
November 2010
IPUG18_09.2

PCI IP User’s Guide

© 2010 Lattice Semiconductor Corp. All Lattice trademarks, registered trademarks, patents, and disclaimers are as listed at www.latticesemi.com/legal. All other brand
or product names are trademarks or registered trademarks of their respective holders. The specifications and information herein are subject to change without notice.

IPUG18_09.2, November 2010 2 PCI IP Core User’s Guide

Chapter 1. Introduction .. 6
Quick Facts ... 6
Features .. 10

Chapter 2. Functional Description .. 11
Block Diagram... 11

PCI Master Control... 11
PCI Target Control ... 12
Local Master Interface Control ... 12
Local Target Control... 13
Configuration Space... 13
Parity Generator and Checker ... 13

Signal Descriptions ... 13
PCI Interface Signals ... 14
Local Interface Signals... 15

PCI Configuration Space Setup .. 18
Status Register... 21
Base Address Registers... 22
BAR Mapped to Memory Space... 22
Bar Mapped to I/O Space... 23
Cache Line Size ... 23
Latency Timer .. 23
CardBus CIS Pointer.. 23
Subsystem Vendor ID .. 23
Subsystem ID... 23
Capabilities Pointer .. 24
Min_Gnt.. 24
Max_Lat ... 24
Interrupt Line .. 24
Interrupt Pin.. 24
Reserved.. 24

Lattice PCI IP core Configuration Options .. 24
IPexpress User-Controlled Configurations... 24
PCI Configuration Using Core Configuration Space Port... 25

Local Bus Interface ... 30
Target Operation .. 30
Master Operation ... 30

Basic PCI Master Read and Write Transactions... 31
32-bit PCI Master with a 32-bit Local Bus .. 31
64-Bit PCI Master with a 64-Bit Local Bus ... 35
32-bit PCI Master with a 64-Bit Local Bus.. 40
Configuration Read and Write Transactions .. 46
PCI Master I/O Read and Write Transactions.. 46

Advanced Master Transactions... 46
Wait States... 46
Burst Read and Write Master Transactions ... 51
Dual Address Cycle (DAC)... 70
Fast Back-to-Back Transactions .. 76

Master and Target Termination... 81
Basic PCI Target Read and Write Transactions ... 81

Table of Contents

Lattice Semiconductor Table of Contents

IPUG18_09.2, November 2010 3 PCI IP Core User’s Guide

32-bit PCI Target with a 32-bit Local Bus Memory Transactions ... 82
64-Bit PCI Target with a 64-Bit Local Bus.. 87
32-Bit PCI Target with a 64-Bit Local Bus.. 90
Configuration Read and Write Transactions .. 94
PCI Target I/O Read and Write Transactions .. 96

Advanced Target Transactions ... 97
Wait States... 97
Burst Read and Write Target Transactions.. 100
Dual Address Cycle (DAC)... 115
Fast Back-to-Back Transactions .. 117
Advanced Configuration Accesses .. 120

Target Termination.. 123
Disconnect With Data... 124
Disconnect Without Data.. 127
Retry... 130
Target Abort ... 133

Chapter 3. Parameter Settings .. 136
Bus Tab... 137

Bus Definition ... 137
Backend Configuration... 138
Synthesis/Simulation Tools Selection .. 138

Identification Tab... 139
Vendor ID [15:0] ... 139
Device ID [15:0].. 139
Subsystem Vendor ID [15:0] .. 139
Subsystem ID [15:0]... 139
Revision ID [15:0]... 139
Class Code (Base Class, Bus Class, Interface)... 139

Options Tab... 140
Devsel Timing .. 140
Expansion ROM BAR... 140
Interrupts .. 141

PCI Master Tab (PCI Master/Target Cores Only) ... 141
Read Only Latency Timer .. 141
MIN_GNT... 141
MAX_LAT... 141

BARs Tab.. 141
Base Address Registers... 142

BAR Configuration Options ... 142
BAR Width.. 142
BAR Type... 142
Address Space Size... 142
Prefetching Enable... 142

Chapter 4. IP Core Generation... 143
Licensing the IP Core.. 143
Getting Started .. 143
IPexpress-Created Files and Top Level Directory Structure... 146
Instantiating the Core .. 147
Running Functional Simulation ... 147
Synthesizing and Implementing the Core in a Top-Level Design ... 148
Hardware Evaluation... 148

Enabling Hardware Evaluation in Diamond.. 148
Enabling Hardware Evaluation in ispLEVER.. 149

Updating/Regenerating the IP Core .. 149

Lattice Semiconductor Table of Contents

IPUG18_09.2, November 2010 4 PCI IP Core User’s Guide

Regenerating an IP Core in Diamond .. 149
Regenerating an IP Core in ispLEVER .. 149

Chapter 5. Support Resources .. 151
Lattice Technical Support.. 151

Online Forums.. 151
Telephone Support Hotline .. 151
E-mail Support ... 151
Local Support ... 151
Internet ... 151
PCI-SIG Website.. 151

References.. 151
LatticeEC/ECP ... 151
LatticeECP2M .. 151
LatticeECP3 ... 152
LatticeSC/M.. 152
LatticeXP.. 152
LatticeXP2.. 152
MachXO ... 152
MachXO2 ... 152

Revision History .. 152
Appendix A. Resource Utilization ... 153

LatticeECP and LatticeEC FPGAs .. 153
Ordering Part Number.. 153

LatticeECP2 FPGAs.. 154
Ordering Part Number.. 154

LatticeECP2M FPGAs... 155
Ordering Part Number.. 155

LatticeECP3 FPGAs.. 156
Ordering Part Number.. 156

LatticeXP FPGAs .. 157
Ordering Part Number.. 157

LatticeXP2 FPGAs .. 158
Ordering Part Number.. 158

MachXO FPGAs.. 159
Ordering Part Number.. 159

MachXO2 FPGAs.. 159
Ordering Part Number.. 159

LatticeSC FPGAs .. 160
Ordering Part Number.. 160

Appendix B. Pin Assignments For Lattice FPGAs .. 161
Pin Assignment Considerations for LatticeECP and LatticeEC Devices... 161

PCI Pin Assignments for Master/Target 33MHz 64-Bit Bus... 161
PCI Pin Assignments for Target 66MHz 64-Bit Bus... 163
PCI Pin Assignments for Master/Target 33MHz 32-Bit Bus... 165
PCI Pin Assignments for Target 33MHz 32-Bit Bus... 167

Pin Assignment Considerations for LatticeXP Devices... 168
PCI Pin Assignments for Master/Target 33MHz 32-Bit Bus... 168
PCI Pin Assignments for Target 33MHz 32-Bit Bus... 169
PCI Pin Assignments for Master/Target 33MHz 64-Bit Bus... 171

Pin Assignment Considerations for MachXO Devices .. 173
PCI Pin Assignments for Target 33MHz 32-Bit Bus... 173
PCI Pin Assignments for Target 66MHz 32-Bit Bus... 175
PCI Pin Assignments for Master/Target 33MHz 32-Bit Bus... 176

Lattice Semiconductor Table of Contents

IPUG18_09.2, November 2010 5 PCI IP Core User’s Guide

PCI Assignment Considerations for LatticeSC Devices.. 178
PCI Pin Assignments for Master/Target 33 MHz 32-bit Bus .. 178
PCI Pin Assignments for Master/Target 33 MHz 64-bit Bus .. 179
PCI Pin Assignments for Target 33 MHz 32-bit Bus .. 182
PCI Pin Assignments for Target 33 MHz 64-bit Bus .. 183
PCI Pin Assignments for Master/Target 66 MHz 32-bit Bus .. 185
PCI Pin Assignments for Master/Target 66 MHz 64-bit Bus .. 187
PCI Pin Assignments for Target 66 MHz 32-bit Bus .. 189
PCI Pin Assignments for Target 66 MHz 64-bit Bus .. 191

IPUG18_09.2, November 2010 6 PCI IP Core User’s Guide

Lattice’s Peripheral Component Interconnect (PCI) Intellectual Property (IP) cores provide an ideal solution that
meets the needs of today’s high performance PCI applications. The PCI IP cores provide a customizable, 32-bit or
64-bit PCI Master and Target or Target only solution that is fully compliant with the PCI Local Bus Specification,
Revision 3.0 for speeds up to 66MHz. The PCI cores bridge the gap between the PCI Bus and specific design
applications, providing an integrated PCI solution. These cores allow designers to focus on the application rather
than on the PCI specification, resulting in a faster time-to-market.

PCI is a widely accepted bus standard that is used in many applications including telecommunications, embedded
systems, high performance peripheral cards, and networking. The family of PCI IP core is one of the many in Lat-
tice’s portfolio of IP cores. For more information on these and other products, refer to the Lattice web site at:
http://www.latticesemi.com/products/intellectualproperty/.

This document covers Target only, Master and Target, 64-bit, and 32-bit PCI IP cores implemented in a number of
devices. Details of Master and 64-bit operation only apply to the appropriate cores. Pin assignments for specific
variations of this core are described at the end of this document.

Quick Facts
Table 1-1 through Table 1-8 give quick facts about the PCI IP core for LatticeEC™, LatticeECP™, LatticeECP2™,
LatticeECP2M™, LatticeECP3™, LatticeXP™, LatticeXP2™, LatticeSC™, MachXO™, MachXO2™, and
LatticeSCM™ devices.

Table 1-1. PCI IP Core Quick Facts--PCI master/target 66MHz/64bit

PCI IP configuration

PCI master/target 66MHz 64bit

Core
Requirements

FPGA Families
Supported

LatticeEC
LatticeECP

Lattice ECP2
Lattice ECP2M LatticeXP LatticeXP2 LatticeECP3 LatticeSC

LatticeSCM

Minimal Device
Needed

LFEC10E-
5F484C

LFE2-12E-
6F484C

LFXP15C-
5F388C

LFXP2-17E-
6F484C

LFE3-35EA-
7FN484CES

LFSC3GA15
E-6F900C

Resource
Utilization

Data Path Width 64

LUTs 2500

Registers 900

Design Tool
Support

Lattice
Implementation Lattice Diamond™ 1.0 or ispLEVER® 8.1

Synthesis
Synopsys® Synplify™ Pro for Lattice D-2009.12L-1

Mentor Graphics® Precision™ RTL

Simulation
Aldec® Active-HDL™ 8.2 Lattice Edition

Mentor Graphics ModelSim™ SE 6.3F

Chapter 1:

Introduction

http://www.latticesemi.com/products/intellectualproperty/
at: www.latticesemi.com/software.

