MHz	10 ΜΩ	11 pF	÷10	500 V	5 mm
PP021	500 MHz	10 ΜΩ	11 pF	÷10	500 V	2.5 mm
PP022	500 MHz	10 ΜΩ	10 pF	÷10	500 V	2.5 mm
PP023	500 MHz	10 ΜΩ	10 pF	÷10	500 V	2.5 mm
PP024	500 MHz	10 ΜΩ	10 pF	÷10	500 V	5 mm
PP025	500 MHz	10 ΜΩ	10 pF	÷10	500 V	5 mm
PP026	500 MHz	10 ΜΩ	10 pF	÷10	500 V	5 mm

Passive Probe Accessories for PP016
Replacement Part Kit: PKIT3-5MM-101


Learn More: teledynelecroy.com/probes/passive-probes

Passive Probe Accessories for PP019 and PP020 – Part numbers in blue Replacement Part Kit: PKIT4-5MM-101 PP024, PP025, and PP026 – Part numbers in gray Replacement Part Kit: PKIT6-5MM-101

PK4-5MM-5 PK5-PK6-001 Trimmer Tool PK4-5MM-8 PK5-PK6-002 Color Coding Rings (set) PK4-5MM-2 PK6-5MM-103 Ground Lead with Alligator Clip PK6-5MM-107 PK4-5MM-4 PK6-5MM-101 Rigid Probe Tip Spring Tip PK4-5MM-1 PK6-5MM-102 Sprung Hook PK6-5MM-108 Probe Tip Cover PK4-5MM-3 PK6-5MM-106 П BNC Adapter 5mm PCB Adapter PK4-5MM-6 PK6-5MM-109 IC Tip Insulator PK4-5MM-7 PK6-5MM-110 Tip Insulator PK6-5MM-104 Ground Spring PK6-5MM-108 Probe Tip Cover

Passive Probe Accessories for PP021, PP022, and PP023

Replacement Part Kit: PKIT5-2.5MM-101

Ordering Information

Product Description	Product Code
10:1, 10 MΩ, 300 MHz Passive Probe	PP016
500 MHz Passive Probe, 10:1, 10 MΩ	PP018
250 MHz Passive Probe, 10:1, 10 MΩ	PP019
500 MHz Passive Probe, 10:1, 10 MΩ	PP020
500 MHz Passive Probe, 2.5mm, 10:1, 10 MΩ	PP021
500 MHz Passive Probe, 2.5mm, 10:1, 10 MΩ	PP022
500 MHz Passive Probe, 2.5mm, 10:1, 10 MΩ	PP023
500 MHz Passive Probe, 5mm, 10:1, 10 MΩ	PP024
500 MHz Passive Probe, 5mm, 10:1, 10 MΩ	PP025
500 MHz Passive Probe, 5mm, 10:1, 10 MΩ	PP026

PROBE ADAPTERS

Teledyne LeCroy Probe Adapter Model Numbers: CA10

CA10 TPA10

Key Features

- Provides ability for third party current sensor to operate like a Teledyne LeCroy probe
- Programmable EEPROM for saving third party current sensor parameters
- Allows for addition of shunt resistor and RLC filter components
- ProBus Active interface with automatic scaling in A/div
- Easy to use, saves time and possible errors

Probe adapters provide simple and easy interface of third-party probes as well as change between the different Teledyne LeCroy Oscilloscope input and cable types (ProBus, ProLink, K/2.92 mm, BNC and SMA). Depending on the adapters, changing between the Teledyne LeCroy Oscilloscope's input type may have an effect on the overall performance of the channel.

CA10

The CA10 is a programmable and customizable interface device that seamlessly incorporates third party current transducers/transformers with Teledyne LeCroy oscilloscopes or motor drive analyzers. The easy to use interface provides the ability for the CA10 to be programmed to contain the specifications of the current sensor allowing it to automatically correct for the gain or attenuation and display

results in Ampere units. This allows the third party device to be recognized and operate as if it were a Teledyne LeCroy probe.