Lattice Semiconductor Introduction

IPUG18_09.2, November 2010 7 PCI IP Core User’s Guide

Table 1-2. PCI IP Core Quick Facts--PCI master/target 66MHz/32bit

PCI IP configuration

PCI master/target 66MHz 32bit

Core
Requirements

FPGA Families
Supported

LatticeEC
LatticeECP

Lattice ECP2
Lattice ECP2M LatticeXP LatticeXP2 LatticeXP3 LatticeSC

LatticeSCM

Minimal Device
Needed

LFEC6E-
5F256C

LFE2-6E-
6F256C

LFXP6C-
5F256C

LFXP2-5E-
6FT256C

LFE3-17EA-
7FN484CES

LFSC3GA15E-
6F900C

Resource
Utilization

Data Path
Width 32

LUTs 1600

Registers 700

Design Tool
Support

Lattice
Implementation Diamond 1.0 or ispLEVER 8.1

Synthesis
Synopsys Synplify Pro for Lattice D-2009.12L-1

Mentor Graphics Precision RTL

Simulation
Aldec Active-HDL 8.2 Lattice Edition

Mentor Graphics ModelSim SE 6.3F

Table 1-3. PCI IP Core Quick Facts--PCI master/target 33MHz/64bit

PCI IP configuration

PCI master/target 33MHz 64bit

Core
Requirements

FPGA Families
Supported

LatticeEC
LatticeECP

Lattice ECP2
Lattice
ECP2M

LatticeXP LatticeXP2 LatticeXP3 LatticeSC
LatticeSCM

Minimal Device
Needed

LFEC10E-
5F484C

LFE2-12E-
6F484C

LFXP15C-
5F388C

LFXP2-17E-
6F484C

LFE3-35EA-
7FN484CES

LFSC3GA15
E-6F900C

Resource
Utilization

Data Path Width 64

LUTs 1400

Registers 800

Design Tool
Support

Lattice
Implementation Diamond 1.0 or ispLEVER 8.1

Synthesis
Synopsys Synplify Pro for Lattice D-2009.12L-1

Mentor Graphics Precision RTL

Simulation
Aldec Active-HDL 8.2 Lattice Edition

Mentor Graphics ModelSim SE 6.3F

Lattice Semiconductor Introduction

IPUG18_09.2, November 2010 8 PCI IP Core User’s Guide

Table 1-4. PCI IP Core Quick Facts--PCI master/target 33MHz/32bit

PCI IP configuration

PCI master/target 33MHz 32bit

Core
Requirements

FPGA
Families
Supported

MachXO MachXO2 LatticeEC
LatticeECP

Lattice ECP2
Lattice ECP2M LatticeXP LatticeXP2 LatticeXP3 LatticeSC

LatticeSCM

Minimal
Device
Needed

LCMXO1200
E-5FT256C

LCMXO-
1200HC-

6TG144CES

LFEC6E-
5F256C

LFE2-6E-
6F256C

LFXP6C-
5F256C

LFXP2-
5E-

6FT256C

LFE3-17EA-
7FN484CES

LFSC3GA1
5E-6F900C

Resource
Utilization

Data Path
Width 32

LUTs 900

Registers 600

Design Tool
Support

Lattice
Implemen-
tation

Diamond 1.0 or ispLEVER 8.1

Synthesis
Synopsys Synplify Pro for Lattice D-2009.12L-1

Mentor Graphics Precision RTL

Simulation
Aldec Active-HDL 8.2 Lattice Edition

Mentor Graphics ModelSim SE 6.3F

Table 1-5. PCI IP Core Quick Facts--PCI target 66MHz/64bit

PCI IP configuration

PCI target 66MHz 64bit

Core
Requirements

FPGA Families
Supported

LatticeEC
LatticeECP

Lattice ECP2
Lattice ECP2M LatticeXP LatticeXP2 LatticeXP3 LatticeSC

LatticeSCM

Minimal Device
Needed

LFEC6E-
5F484C

LFE2-12E-
6F484C

LFXP10C-
5F388C

LFXP2-8E-
6FT256C

LFE3-17EA-
7FN484CES

LFSC3GA15
E-6F900C

Resource
Utilization

Data Path Width 64

LUTs 1300

Registers 600

Design Tool
Support

Lattice
Implementation Diamond 1.0 or ispLEVER 8.1

Synthesis
Synopsys Synplify Pro for Lattice D-2009.12L-1

Mentor Graphics Precision RTL

Simulation
Aldec Active-HDL 8.2 Lattice Edition

Mentor Graphics ModelSim SE 6.3F

Lattice Semiconductor Introduction

IPUG18_09.2, November 2010 9 PCI IP Core User’s Guide

Table 1-6. PCI IP Core Quick Facts--PCI target 66MHz/32bit

PCI IP configuration

PCI target 66MHz 32bit

Core
Requirements

FPGA Families
Supported

LatticeEC
LatticeECP

Lattice ECP2
Lattice
ECP2M

LatticeXP LatticeXP2 LatticeXP3 LatticeSC
LatticeSCM

Minimal Device
Needed

LFEC3E-
5Q208C

LFE2-6E-
6F256C

LFXP3C-
5Q208C

LFXP2-5E-
6QN208C

LFE3-17EA-
7FTN256CES

LFSC3GA15
E-6F256C

Resource
Utilization

Data Path Width 32

LUTs 900

Registers 500

Design Tool
Support

Lattice
Implementation Diamond 1.0 or ispLEVER 8.1

Synthesis
Synopsys Synplify Pro for Lattice D-2009.12L-1

Mentor Graphics Precision RTL

Simulation
Aldec Active-HDL 8.2 Lattice Edition

Mentor Graphics ModelSim SE 6.3F

Table 1-7. PCI IP Core Quick Facts--PCI target 33MHz/64bit

PCI IP configuration

PCI target 33MHz 64bit

Core
Requirements

FPGA Families
Supported

LatticeEC
LatticeECP

Lattice ECP2
Lattice ECP2M LatticeXP LatticeXP2 LatticeXP3 LatticeSC

LatticeSCM

Minimal Device
Needed

LFEC6E-
5F484C

LFE2-12E-
6F484C

LFXP10C-
5F388C

LFXP2-8E-
6FT256C

LFE3-17EA-
7FN484CES

LFSC3GA15E
-6F900C

Resource
Utilization

Data Path
Width 64

LUTs 800

Registers 600

Design Tool
Support

Lattice
Implementation Diamond 1.0 or ispLEVER 8.1

Synthesis
Synopsys Synplify Pro for Lattice D-2009.12L-1

Mentor Graphics Precision RTL

Simulation
Aldec Active-HDL 8.2 Lattice Edition

Mentor Graphics ModelSim SE 6.3F

Lattice Semiconductor Introduction

IPUG18_09.2, November 2010 10 PCI IP Core User’s Guide

Features
• Available as 32/64-bit PCI bus and 32/64-bit local bus

• PCI SIG Local Bus Specification, Revision 3.0 compliant

• 64-bit addressing support (dual address cycle)

• Capabilities list pointer support

• Parity error detection

• Up to six Base Address Registers (BARs)

• Fast back-to-back transaction support

• Supports zero wait state transactions

• Special cycle transaction support

• Customizable configuration space

• Up to 66MHz PCI

• Fully synchronous design

Table 1-8. PCI IP Core Quick Facts--PCI target 33MHz/32bit

PCI IP configuration

PCI target 33MHz 32bit

Core
Require-
ments

FPGA
Families
Supported

MachXO MachXO2 LatticeEC
LatticeECP

Lattice
ECP2
Lattice
ECP2M

LatticeXP LatticeXP2 LatticeXP3 LatticeSC
LatticeSCM

Minimal
Device
Needed

LCMXO1200
E-5FT256C

LCMXO-
1200HC-

6TG144CES

LFEC3E-
5Q208C

LFE2-6E-
6F256C

LFXP3C-
5Q208C

LFXP2-5E-
6QN208C

LFE3-17EA-
7FTN256CES

LFSC3GA15
E-6F256C

Resource
Utiliza-
tion

Data Path
Width 32

LUTs 600

Registers 500

Design
Tool Sup-
port

Lattice
Implemen-
tation

Diamond 1.0 or ispLEVER 8.1

Synthesis
Synopsys Synplify Pro for Lattice D-2009.12L-1

Mentor Graphics Precision RTL

Simulation
Aldec Active-HDL 8.2 Lattice Edition

Mentor Graphics ModelSim SE 6.3F

IPUG18_09.2, November 2010 11 PCI IP Core User’s Guide

This chapter provides a functional description of the Lattice PCI IP core.

The PCI IP cores bridge the PCI bus to the back-end application. They decode transactions and pass PCI requests
to the Local Interface. The back-end applications then send or receive the proper data associated with the PCI
Interface via their Local Interface to respond to the PCI transactions. In the case of master versions the core exe-
cutes PCI bus transactions based on back-end requests. Figure 2-1 illustrates the functional modules and internal
bus structure used in the PCI IP core.

Block Diagram
Figure 2-1. PCI IP core Block Diagram

The PCI Master Target IP Core consists of multiple blocks, as shown in Figure 2-1. This section provides a detailed
description of these blocks.

PCI Master Control
The PCI Master Control interfaces with the PCI bus. It supports all of the address and command signals required to
execute transactions on the PCI bus for both 32-bit and 64-bit PCI applications. A list of the supported PCI signals
is available in the PCI Interface Signals section of this document. Once the Local Master Interface Control is
granted the bus, it passes the transaction information to the PCI Master Control using the internal bus. The PCI
Master Control then requests and executes the transaction on the PCI bus. The PCI IP cores support all of the

Note: Signals in shaded boxes are used for 64-bit PCI Cores.

Local
Target

Interface
Control

Configuration
Space

Parity
Generator

and
Checker

Local
Interface

cache[7:0]

l_Interruptn

command[9:0]
status[5:0]

intan

cben[3:0]
par

ad[31:0]

idsel

framen
trdyn
irdyn

stopn
devseln

rstn
clk

perrn
serrn

ad[63:32]
cben[7:4]

par64
req64n
ack64n

Address
& Data

Interface
Control

Error
Reporting

64-Bit
Extension

Interrupt

System

lt_command_out[3:0]

l_data_out[31:0]
l_ad_in[31:0]

lt_cben_out[3:0]

lt_address_out[31:0]

l_data_out[63:32]
l_ad_in[63:32]

lt_cben_out[7:4]

lt_address_out[63:32]

lt_disconnectn
lt_abortn

lt_rdyn

lt_r_nw

lt_64bit_transn

lt_ldata_xfern
lt_hdata_xfern

Config
Register

Address
& Data

64-Bit
Extension

Interrupt

Target
Interface
Control

Decodeexprom_hit
bar_hit[5:0]

lt_accessn

new_cap_hit

lm_req32n
lm_req64n

lm_rdyn

lm_burst_length[11:0]

lm_ldata_xfern
lm_hdata_xfern
lm_64bit_transn

lm_gntn

lm_status[3:0]
lm_termination[2:0]
lm_burst_cnt[12:0]

gntn
reqnArbitration

Master
Interface
Control

Master
req/gnt

lm_r_nw
lm_timeoutn
lm_abortn

lm_cben_in[7:4]

lm_cben_in[3:0]

lm_data_xfern

lt_data_xfern

PCI
Target
Control

PCI
Master
Control

Local
Master

Interface
Control

PCI
Interface

Configuration
space port

[401:0]

Chapter 2:

Functional Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 12 PCI IP Core User’s Guide

commands specified in the PCI Local Bus Specification, Revision 3.0. Table 2-1 lists the supported PCI com-
mands.

Table 2-1. PCI IP Core Command Support

The PCI Master control supports data transfer requirements for both high and low throughput back-end applica-
tions. It maintains up to the maximum 528 MBytes per second (MBps) burst data transfer rate when operating at
66MHz with a 64-bit data bus. The Advanced Master Transactions section of this document describes burst data
transfers in further detail. For slower applications, single data phase transactions can also be easily implemented.
The Basic PCI Master Read and Write Transactions section describes these basic transactions in detail.

PCI Target Control
The PCI Target control interfaces with the PCI bus. It processes the address, data, command and control signals to
transfer data to and from the PCI IP core for both 32-bit and 64-bit PCI applications. A list of the supported PCI sig-
nals is available in the PCI Interface Signals section. Once the PCI Target control detects a transaction, it passes
the transaction information to the Local Interface control using the internal bus. It also responds to most Configura-
tion Space accesses with no intervention from the Local Interface. The PCI IP core supports all of the commands
specified in the PCI Local Bus Specification, Revision 3.0. Table 2-1 lists the supported PCI commands.

When designing for a particular target application, the back-end target design may not support all the commands
listed in Table 2-1. As a result, the PCI IP core does not transfer data using those commands. For cases where the
back-end target application does not support all the commands, it must issue the proper termination as described
in the Target Termination section of this document.

The PCI Target control supports the data transfer requirements for both high and low throughput back-end applica-
tions. It can maintain a 528 MBps transfer rate during burst transactions when operating at 66MHz with a 64-bit
data bus. The Advanced Target Transactions section describes the Burst transactions in further detail. For slower
applications, single data phase transactions can also be easily implemented. The Basic PCI Target Read and Write
Transactions section describes the these basic transactions in detail

Local Master Interface Control
The Local Master Interface facilitates master transactions on the PCI Bus with the commands listed in Table 2-1.
The Local Master Interface Control passes the local master transaction request from the user’s application to the
PCI Master Control which then executes the PCI bus transaction.

cben[3:0] Command Support

0000 Interrupt Acknowledge Yes

0001 Special Cycle Yes

0010 I/O Read Yes

0011 I/O Write Yes

0100 Reserved Ignored

0101 Reserved Ignored

0110 Memory Read Yes

0111 Memory Write Yes

1000 Reserved Ignored

1001 Reserved Ignored

1010 Configuration Read Yes

1011 Configuration Write Yes

1100 Memory Read Multiple Yes

1101 Dual Address Cycle Yes

1110 Memory Read Line Yes

1111 Memory Write and Invalidate Yes

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 13 PCI IP Core User’s Guide

Local Target Control
The Local Target Control responds to target transactions on the PCI bus. Fully decoded BAR select signals
(bar_hit) and new capabilities select signal (new_cap_hit) are provided by the Local Target Control to indicate
that the PCI IP core has been selected for a transaction. Registered address and command signals are available at
the Local Interface from the Local Interface Control for the back-end application to properly handle the core’s
request. Additionally, the Local interface also supplies Configuration Space Register signals and a local interrupt
request (l_interruptn) for users’ applications. A full list of Local Interface signals and descriptions is available in
the Local Interface Signals section.

Configuration Space
The Configuration Space implements all the necessary Configuration Space registers required to support a single-
function PCI IP core. It provides the first 64 bytes of header type 0, which is used for all device types other than
PCI-to-PCI and CardBus bridges. The first 64 bytes of the predefined header region contain fields that uniquely
identify the device and allow the device to be generically controlled. This predefined header portion of the Configu-
ration Space is divided into two parts. The first 16 bytes of the header are defined the same way regardless of the
type of device. The remaining bytes have different definitions depending on the functionality that the PCI IP core
supports. These bytes include six Base Address Registers (BARs), the Capabilities Pointer (Cap Ptr), and the reg-
isters that control the interrupt capability. Refer to the Configuration Space Set-up section for additional information
on the Configuration Space.

Accesses to the first 64 bytes of the Configuration Space are completed by the PCI IP core control with no interven-
tion from the Local Target Interface control. Access beyond the first 64 bytes, such as the Capabilities List, is left to
the Local Target Interface control. These transactions are described in the Advanced Configuration Accesses sec-
tion.

Parity Generator and Checker
Parity checking must occur on every PCI address and data cycle to be compliant with the PCI Local Bus Specifica-
tion, Revision 3.0. The PCI IP core’s Parity Generator and Checker module does all parity checking for the PCI
device. The Parity Generator and Checker determines if the master is successful in addressing the desired target.
It also verifies that data transfers occur correctly between the master and target devices. The address and byte
enable signals are included in every calculation to ensure accuracy. Each address and data cycle that occurs on
the PCI bus is checked for errors.

The parity check signals perrn and serrn are enabled or disabled using bit 6 and bit 8 of the PCI Command Reg-
ister, which is part of the Configuration Space.

Signal Descriptions
Pin Assignments for the evaluation configurations are shown “Pin Assignments For Lattice FPGAs” on page 161.
Final selection of the pinouts is left to the designer to allow for maximum flexibility in the design. Pinouts are
defined in the HDL source code, or as follows:.

• In Diamond, choose View > Show Views > File List, double-click the.lpf file, and edit the file to add pin location
preferences.

• In ispLEVER, double-click Edit Preference (ASCII) in the Processes window, and edit the file in the Text Editor
to add pin location preferences.

Refer to the Diamond or ispLEVER software help for additional information.

There are five types of signals defined in Table 2-2.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 14 PCI IP Core User’s Guide

Table 2-2. Signal Types

PCI Interface Signals
The PCI Interface signals correspond to the PCI bus specification. Table 2-3 shows the input and output signals for
the PCI IP core. These are the signals required by the PCI IP core to handle PCI bus side transactions. Table 2-3
describes each signal.

In addition to the signals required by the PCI IP core, there are some signals on the PCI Bus, referred to as “Addi-
tional Signals” in the PCI specifications, which must be handled appropriately to insure proper PCI IP core func-
tions in a system. Refer to the relevant PCI specifications for a description of those Additional Signals (which are
beyond the scope of this document). Examples of this type of signal are M66EN and PRSNT[1:0].

Signal Type Description
in Input is a standard input only signal.

out Output is a standard output only signal.

t/s Tri-state is a bidirectional, tri-state input/output pin.

s/t/s Sustained Tri-State is an active low tri-state signal owned and driven by one agent at a
time.

o/d Open Drain allows multiple devices to share as a wire-OR. A pull-up is required to sustain
the inactive state until another agent drives it and must be provided by the central resource.

Table 2-3. PCI IP Core Signals1

Name I/O Polarity Description

PCI System

clk in — The PCI system clock provides timing for all transactions. The clock frequency operates up to
66MHz. This clock is also used to provide timing to the Local Interface.

rstn in low The asynchronous PCI system reset is used to set the PCI device to a starting known and sta-
ble state.

PCI Address and Data

ad[31:0] t/s — The multiplexed address and data bus.

cben[3:0
]

t/s — Multiplexed command and byte enable signals.

par t/s — The par signal generates even parity for ad[31:0] and cben[3:0] signals

PCI Interface Control

framen s/t/s low The framen signal is driven by the current master and used to indicate the start of cycle and
the duration of the cycle.

irdyn s/t/s low The initiator ready signal indicates that the current master is ready for the data phase.

trdyn s/t/s low The target ready signal indicates that the current target is ready for the data phase.

stopn s/t/s low The PCI IP core, as a target, drives this signal low requesting to stop the current transaction.

idsel in — The initialization device select is used to select a target for configuration reads and writes.

devseln s/t/s low Device select is actively driven by the PCI IP core to indicate that it is the target of the bus
transaction.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 15 PCI IP Core User’s Guide

Local Interface Signals
The Local Interface provides all the necessary address and control signals to respond to and initiate transactions
associated with the PCI bus. Command and status information are also available at the Local Interface, so the
back-end application logic can essentially monitor the PCI bus. Table 2-4 contains the Local Interface signals that
are divided into three different categories: Local Bus Signals, Local Target Bus signals and Local Master Bus sig-
nals.

The Local Bus Signals are shared between the Local Master Interface and Local Target Interface. These signals
are typically denoted with an “l_”. The Local Target Bus signals are used by the Local Target Interface and are
denoted using “lt_”. The Local Master Bus signals are used by the Local Master interface and are denoted using
“lm_”.

PCI Error Reporting

perrn s/t/s low Data parity error is used to report parity errors in the data phase.

serrn o/d low System error is used to indicate catastrophic errors.

PCI Interrupt

intan o/d low Interrupt A is used to request an interrupt.

PCI Bus Arbitration

reqn out low Request for the use of PCI bus.

gntn in low Grant the master’s access to PCI bus.

PCI 64-Bit Extension

ad[63:32
]

t/s — The upper 32 bits of multiplexed address and data bus.

cben[7:4
]

t/s — The upper, multiplexed command and byte enable signals for 64-bit applications.

par64 t/s — The par64 signal generates even parity for ad[63:32] and cben[7:4] signals.

req64n s/t/s low Used by the master to request a 64-bit data transaction.

ack64n s/t/s low Signal used to indicate the acknowledgement of a request for 64-bit data transaction.

1. Shaded rows apply to 64-bit applications.

Table 2-4. Local Interface Signals1

Name I/O Polarity Description

Local Address and Data

l_ad_in[31:0] in —
Local address/data input. The address input is used in Master Read/Write
transactions, and the data input is used for master write/target read transac-
tions

l_data_out[31:0] out — Local Data output. Local side lower DWORD data output for a master read
or a target write.

lt_address_out [31:0] out —

The local address bus for target read and write. This bus indicates the start
address of the transaction. The bus, lt_address_out [31:0], is latched
one clock after the framen signal is asserted on each transaction and
remains unchanged until the next transaction.

lt_cben_out[3:0] out low
The local byte enables for target read and write. The lt_cben_out[3:0]
determine which byte lanes of l_data_out[31:0] or l_ad_in[31:0]
carry meaningful data.

lt_command_out[3:0] out —
The lt_command_out[3:0] latches the command information during the
address phase of a PCI cycle. It indicates the PCI bus command for the cur-
rent cycle (refer to Table 2-1).

lm_cben_in[3:0] in low Local master command and byte enables.