Specifications

Input Coupling	DC, AC, Both
Input Termination	1MΩ or $50Ω$
Programmable Bandwidth Filters	Full, 200 MHz, 20 MHz
Transformer/Transducer Interface	BNC
Scaling Factors	Programmable
Resistive Termination (if required)	Customizable (See Operator's Manual for details)
Oscilloscope Interface	Teledyne LeCroy ProBus

Note: Some third party devices will require a separate power supply or batteries. The CA10 does not have the ability to supply the power to these devices.

Ordering Information

Product Description	Product Code
ProBus Current Sensor Adapter	CA10

Included with Standard Configuration CA10

Description	Qty
CA10 ProBus Current Adapter	1
Heat-Shrink tubing (6" length)	1
Removable Labels (sheet of 20)	1

Learn More: teledynelecroy.com/probes/ probe-adapters

TPA10

The TPA10 ProBus™ Probe Adapter enables you to connect select TekProbe interface level II probes to any ProBusequipped Teledyne LeCroy instrument. The TPA10 supplies all necessary power and offset control to the probe and automatically detects which probe is attached.

Specifications

Electrical Characteristics

Bandwidth	4 GHz (adapter only)
Power Supplies	+15V, -15V, +5V, -5V (each 2%)
Offset Voltage	±1V (1%)
Max. Input Voltage	47 V _{pk} , 33 V _{rms}

Environmental

Operating Temperature Range	0 to 50 °C
Non-operating Temperature Range	-40 to +70 °C
Humidity	5% to 95% RH (10 to 40 °C); 5% to 75% (above 40 °C); RH not controlled below 10 °C
Operating Altitude	3000 meters maximum

Physical

Dimensions (WxHxD)	39 mm x 31.1 mm x 88.6 mm (1.54" x 1.22" x 3.49")
Weight	119 g (0.26 lb)

The TPA10 requires the Teledyne LeCroy oscilloscope to be running firmware version 7.8.0.0 or greater.

Ordering Information

Product Description	Product Code
TPA10 ProBus Adapter	TPA10

Key Features

- Allows TekProbe™ interface level II probes to work with any ProBus-equipped Teledyne LeCroy oscilloscope
- Automatic probe detection
- Provides all necessary power and offset control to the attached probe
- Supports probes up to 4 GHz
- Easy firmware updates
- Wide variety of probes supported including:
 - Preamplifiers
 - Current Probes
 - Single-Ended Active Probes
 - Differential Active Probes

Supported Probes

The following TekProbe devices are supported for use with TPA10:

Preamplifiers

Current Probes	
50 MHz AC/DC Current Probe	TCP202/TCP202A

Single-ended Active Probes

1 MHz Differential Preamplifier

750 MHz Single-ended Active Probe	P6205
1 GHz Single-ended Active Probe	P6243
1.5 GHz Single-ended Active Probe	P6245
4 GHz Single-ended Active Probe	P6241
4 GHz Single-ended Active Probe	P6249

Differential Active Probes

100 MHz Differential Probe	P5205/P5205A
50 MHz Differential Probe	P5210/P5210A
400 MHz Differential Probe	P6246
1 GHz Differential Probe	P6247
1.5 GHz Differential Probe	P6248
500 MHz Differential Probe	P6250
1 GHz Differential Probe	P6251

ADA400A

Learn More: teledynelecroy.com/probes

1-800-5-LeCroy teledynelecroy.com

Local sales offices are located throughout the world. Visit our website to find the most convenient location.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Teledyne LeCroy:

<u>ZS1500-QUADPAK</u> <u>PP007-WR-1</u> <u>DXX05-PT-TIPS</u> <u>DXX05-PT</u> <u>PP005-BNC</u> <u>PK1-5MM-107</u> <u>PACC-MS001</u> <u>PK1-5MM-109</u> PP005-RT PK007-020 PK007-019 PK007-014 PK1-5MM-110 PK1-5MM-121