Table 2-3. PCI IP Core Signals1 (Continued)

Name I/O Polarity Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 16 PCI IP Core User’s Guide

Local 64-Bit Extension

l_ad_in[63:32] in —
Local address/data input. The address input is used in Master Read/Write
transactions, and the data input is used for master write/target read transac-
tions.

l_data_out[63:32] out — Local Data output. Local side upper DWORD data output for a master read
or a target write.

lt_address_out [63:32] out —

The local address bus for target read and write. This bus is valid only for
64bit address bar. The 64-bit combined signal lt_address_out [63:0]
indicates the start address of the transaction. The high 32bit of the bus,
lt_address_out[63:32], is latched two clock cycles after the framen
signal is asserted on each transaction (only for dual address cycle) and
remains unchanged until the next transaction.

lt_cben_out[7:4] out low
The local byte enables for 64-bit target read and write. The
lt_cben_out[7:4] determine which byte lanes of
l_data_out[63:32] or l_ad_in[63:32] carry meaningful data.

lt_ldata_xfern out low This signal works same as lt_data_xfern. It applies to lower DWORD
when local bus is 64bit.

lt_hdata_xfern out low This signal works same as lt_data_xfern. It applies to upper DWORD
when local bus is 64bit.

lt_64bit_transn out low Signal to the local target that a 64-bit read or write transaction is underway
on pci bus.

lm_ldata_xfern out low This signal works same as lm_data_xfern. It applies to lower DWORD
when local bus is 64bit.

lm_hdata_xfern out low This signal works same as lm_data_xfern. It applies to upper DWORD
when local bus is 64bit.

lm_64bit_transn out low Signal to the local master that a 64-bit read or write transaction is underway
on PCI bus.

lm_cben_in[7:4] in low Local master byte enables.

Local Interrupt

l_interruptn in low
The local side interrupt request indicates that the Local Interface is request-
ing an interrupt. This signal asserts the PCI side interrupt signal, intan, if
interrupts are enabled in the Configuration Space.

Config Register

cache[7:0] out — The cache signal indicates the cache length in the cache registers defined
in the Configuration Space

command[9:0] out —

Command register bits from the Configuration Space.
Bit 0 - I/O space enable, Command[0]
Bit 1 - Memory space enable, Command[1]
Bit 2 - Master enable, Command[2]
Bit 3 - Special cycles enable, Command[3]
Bit 4 - Memory write and invalidate enable, Command[4]
Bit 5 - VGA Palette Snoop, Command[5]
Bit 6 - Parity Error Response, Command[6]
Bit 7 - Reserved
Bit 8 - SERR# enable, Command[8]
Bit 9 - Fast back-to-back enable, Command[9]

status[5:0] out —

Status register bits from the Configuration Space.
Bit 0 - Master Data Parity Error, Status[8]
Bit 1 - Signaled Target Abort, Status[11]
Bit 2 - Received Target Abort, Status[12]
Bit 3 - Received Master Abort, Status[13]
Bit 4 - Signaled System Error with SERR#, Status[14]
Bit 5 - Detected Parity Error, Status[15]

Table 2-4. Local Interface Signals1 (Continued)

Name I/O Polarity Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 17 PCI IP Core User’s Guide

Local Target Interface

lt_abortn in low Local target abort request is used to request a target abort on the PCI bus.

lt_disconnectn in low Local target disconnect (or retry) is used to request early termination of a
bus transaction on the PCI bus.

lt_rdyn in low Local target ready signal indicates that the Local Interface is ready to
receive or send data.

lt_r_nw out — Read/Write (read/not write) to signal whether the current transaction is a
read or write. 1 = read, 0 = write

lt_accessn out low

Local target can access local interface if lt_accessn is active. Once
lt_accessn active, local target needs to be ready for next process based
on lt_command_out. lt_accessn is active during either of active
bar_hit, exprom_hit or new_cap_hit. It is also active during special
cycle command.

lt_data_xfern out low

This signal indicates local input data (l_ad_in) being read or local output
data (l_data_out) being available at current clock cycle. When
lt_data_xfern is active, if core reads data from l_ad_in, back-end can
update l_ad_in for next data at next clock cycle. If core writes data on
l_data_out, back-end can get valid data from l_data_out. It is only
used when the local bus is 32 bits.

Local Target Address Decode

bar_hit[5:0] out high The bar_hit signal indicates that the master is requesting a transaction
that falls within one of the Base Address register ranges.

new_cap_hit out high

New Capabilities List hit. new_cap_hit indicates that the master is
requesting a Configuration Space register out of internal registers (00h-3fh),
that is 40h-FFh., Although the hardware associated with the New Capabili-
ties reside in the back-end logic, logically they are part of the PCI Configura-
tion Space.

Local Master req/gnt

lm_req32n in low Local master 32-bit data transaction request.

lm_req64n in low Local master 64-bit data transaction request.

lm_gntn out low Signal to the local master that gntn is asserted.

Local Master Interface Control

lm_rdyn in low Local master is ready to receive data (read) or send data (write)

lm_burst_length [11:0] in —

Local master burst length determines the number of data phases in the
transaction. For single data phase, it should be set to 1.
lm_burst_length set to 0 means the burst length is
13'b1,0000,0000,0000.

lm_data_xfern3 out low

This signal indicates local input data (l_ad_in) being read or local output
data (l_data_out) available at current clock cycle. When
lt_data_xfern is active, if core reads data from l_ad_in, back-end can
update l_ad_in for next data at next clock cycle. If core writes data on
l_data_out, back-end can get valid data from l_data_out. It is only
used when the local bus is 32 bits. In a single data phase, it should be set to
1. lm_burst_length set by 0 means the length is 13'b1,0000,0000,0000.

lm_r_nw out — (Read/Write) to signal whether the current transaction is a read or write.
1 = read, 0 = write

lm_timeoutn out — Indicates that the transaction has timed out.

lm_abortn in — Local master issues an abort to terminate a cycle that can not be com-
pleted.

Table 2-4. Local Interface Signals1 (Continued)

Name I/O Polarity Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 18 PCI IP Core User’s Guide

PCI Configuration Space Setup
Determining the correct settings for the Configuration Space is an essential step in designing a PCI application,
because the device may not function properly if the Configuration Space is not properly configured. The PCI IP
core supports all of the required and some additional Configuration Space registers that apply to the PCI IP core
(refer to PCI Local Bus Specifications, Revision 3.0, Chapter 6). Figure 2-2 shows the supported Configuration
Space for the PCI IP core. This section describes the first 64 bytes of the Configuration Space in the PCI IP core
and its customization method. For more information on the parameters used to customize the Configuration Space,
refer to the Lattice PCI IP core Configuration Options section.

lm_status[3:0] out —

Indicate the master operation status.
0001 - Address loading
0010 - Bus transaction
0100 - Bus termination
1000 - Fast_back_to_back

lm_termination[2:0] out —

Indicate the master termination status.
000 - Normal termination
Normal termination occurs when the master finishes and completes the
transaction normally. During a multi-data phase transfer, a condition can
occur where the master’s latency timer expires on the last data phase and
master's gntn has been de-asserted. In this case, lm_timeoutn is
asserted and the master also indicates this as Normal termination.

001 - Timeout termination
Timeout termination occurs when, during a multi-data phase transfer, the
master’s latency timer expired before the last data phase and the master’s
gntn is de-asserted on or before the last data phase. lm_timeoutn is also
asserted in this case.

010 - No target response termination.
This is also known as Master Abort termination.

011 - Target abort termination
100 - Retry termination
101 - Disconnect data termination
110 - Grant abort termination
111 - Local master termination

lm_burst_cnt[12:0] out —

Local master burst transaction “down counter” value. When the local master
requests a 32-bit transaction, the initial value of lm_burst_cnt is equal to
lm_burst_length. When the local master requests a 64-bit transaction
and lm_64bit_transn is active, the initial value of lm_burst_cnt is
equal to lm_burst_length. When the local master requests a 64-bit
transaction and lm_64bit_transn is inactive, the initial value of
lm_burst_cnt is double of lm_burst_length.

1. Shaded rows apply to 64-bit applications.
2. A Memory Write and Invalidate transaction is not governed by the Latency Timer except at cacheline boundaries. A master that initiates a

transaction with the Memory Write and Invalidate command ignores the Latency Timer until a cacheline boundary. When the Latency Timer
has expired (and gntn is deasserted), the core asserts lm_timeoutn. The backend must terminate the transaction at next cacheline
boundary by asserting lm_abort.

3. During Master Read operation the signal lm_data_xfern always reflects valid data in the local data bus. But during Master Write opera-
tion, due to data prefetch ahead of the transactions on PCI bus, lm_data_xfern along with the lm_status reflects the data validity. If
lm_status is 0100, (meaning a Bus Termination) ignore the lm_data_xfern assertion because the data being prefetched is not sent
out on the PCI bus due to termination.

Table 2-4. Local Interface Signals1 (Continued)

Name I/O Polarity Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 19 PCI IP Core User’s Guide

Figure 2-2. PCI IP Core Configuration Space

Vendor ID: The Vendor ID is a 16-bit, read-only field used to identify the manufacturer of the product. The Vendor
ID is set using the VENDOR_ID parameter. The Vendor ID is assigned by the PCI SIG to ensure uniqueness. Con-
tact PCI SIG (www.pcisig.org) to obtain a unique Vendor ID.

Device ID: The Device ID is a 16-bit, read-only field that is defined by the manufacturer used to uniquely identify a
particular product or model. The Device ID is set using the DEVICE_ID parameter. Its default value is 0000h.

Revision ID: The Revision ID is an 8-bit, read-only device-specific field that is set using the REVISION_ID param-
eter. This field is used by the manufacturer and should be viewed as an extension of the Device ID to distinguish
between different functional versions of a PCI product.

Class Code: The Class Code is a 24-bit, read-only register and is used to identify the generic functionality of a
device. The value of this register is determined by the CLASS_CODE parameter. The Class Code is broken up into
three bytes. The upper byte holds the base class code; the middle byte holds the sub-class code. In addition, the
lower byte holds the programming interface. The Class Code information is located in the PCI Local Bus Specifica-
tion, Revision 3.0. The default setting for this register is FF0000h.

Command Register: The Command Register is a 16-bit read/write register that provides coarse control over the
device. It is located at the lower 16 bits of address 04h in the Configuration Space. Using this register, the memory
and I/O space can be disabled to allow only configuration accesses. This register also controls the parity error
response and the serrn signal. Figure 2-3 and Table 2-5 illustrate the command register that is implemented in
the PCI IP core.

Device ID Vendor ID 00h

Status Register Command Register 04h

Class Code
Revision

ID
08h

BIST
Header
Type

Latency
Timer

Cache
Line Size

0Ch

Base Address 0 10h

Base Address 1 14h

Base Address 2 18h

Base Address 3 1Ch

Base Address 4 20h

Base Address 5 24h

Cardbus CIS Pointer 28h

Subsystem ID Subsystem Vendor ID 2Ch

Expansion ROM Base Address 30h

Reserved Cap Ptr 34h

Reserved 38h

MAX_LAT MIN_GNT
Interrupt

Pin
Interrupt

Line
3Ch

Note: Shaded sections indicate reserved and
unused sections in the configuration space. All
unused and reserved registers return 0s.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 20 PCI IP Core User’s Guide

Figure 2-3. Command Register

Table 2-5. Command Register Description

Bit
Location Description

0 I/O Space Enable controls a device’s response to I/O space accesses. I/O space accesses are enabled if the bit
is set to a 1. After reset the I/O space enable bit is set to a 0.

1 Memory Space Enable controls a device’s response to memory space accesses. Memory space accesses are
enabled if the bit is set to a 1. After reset the memory space enable bit is set to a 0.

2 Bus Master enables the PCI IP core to act as a master on the PCI bus when this bit is set to 1. After reset the Bus
Master enable bit is set to a 0.

3 Special Cycle controls a device’s action on special cycle operations. Special cycle accesses are enabled if the bit
is set to 1. After reset the bit is set to 0.

4
Memory Write and Invalidate Enable controls the PCI IP core's ability to execute the Memory Write and Invali-
date cycle on the PCI bus. The Core, when required, will issue the Memory Write and Invalidate command if this
bit is set to a 1. After reset this bit is set to a 0.

5 VGA Palette Snoop

6

Parity Error Response is used to control a device’s response to parity errors. If the bit is 0, a parity error causes
the Detected Parity Error status bit to be set in the status register but does not drive the perrn signal. After reset
the bit is set to 0. This is the enable for parity error checking. However, even with the perrn signal disabled, the
device is still required to generate parity.

7 Reserved Bit

8 SERR Enable is used to enable the serrn driver. To enable, this bit is set to a 1. After reset this bit is set to 0.

9
Fast Back-to-Back Enable allows the PCI IP core to execute fast back-to-back transactions to different devices. If
the fast back-to-back enable is set to a 1, the Core executes fast back-to-back transactions. After reset this bit is
set to 0.

10-15 Reserved Bits The returned value for these bits is 0 when this register is read.

01234567891015

I/O Space Enable

Memory Space Enable

Special Cycle

Parity Error Response

VGA Palette Snoop

SERR# Enable

Fast Back-to-Back Enable

Reserved Bit

Memory Write and Invalidate Enable

Bus Master

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 21 PCI IP Core User’s Guide

Status Register
The Status Register is a 16-bit read/write register that provides information on the capabilities of the PCI IP core. It
also reports the error status of the PCI IP core. The Status Register is located at the upper 16 bits of register loca-
tion 04h. Writes to the Status Register from the PCI bus are slightly different, given that bits can be reset but not
set. Writing a 1 to a bit in the status register resets it, but only if the current value of the bit is a 1. Writing a 0 to a bit
has no effect. Figure 2-4 and Table 2-6 describe the Status Register that is implemented in the PCI IP core.

Figure 2-4. Status Register

Table 2-6. Status Register Descriptions

Bit
Location Description

4
Capabilities List is a read-only bit that indicates whether or not the device contains an address pointer to the start
of the Capabilities list. The bit is set to a 1 to indicate that the Capabilities Pointer at location 34h is valid. After
reset the value is set to a 0. The CAP_PTR_ENA parameter initializes this bit.

5 66MHz Capable is a read-only bit that is used to indicate that the device is capable of running at 66MHz. The bit is
set to a 1 if the device is 66MHz capable. The PCI_66MHZ_CAP parameter initializes this bit.

7
Fast Back-to-Back Capable is a read-only bit that indicates if the device is capable of handling fast back-to-back
transactions. The bit is set to a 1 if the device can accept these transactions. The FAST_B2B_CAP parameter ini-
tializes this bit.

8 Master Data Parity Error indicates that the bus master has detected a parity error during a transaction. A value of
1 means a parity error has occurred. After rest the bit is set to 0.

9-10

DEVSEL Timing bits indicate the slowest time for a device to assert the devseln signal for all accesses except the
configuration accesses. The PCI IP core only supports the slow decode setting. The DEVSEL_TIMING parameter
(bits 2 and 1) determines the DEVSEL timing.
00 - Fast (not supported)
01- Medium (not supported)
10 - Slow
11 - Reserved

11 Signaled Target Abort is set when the target terminates the cycle with a Target-Abort. Writing a 1 clears the Sig-
naled Target Abort.

12 Received Target Abort is set to a 1 by the Core after it terminates a cycle with a target abort.

034567891015

Fast Back-toBack Capable

devseln Timing

Signaled Target Abort

Signaled System Error with serrn

Detected Parity

66 MHz Capable

Capabilities List

11121314

Received Master Abort

Received Target Abort

Master Data Parity Error

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 22 PCI IP Core User’s Guide

Base Address Registers
The PCI IP core supports up to six Base Address Registers (BARs) for Master/Target and Target configurations.
The BAR holds the base address for the PCI IP core, and it is used to point to the starting address of the PCI IP
core in the system memory map. They are configured differently based on whether they are mapped in memory or
I/O space. A memory location is addressed using 32 bits or 64 bits while I/O locations are limited to 32-bit
addresses. The six BARs consist of 192 bits in the Configuration Space and are located in address locations 0x10
to 0x27.

BAR Mapped to Memory Space
When selecting the amount of required memory for a BAR, the amount of memory is saved to the BAR0-BAR5
parameters in its 2’s complement form. Bits 0 through 3 of a memory BAR describes the attributes of the BAR and
do not change. The minimum recommended amount of memory a BAR should request is 4Kbytes. Figure 2-5 and
Table 2-7 describe the configuration of a BAR for memory space.

Figure 2-5. Memory Base Address Register

SERR Enable is used to enable the serrn driver. To enable, this bit is set to a 1. After reset this bit is set to 0.

13 Received Master Abort is set to a 1 by the Core after it terminates a cycle with a master abort with the exception
of special cycles.

14 Signaled System Error with serrn is set when the device asserts serrn. Writing a one clears the bit.

15 Detected Parity Error is used to indicate a parity error even if the parity error handling is disabled.

0,1,2,3,6 Reserved Bits The returned value for each of these bits is 0 when this register is read.

Table 2-7. Memory Base Address Register

Bit
Location Description

0 Memory/I/O Space Indicator indicates whether the base address is mapped to I/O or memory space. A 0 indi-
cates mapping to the memory space. The value of this bit is set by bit 0 of the BAR0-BAR5 parameters.

1-2

Base Address Type is used to determine whether the BAR is mapped into a 32-bit or 64-bit address space.
These bits have the following meaning:
00 - located in 32-bit address space
01 - reserved
10 - located in 64-bit address space
11 - reserved

3
Prefetchable Enable is determined by bit 3. It is a read-only bit that indicates if the memory space is prefetchable.
A value of 1 means the memory space is prefetchable. Bit 3 of the BAR0-BAR5 parameters sets the value of this
bit.

4-31/63 Bits 4-31/63 are read/write to hold memory address and are initialized by the BAR0-BAR5 parameters.

Table 2-6. Status Register Descriptions (Continued)

Bit
Location Description

0123431/63

Memory/IO Space Indicator

Base Address Type

Prefechable Enable

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 23 PCI IP Core User’s Guide

Bar Mapped to I/O Space
When selecting the amount of required I/O space for a BAR, the amount is saved to the BAR0-BAR5 parameters in
its 2’s complement form. Bits 0 and 1 of an I/O BAR describe the attributes of the BAR and do not change.
Figure 2-6 and Table 2-8 describe the configuration of a BAR for I/O space.

Figure 2-6. I/O Base Address Register

Table 2-8. I/O Base Address Register

Cache Line Size
The Cache Line Size register is an 8-bit read/write register, located at 0Ch. It specifies the Cache Line Size in Dou-
ble Words (DWORDs). During a reset the register is set to 00h. This register is output to local interface as
cache[7:0].

Latency Timer
The Latency Timer register is an eight-bit read/write or read only register, located at byte address 0Dh. It specifies
the Master Latency Timer value for a PCI Master on the PCI bus. During reset the register is set to 00h.

CardBus CIS Pointer
The CardBus CIS Pointer is a read-only, 32-bit register at location 28h in the Configuration Space. The
CIS_POINTER parameter determines the value of the register. For more information on the CardBus CIS Pointer,
refer to the CardBus specification.

Subsystem Vendor ID
The Subsystem Vendor ID is a 16-bit, read-only field and is used to further identify the manufacturer of the expan-
sion board or subsystem. The SUBSYSTEM_VENDOR_ID parameter determines the value of the Subsystem Vendor
ID register. The PCI SIG assigns the Vendor ID to ensure uniqueness. Contact PCI SIG (www.pcisig.org) to attain
a unique Subsystem Vendor ID.

Subsystem ID
The Subsystem ID is a 16-bit, read-only field and is used to further identify the particular device. This field is
defined by the manufacturer and is used to uniquely identify products or models. The SUBSYSTEM_ID parameter
determines the value of this register.

Bit
Location Description

0 Memory/I/O space Indicator indicates whether the base address is mapped to I/O or memory space. A 0 indi-
cates mapping to the memory space. The value of this bit is set by bit 0 of the BAR0-BAR5 parameters.

1 Bit 1 is reserved and hardwired to 0. This bit is read only.

2-31 Bits 2-31 are read/write to hold the memory address and are initialized by the BAR0-BAR5 parameters.

0131

Memory/IO Space Indicator

Reserved

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 24 PCI IP Core User’s Guide

Capabilities Pointer
The Capabilities Pointer indicates the starting location of the Capabilities List. It resides at address location 34h.
The Capabilities Pointer consists of an 8-bit read-only register location. The capabilities pointer must be enabled by
the CAP_PTR_ENA parameter. The CAP_POINTER parameter determines the value of this register.

Min_Gnt
The Min_Gnt read-only register is an 8-bit field that is used to specify the length of time in microseconds for the
Master to control the PCI bus. It resides in the upper 8 bits of address location 3Ch. The MIN_GRANT parameter
determines the value of this register.

Max_Lat
The Max_Lat read-only register is an 8-bit field that is used to specify the how often the PCI IP core the bus. It
resides in the third byte of address location 3Ch. The MAX_LATENCY parameter determines the value of this regis-
ter.

Interrupt Line
The Interrupt Line register is set by the interrupt handling mechanism to define the interrupt routing. This is a
read/write register is handled outside the operation of the PCI IP core. This register holds system interrupt routing
information.

Interrupt Pin
The Interrupt Pin register is used to indicate which of the four interrupts that the PCI IP core uses. Because the PCI
IP core is a single function device, the only Interrupt Pin that can be selected is Interrupt A. If the interrupt is
selected, the INTERRUPT_PIN parameter sets the register with a value of 01h. This eight-bit register is located at
address location 3Dh.

Reserved
All reserved registers are read-only. Write operations to reserved registers are completed normally, and the data is
discarded. A 0 is returned after the read operations to reserved registers are completed normally.

Lattice PCI IP core Configuration Options
Lattice PCI IP core allows an extensive definition of the PCI Configuration Space for optimum performance.

IPexpress User-Controlled Configurations
The IPexpress user-configurable flow provides evaluation capability for any valid combination of parameters. Con-
figurations can have a maximum of three BARs. To create a configuration with more than three BARs, contact Lat-
tice.

The evaluation configurations of PCI IP core have a maximum of three BARs. To order a configuration with more
than three BARs, contact Lattice.

Table 2-9. IPexpress Parameters for PCI IP Core

Parameter Name Range Default(s)
Number of BARs 1-6 3

Bus Definition Parameters

PCI Data Bus Size 32- or 64-bit Note 1

Local Master Data Bus Size 32- or 64-bit Note 2

Local Target Data Bus Size 32- or 64-bit Note 2

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 25 PCI IP Core User’s Guide

PCI Configuration Using Core Configuration Space Port
A set of signals called the Configuration Space Port is provided at the local bus side of the core to allow the user to
define the PCI configuration space as required for the user’s system. The names of these Core configuration input
signals are all suffixed with _p.

Appropriate parameter values are to be assigned to the designated input signals of Core configuration space port
to implement the desired PCI configuration space. Here are two examples to achieve this:

1. Directly assign parameter values to the input signals of Core configuration space port. The user needs to pro-
vide hard coded values to the Core‘s Configuration Space Port input signals in the core instantiation.

module pci_top();
…
customer_design cus_design _inst(

.xxxx(xxxx),

.yyyy(yyyy),
…………….
.zzzz(zzzz)
;

pci_core core_inst(.framen(framen),
…
.vdr_id_p(16’h1234), //vendor_id = 16’h1234
…
.dev_tim_p(2’b10), //devsel_timing = 2’b10 (slow)
…
);

endmodule

2. Typically, two Verilog files, para_cfg.v and PCI_params.v, can be used to load these parameters to Core’s Con-
figuration Space Port. These files are available in Lattice PCI IP release package.

• Edit the PCI_params.v to set correct values to the parameters. Parameter names in PCI_params.v are all suf-
fixed with _g. Alternatively use the PCI GUI provided with Lattice’s software design tools to generate the
PCI_params.v. Refer the note given below.

• Instantiate para_cfg module and appropriately connect its ports to the Core configuration input signals of PCI
IP core.

para_cfg module will load the parameters, defined in PCI_params.v, into the Core’s Configuration Space Port
input signals.

module pci_top();
…
wire [15:0] vdr_id;
wire [1:0] dev_tim;
…
…

Local Address Bus Width 32- or 64-bit 32-bit
1. The value for PCI Data Bus size is set in each eval configuration as described in the appendices of the PCI IP core data sheet.
2. For 32-bit PCI Data Bus, only 32-bit Local Data Bus sizes are supported. For 64-bit PCI Data Bus, only 64-bit Local Data Bus sizes

are supported.

Table 2-9. IPexpress Parameters for PCI IP Core

Parameter Name Range Default(s)

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 26 PCI IP Core User’s Guide

customer_design_instantiation(
.xxxx(xxxx),
.yyyy(yyyy),
…………….
.zzzz(zzzz)
;

pci_core core_inst(
. framen(framen),
…
. vdr_id_p (vdr_id), //vendor_id = VENDOR_ID_g
…
. dev_tim_p (dev_tim), //devsel_timing = DEVSEL_TIMING_g
…
);

para_cfg para_cfg_inst(.vdr_id_p (vdr_id),
…
. dev_tim_p (dev_tim),
…
);

endmodule

Table 2-10 shows the parameter signals and associated define values in PCI_params.v.

NOTE: There is a GUI provided with this PCI IP for the purpose of selecting the core’s parameter values. Once
installed into Lattice’s Diamond or ispLEVER software design tools, the GUI can be accessed through the IPex-
press™ tool. The GUI provides a range checking routine that ensures the selected values are within the core’s
valid range. If the user configures this PCI IP core outside of the GUI flow, it is the user’s responsibility to ensure
that the parameter values are within the valid ranges shown in Table 2-10. Parameters that are outside of the valid
range will cause the PCI IP core to function improperly. The recommended flow is to follow example 2 above and
use the PCI GUI to generate the params.v file. The name of this generated output file is fixed at “PCI_params.v”.
The user can find this file in the same directory where the <modulename>.lpc file is generated. Then, to prevent
from overwriting the PCI_params.v file, the user should save a copy that is renamed to match the <module-
name>.lpc file.

Table 2-10. Customer Specific Parameters

Configuration
Space

Port Inputs
Corresponding Parameter

Name in PCI_params.v Range Default Description

vdr_id_p VENDOR_ID_g 0 - 0xFFFE 0x0000
Value of the Vendor ID field in the Configura-
tion Space. This sets the lower 16 bits of
address 00h.

dev_id_p DEVICE_ID_g 0 - 0xFFFF 0x0000
Value of the Device ID field in the Configura-
tion Space. This sets the upper 16 bits of
address 00h.

subs_vdr_id_p SUB_VENDOR_ID_g 0 - 0xFFFF 0x0000

Value for Subsystem Vendor ID field in the
Configuration Space. The Subsystem Vendor
ID is at the lower 16 bits of register location
2Ch.

subs_id_p SUB_SYSTEM_ID_g 0 - 0xFFFF 0x0000
Value for Subsystem ID field in the Configu-
ration Space. The Subsystem ID is located in
the upper 16 bits of address 2Ch.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 27 PCI IP Core User’s Guide

rev_id_p REVISION_ID_g 0 - 0xFF 0x00
Value for Revision ID field in the Configura-
tion Space. This value correlates to the lower
8 bits of register 08h.

cls_code_p CLASS_CODE_g 0 - 0xFFFFFF 0x000000

Value for Class Code field in the Configura-
tion Space. This is the value of the upper 24
bits of register 08h. Class Code is further
subdivided into Base Class, Sub Class, and
Interface values. Refer to the PCI local bus
specification for valid Class codes.

dev_tim_p DEVSEL_TIMING_g 00 - 2’b10 2’b10

Controls bits 9 and 10 in the status register,
located at the upper 16 bits of address 04h.
This parameter is used to define the decode
speed of the PCI IP core.
00 - Fast (not supported)
01 - Medium (not supported)
10 - Slow
11 - Reserved

cap_list_ena_p CAPABILITIES_LIST_
ENA_g Enabled/Disabled Enabled

Enable for the Capabilities Pointer. It is used
to set the enable bit for the Capabilities List in
the PCI Status register. This bit is used to
indicate if the value of the Capabilities Pointer
at location 34h is valid. This is bit 4 in the sta-
tus register.

cap_ptr_p CAPABILITIES_POINTER_g 0x0 - 0xFF 0x40
Value for Capabilities Pointer field in the Con-
figuration Space. This is an 8-bit value
located at 34h.

cis_ptr_p CIS_POINTER_g 0 - 0xFFFFFFFF 0x00000000

Value for the Cardbus CIS Pointer field in the
Configuration Space. This is a 32-bit value
located at 28h in the Configuration Space
Settings for the CIS Pointer are beyond the
scope of this document. For more information
on setting this register, refer to the CardBus
specification.

fast_b2b_cap_p FAST_B2B_CAP_g Enabled/
Disabled Enabled

Value for the Status field bit to enable fast
back-to-back transfers. This is bit 7 of the sta-
tus register.

irq_ack_ena_p IRQ_ACK_ENA_g Enabled/
Disabled Enabled Enable response to the Interrupt Acknowl-

edge PCI command.

int_pin_p INTERRUPT_PIN_g 0x00 - 0x01 0x01

Value for Interrupt Pin field in the Configura-
tion Space. If set, it allows the local interrupt
signal l_interruptn to appear on the PCI
Interrupt intan. If the local interrupt is not
used, it must be tied high.

hdw_lat_tmr_p HARDWIRE_LATENCY_
TIMER_g 0 - 0x10 0x00 Value for read-only latency timer register

hdw_lat_tmr_
ena_p

HARDWIRE_LATENCY_
TIMER_ENA_g

Enabled/
Disabled Disabled Enable read only latency timer register.

min_gnt_p MIN_GNT_g 0 - 0xFF 0x00 Value for MIN_GRAND field in the configura-
tion space.

max_lat_p MAX_LAT_g 0 - 0xFF 0x00 Value for MAX_LATENCY field in the configu-
ration space.

Table 2-10. Customer Specific Parameters (Continued)

Configuration
Space

Port Inputs
Corresponding Parameter

Name in PCI_params.v Range Default Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 28 PCI IP Core User’s Guide

pci_66mhz_
cap_p PCI_66MHZ_CAP_g 33 or 66 66

PCI value for the Status field bit to enable
66MHz. This is bit 5 in the status register. A 1
indicates that the PCI IP core is 66MHZ
capable, and a 0 indicates that it is not. The
default value is 1.

bar_64b_dat_
bus_p BAR_64BIT_DATA_BUS_g 6’b000000 -

6’b111111 6’b000000
For 32-bit Local Data bus this parameter
value is 6'b000000. For 64-bit Local Data bus
this parameter value is 6'b111111.

bar0_p1 BAR0_g1 0 - 0xFFFFFFFF 0x00000000

BAR0 configuration parameter (lower half of
a 64-bit BAR). The lower four bits are used
for BAR definition as indicated in the PCI
specification. Rest of the bits indicate the
memory or I/O size supported This BAR is
located at 10h. If the bar is not used, it should
be 32’h00000002.

bar1_ p1 BAR1_g1 0 - 0xFFFFFFFF 0x00000000

BAR1 configuration parameter (upper half of
a 64-bit BAR). The lower four bits are used
for BAR definition as indicated in the PCI
specification. Rest of the bits indicate the
memory or I/O size supported This BAR is
located at 14h. If the bar is not used, it should
be 32’h00000002.

bar2_ p1 BAR2_g1 0 - 0xFFFFFFFF 0x00000000

BAR2 configuration parameter (lower half of
a 64-bit BAR). The lower four bits are used
for BAR definition as indicated in the PCI
specification. Rest of the bits indicate the
memory or I/O size supported This BAR is
located at 18h. If the bar is not used, it should
be 32’h00000002.

bar3_ p1 BAR3_g1 0 - 0xFFFFFFFF 0x00000002

BAR3 configuration parameter (upper half of
a 64-bit BAR). The lower four bits are used
for BAR definition as indicated in the PCI
specification. Rest of the bits indicate the
memory or I/O size supported This BAR is
located at 1Ch. If the bar is not used, it
should be 32’h00000002.

bar4_ p1 BAR4_g1 0 - 0xFFFFFFFF 0x00000002

BAR4 configuration parameter (lower half of
a 64-bit BAR). The lower four bits are used
for BAR definition as indicated in the PCI
specification. Rest of the bits indicate the
memory or I/O size supported This BAR is
located at 20h. If the bar is not used, it should
be 32’h00000002.

bar5_ p1 BAR5_g1 0 - 0xFFFFFFFF 0x00000002

BAR5 configuration parameter (upper half of
a 64-bit BAR). The lower four bits are used
for BAR definition as indicated in the PCI
specification. Rest of the bits indicate the
memory or I/O size supported This BAR is
located at 24h. If the bar is not used, it should
be 32’h00000002.

Table 2-10. Customer Specific Parameters (Continued)

Configuration
Space

Port Inputs
Corresponding Parameter

Name in PCI_params.v Range Default Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 29 PCI IP Core User’s Guide

1. When using the second method to configure parameters, only the second column is used.

2. When a BAR is not used, its corresponding core configuration signal bar_p should be 32’h0000_0002. To achieve this:

• BARx_g value in PCI_params.v should be 0x0000_0000.
• The file para_cfg.v will translate value 0x0000_0000 to 0x0000_0002.

In this case:

• Content of that BAR register in PCI Configuration Space is 0x0000_0000

The default values shown are the read back value (using PCI read command) of the enabled BAR after all 1’s are written into that BAR (using
PCI write command).

Bar Configuration Details

Memory Type:
Bit[0] BAR type = 0 (memory space indicator)
Bit[2:1] Base address type:

00 – Located in 32-bit address space
01 – Reserved
10 – Located in 64-bit address space
11 – Reserved

Bit[3] Prefetch 1= enable, 0=disable (This bit indicates whether or not the BAR can prefetch data from memory)
Bit[31:4] Memory size

I/O Type:
Bit[0] BAR type = 1 (I/O space indicator)
Bit[1] 0 – Reserved
Bit[31:2] Memory size

Bit[31:4/2] – memory or I/O size:
2Gbyte 32'h8000_000_x
1Gbyte 32'hC000_000_x
512Mbyte 32'hE000_000_x
256Mbyte 32'hF000_000_x
128Mbyte 32'hF800_000_x
64Mbyte 32'hFC00_000_x
32Mbyte 32'hFE00_000_x
16Mbyte 32'hFF00_000_x
8Mbyte 32'hFF80_000_x
4Mbyte 32'hFFC0_000_x
2Mbyte 32'hFFE0_000_x
1Mbyte 32'hFFF0_000_x
512kbyte 32'hFFF8_000_x
256Kbyte 32'hFFFC_000_x
128Kbyte 32'hFFFE_000_x
64Kbyte 32'hFFFF_000_x
32Kbyte 32'hFFFF_800_x
16Kbyte 32'hFFFF_C00_x
8Kbyte 32'hFFFF_E00_x
4Kbyte 32'hFFFF_F00_x
2Kbyte 32'hFFFF_F80_x
1Kbyte 32'hFFFF_FC0_x
512byte 32'hFFFF_FE0_x
256byte 32'hFFFF_FF0_x
128byte 32'hFFFF_FF8_x
64byte 32'hFFFF_FFC_x
32byte 32'hFFFF_FFE_x
16byte 32'hFFFF_FFF_x
8byte 32'hFFFF_FFF_9
4byte 32'hFFFF_FFF_D
unused 32'h0000_000_2

Notes to the list above:
a. Only I/O BAR has 8-byte or 4-byte size.
b. For the value of “x” – please refer to the definition of Bit[3:0] as shown in the Memory BAR Configuration section of this document.
c. Not all BARs can be set for 2Gbytes. The total BAR space in one system should not be more than 4Gbytes for a 32-bit address.

Table 2-10. Customer Specific Parameters (Continued)

Configuration
Space

Port Inputs
Corresponding Parameter

Name in PCI_params.v Range Default Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 30 PCI IP Core User’s Guide

Local Bus Interface
Target Operation
Initially, the local target is idle. A valid transaction in the PCI bus is indicated to the local bus side by the assertion of
lt_accessn signal. At this time either the bar_hit, new_cap_hit or exprom_hit signal indicates whether a
BAR or New Capabilities register is selected, and lt_command_out indicates the current PCI command. If the
command is Special Cycle, then no BAR is selected, otherwise the selected BAR needs to prepare the next pro-
cess.

For a Memory Read command, local target puts data on lt_ad_in and asserts lt_rdyn to indicate data on
l_ad_in is valid. The core will read the data and assert lt_data_xfern after lt_rdyn is active. When the
transaction is burst read, the core will continue to keep asserting lt_data_xfern at subsequent clocks and read
data on l_ad_in if the local side does not insert wait cycle(s).

For a Memory Write command, local target asserts lt_rdyn to indicate that it is ready to receive data on
l_data_out. The core will write data on l_data_out and assert lt_data_xfern to indicate valid data on
l_data_out. Local target should read the data on l_data_out.

When the local target bus width is 64 bits, the signals lt_ldata_xfern and lt_hdata_xfern are used
together instead of lt_data_xfern. For 32-bit data width, only lt_ldata_xfern is used. For 64-bit data width,
lt_ldata_xfern and lt_hdata_xfern are used together. The signal lt_ldata_xfern applies to the lower
32-bit data, lt_hdata_xfern applies to the upper 32 bits of data.

A target transaction is ended when lt_accessn becomes inactive. At this time, bar_hit, new_cap_hit and
exprom_hit are all deasserted.

When a 32-bit BAR is hit, only the following local bus signals are used:

• l_ad_in[31:0], l_data_out[31:0], lt_cben_out[3:0] and lt_ldata_xfern.

and the following signals are not used:

• l_ad_in[63:32], l_data_out[63:32], lt_cben_out[7:4] and lt_hdata_xfern.

Master Operation
Local master starts a transaction request by asserting lm_req32n or lm_req64n when lm_status is in “Bus
Termination” state. For a 32-bit transaction request, lm_req32n is asserted and lm_req64n is a “don't care”. For
a 64-bit transaction, lm_req64n is asserted and lm_req32n is de-asserted. To minimize latency, the local master
should issue the valid address, command and burst length on l_ad_in, lm_cben_in[3:0] and
lm_burst_length respectively during the same clock cycle that lm_req32n or lm_req6n is asserted. Once
PCI bus grants the bus, lm_gntn is asserted to indicate local master to continue with next process. Then local
master works with lm_status. lm_req32n and lm_req64n should be deasserted right after lm_status is in
“Address Loading” state, unless Fast Back-to-Back is intended. A normal transaction sequence of status starts
from “Bus Termination” to “Address Loading” to “Bus Transaction” and ends with “Bus Termination”. During “Bus
Transaction”, local master reads or writes data based on lm_data_xfern signal.

When the local master bus width is 64-bit, lm_ldata_xfern and lm_hdata_xfern are used instead of
lm_data_xfern. For 32-bit data width BAR, only lm_ldata_xfern is used. For 64-bit data width BAR,
lm_ldata_xfern and lm_hdata_xfern are used together. The signal lm_ldata_xfern applies to the lower
32 bits of data, lm_hdata_xfern applies to the upper 32 bits of data.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 31 PCI IP Core User’s Guide

Basic PCI Master Read and Write Transactions
Read and write transactions to memory and I/O space are used to transfer data on the PCI bus. The basic read
and write transactions use the following PCI commands:

• I/O Read
• I/O Write
• Memory Read
• Memory Write
• Configuration Read
• Configuration Write

To simplify the integration of the PCI IP core, the basic master transactions are described based on different bus
con-figurations supported with this PCI IP core. Although the fundamentals of the basic master transactions are the
same, different bus configurations require slightly different local bus signaling. Refer to the following sections for
more information on the basic bus master transactions with specific PCI IP core configurations:

• 32-bit PCI Master with a 32-Bit Local Bus
• 64 bit PCI Master with a 64-Bit Local Bus
• 32-bit PCI Master with a 64-Bit Local Bus

Refer to the advanced bus master transactions in the Advanced Master Transactions section for more information
on properly handling wait state insertion and early termination of bus transactions by the PCI IP core.

Waveform Legend

32-bit PCI Master with a 32-bit Local Bus
This section discusses read and write transactions executed by the PCI IP core operating as a master, configured
with a 32-bit PCI bus and a 32-bit local bus. Because 32-bit I/O and memory transactions are alike, they are dis-
cussed together.

Figure 2-7 illustrates a basic 32-bit read transaction. Table 2-11 gives a clock-by-clock description of the basic 32-
bit transaction shown in Figure 2-7. Understanding the latency between the PCI bus and the IP core's Local Master
Interface is important for a read transaction. The clock number in the waveforms is for the clock period, that is, after
the current rising clock edge.

Symbol Description

Driven signal

Driven bus signals or driven PCI parity signal (par and par64).

Floated PCI signals. If the signal is high, it is high maintained by system pull-up resistor. If the signal is in
the middle of level place, it is tri-state.

Don’t care local signal. For input signal, the core doesn’t read it. For output signal, it is an invalid value.

1. Local interface: Don’t care bus signals. For input signals, the core doesn’t read it. For output signal,
they are invalid value. 2. PCI interface: the signal can be any value.

PCI signal turnaround. The core releases PCI bus control and changes output enable from ENABLE to
DISABLE.

Note: The clock number in the waveform is for the clock period, that is, after the current rising clock edge.

Data 4

Don't care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 32 PCI IP Core User’s Guide

Figure 2-7. 32-bit Master Single Read Transaction with a 32-Bit Local Interface
1 2 3 4 5 6 7 8 9 10 11

Address
Loading

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

reqn

gntn

lm_gntn

lm_req32n

l_ad_in[31:0]

lm_rdyn

lm_data_xfern

lm_cben_in[3:0]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

AddressDon’t care Data 1

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care Bus Length
(= 1) 0

Byte Enable 1

Byte Enable 1

Don’t care

Bus
Transaction

Don’t care

Don’t careAddress

Bus
Command

Bus Length
(= 1)

Don’t care

Don’t care

l_data_out[31:0] Don’t care Data 1 Don’t care

Data
Parity 1

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 33 PCI IP Core User’s Guide

Table 2-11. 32-bit Master Single Read Transaction with a 32-Bit Local Interface

CLK Phase Description

1 Idle

The lm_req32n signal is asserted by the master application logic on the Local Master interface
for the 32-bit data transaction request. The Local Master interface drives the PCI starting
address, the bus command, and the burst transaction length during the same clock cycle on
l_ad_in, lm_cben_in and lm_burst_length, respectively.

2 Idle The Core's Local Master Interface detects the asserted lm_req32n and asserts reqn to
request the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core starts the bus transactions. The
Core asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req32n and gntn were asserted on the previous cycle, lm_status[3:0] is
changed to ‘Address Loading’ to indicate the starting address, the bus command, and the burst
length are being latched.

6 Address

The Core asserts framen to start transaction and the local master de-asserts lm_req32n
when the previous lm_status[3:0] was ‘Address Loading’ and if it doesn’t want to request
fast back-to-back PCI bus transaction.
Since lm_status[3:0] was ‘Address Loading’ on the previous cycle. The Core drives the PCI
starting address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it
outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data
phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides the byte enables on lm_cben_in[3:0]. Asserting lm_rdyn also
means the local master is ready to read data. If it is not ready to read data, it keeps lm_rdyn de-
asserted until it is ready.

7 Turn around

The Core de-asserts reqn when framen was asserted and lm_req32n was de-asserted on the
previous cycle.

The Core tri-states the ad[31:0] lines and drives the byte enables (Byte Enable 1). Since
lm_rdyn was asserted on the previous cycle, it asserts irdyn to indicate it is ready to read
data. Because this is a single data phase transaction, the master de-asserts framen simultane-
ously.

The target asserts devseln to claim the transaction.

8 Data 1

The Core de-asserts lm_gntn to follow gntn.

The target asserts trdyn and puts Data 1 on ad[31:0].

If the local master is ready to read the first DWORD, lm_rdyn remains asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

9 Turn around

The Core relinquishes control of framen and cben. It de-asserts irdyn and changes the status
of lm_status[3:0] into ‘Bus Termination’ with lm_termination as ‘Normal Termination’
because both trdyn and irdyn were asserted during the last cycle.

Since the previous data phase was completed, the Core transfers Data 1 on
l_data_out[31:0] and decreases the lm_burst_cnt to zero.

The target relinquishes control of ad[31:0]. It de-asserts devseln and trdyn.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_data_xfern to the local master to signify Data 1 is available on l_data_out[31:0]. With
lm_data_xfern asserted, the local master safely reads Data 1.

10 Idle The master relinquishes control of irdyn and de-asserts lm_data_xfern, and the local mas-
ter de-asserts lm_rdyn.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 34 PCI IP Core User’s Guide

Figure 2-8 illustrates a basic 32-bit write transaction. Table 2-12 gives a clock-by-clock description of the 32-bit
write transaction.

Figure 2-8. 32-bit Master Single Write Transaction with a 32-bit Local Interface
1 2 3 4 5 6 7 8 9 10

Address
Loading

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

reqn

gntn

lm_gntn

lm_req32n

l_ad_in[31:0]

lm_rdyn

lm_data_xfern

lm_cben_in[3:0]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

AddressDon’t care Data 1

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care
Bus Length

(= 1) 0

Don’t care

Bus
Transaction

Don’t care

Don’t careAddressDon’t care

Bus
Command

Bus Length
(= 1)

Don’t care

Don’t care

Don’t care

Don’t care Data Parity 1

Data 1

Byte
Enable 1

Byte
Enable 1

11

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 35 PCI IP Core User’s Guide

64-Bit PCI Master with a 64-Bit Local Bus
This section discusses read and write transactions for a PCI IP core configured with a 64-bit PCI bus and a 64-bit
local bus. The PCI Specification requires all 64-bit PCI master devices to execute both 64-bit and 32-bit transac-
tions. The 32-bit transactions for the 32-bit Core, described in the previous section, are similar to the 32-bit transac-
tions for the 64-bit PCI IP core configuration.

The 64-bit memory read transaction is similar to the 32-bit memory read transaction with the exception of additional
PCI signals required for 64-bit signaling. Figure 2-9 and Table 2-13 illustrate a basic 64-bit read transaction.

Table 2-12. 32-bit Master Single Write Transaction with a 32-bit Local Interface

CLK Phase Description

1 Idle

The lm_req32n signal is asserted by the master application logic on the Local Master interface for
the 32-bit data transaction request. The Local Master interface drives the PCI starting address, the
bus command, and the burst transaction length during the same clock cycle on l_ad_in,
lm_cben_in and lm_burst_length, respectively.

2 Idle The Core's Local Master Interface detects the asserted lm_req32n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core is going to start the bus transactions.
The Core asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req32n and gntn were asserted on the previous cycle, lm_status[3:0] is changed
to ‘Address Loading’ to indicate the starting address, the bus command and the burst length are
being latched.

6 Address

The local master de-asserts lm_req32n when the previous lm_status[3:0] was ‘Address
Loading’ and if it doesn’t want to request another PCI bus transaction.

The Core asserts framen to initiate the 32-bit write transaction when gntn was asserted and
lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the PCI starting
address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it outputs
lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides Data 1 on l_ad_in[31:0] and the byte enables on
lm_cben_in[3:0]. And the Core asserts lm_data_xfern to the local master to signify these
data and byte enables are being read and will be transferred to the PCI bus.

Asserting lm_rdyn means the local master is ready to write data. If it is not, it keeps lm_rdyn de-
asserted until it is ready.

7 Wait

If the target completes the fast decode and is ready to receive 32-bit data, it asserts devseln and
trdyn.

The Core de-asserts reqn when framen was asserted and lm_req32n was de-asserted on the
previous cycle.

With lm_data_xfern asserted on the previous cycle that was the address phase, the local mas-
ter increments the address counter while the Core transfers Data 1 and the byte enables to
ad[31:0] and cben[3:0].

8 Data 1
The Core de-asserts lm_gntn to follow gntn. Since the transaction only has one data, the Core
asserts irdyn and de-asserts framen, Data 1 and the byte enables are kept on the PCI bus, the
first data phase is completed.

9 Turn around

The Core relinquishes control of framen, ad and cben. It de-asserts irdyn, decreases
lm_burst_cnt to zero and changes lm_status[3:0] into ‘Bus Termination’ with
lm_termination as ‘Normal Termination’ because both trdyn and irdyn were asserted last
cycle. The target de-asserts devseln, ackn and trdyn.

10 Idle The Core relinquishes control of irdyn and par.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 36 PCI IP Core User’s Guide

Figure 2-9. 64-bit Master Single Read Transaction with a 64-bit Local Interface
1 2 3 4 5 6 7 8 9 10 11

Address
Loading

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

reqn

gntn

req64n

ad[63:32]

cben[7:4]

lm_gntn

lm_req64n

l_ad_in[31:0]

lm_rdyn

lm_ldata_xfern

lm_64bit_transn

lm_hdata_xfern

lm_cben_in[3:0]

lm_cben_in[7:4]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

par64

AddressDon’t care Data 1

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care

Don’t care

Bus Length
(= 1) 0

Byte Enable 1

Byte Enable 1

Byte Enable 2

Don’t care

Bus
Transaction

Don’t care

Don’t careAddress

Bus
Command

Bus Length
(= 1)

Don’t care

Don’t care

Don’t care

Byte Enable 2

Don’t care

l_data_out[31:0]

l_data_out[63:32] Don’t care

Don’t care Data 1 Don’t care

Data Parity 1

Data 2

Data Parity 2

Data 2 Don’t care

Don’t care

Don’t care

Don’t care

12

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 37 PCI IP Core User’s Guide

Table 2-13. 64-bit Master Single Read Transaction with a 64-bit Local Interface

CLK Phase Description

1 Idle
The local master asserts lm_req64n for the 64-bit data transaction request. It also puts the PCI
starting address, the bus command, and the burst length during the same clock cycle on
l_ad_in, lm_cben_in, and lm_burst_length, respectively.

2 Idle The Core's Local Master Interface detects the asserted lm_req64n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core is going to start the bus transactions.
The master asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req64n and lm_gntn are asserted on the previous cycle, lm_status[3:0] is
changed to ‘Address Loading’ to indicate the starting address, the bus command and the burst
length are latched.

6 Address

The local master de-asserts lm_req64n when the previous lm_status[3:0] was ‘Address
Loading’ and if it doesn’t want to request another PCI bus transaction.

The Core asserts framen and req64n to initiate the 64-bit read transaction when gntn was still
asserted and lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the
PCI starting address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it
outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data
phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides the byte enables on lm_cben_in[7:0]. Asserting lm_rdyn also
means the local master is ready to read data for the single data transaction. If it is not ready to
read data, it keeps lm_rdyn de-asserted until it is ready.

7 Turn around

The Core de-asserts reqn when framen was asserted but lm_req64n was de-asserted on the
previous cycle. The target asserts devseln and ack64n to indicate it acknowledges the 64-bit
transaction. The Core tri-states the ad[63:0] lines and drives the byte enables (Byte Enable 1
and 2).

8 Wait

The Core asserts lm_64bit_transn to indicate the current data transaction is 64 bits wide. It
de-asserts lm_gntn to follow gntn.

The target asserts trdyn and puts Data 1 and 2 on ad[63:0].

If the local master is ready to read the 64-bit word (QWORD), it keeps lm_rdyn asserted.

9 Data 1 and 2
Since lm_rdyn was asserted on the previous cycle, it asserts irdyn to indicate it is ready to
read data. Since both irdyn and trdyn are asserted, the first data phase is completed on this
cycle.

10 Turn around

Since the previous data phase was completed, the Core transfers Data 1 and 2 on
l_data_out[63:0] and decreases the lm_burst_cnt to zero.

The Core relinquishes control of framen, req64n and cben. It de-asserts irdyn and changes
lm_status[3:0] into ‘Bus Termination’ with lm_termination as ‘Normal Termination’
because both trdyn and irdyn were asserted last cycle.

The target relinquishes control of ad[63:0]. It de-asserts devseln, ack64n and trdyn.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_ldata_xfern and lm_hdata_xfern to the local master to signify Data 1 and 2 are avail-
able on l_data_out[63:0]. With lm_ldata_xfern and lm_hdata_xfern asserted, the
local master safely reads Data 1 and 2.

11 Idle
The Core relinquishes control of irdyn and de-asserts lm_ldata_xfern and
lm_hdata_xfern, and the local master de-asserts lm_rdyn since all of the burst data have
been read.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 38 PCI IP Core User’s Guide

The 64-bit memory write transaction is similar to the 32-bit target write transaction with additional PCI signals
required for 64-bit signaling. Figure 2-10 and Table 2-14 show a basic 64-bit write transaction.

Figure 2-10. 64-bit Master Single Write Transaction with a 64-bit Local Interface
1 2 3 4 5 6 7 8 9 10 11 12

Address
Loading

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

reqn

gntn

req64n

ad[63:32]

cben[7:4]

lm_gntn

lm_req64n

l_ad_in[31:0]

lm_rdyn

lm_ldata_xfern

lm_64bit_transn

lm_hdata_xfern

lm_cben_in[3:0]

lm_cben_in[7:4]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

par64

AddressDon’t care Data 1

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care

Don’t care

Bus Length
(= 1) 0

Don’t care

Bus
Transaction

Don’t care

Don’t careAddress

Bus
Command

Bus Length
(= 1)

Don’t care

Don’t care Data Parity 1

Data 2

Data Parity 2

Byte Enable 1

Byte Enable 2

Data 1

Data 2 Don’t care

Don’t careByte
Enable 1

Byte
Enable 2 Don’t care

Don’t care

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 39 PCI IP Core User’s Guide

Table 2-14. 64-bit Master Single Write Transaction with a 64-bit Local Interface

CLK Phase Description

1 Idle
The local master asserts lm_req64n for the 64-bit data transaction request. It also issues the PCI
starting address, the bus command and the burst length on l_ad_in, lm_cben_in and
lm_burst_length respectively on the same clock cycle.

2 Idle The Core's Local Master Interface detects the asserted lm_req64n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core is going to start the bus transactions.
The Core asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req64n and lm_gntn were asserted on the previous cycle, lm_status[3:0] is
changed to ‘Address Loading’ to indicate the starting address, the bus command and the burst
length are being latched.

6 Address

The local master de-asserts lm_req64n when the previous lm_status[3:0] was ‘Address
Loading’ and if it doesn’t want to request another PCI bus transaction.

The Core asserts framen and req64n to initiate the 64-bit write transaction when gntn was
asserted and lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the
PCI starting address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it
outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data
phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides Data 1 and Data 2 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0]. And the Core asserts lm_ldata_xfern and lm_hdata_xfern to the local
master to signify these data and byte enables are being read and will be transferred to the PCI
bus.

Asserting lm_rdyn means the local master is ready to write data. If it is not, it keeps lm_rdyn de-
asserted until it is ready.

7 Wait

The Core de-asserts reqn when framen was asserted and lm_req64n was de-asserted on the
previous cycle.

If the target completes the fast decode and is ready to receive 64-bit data, it asserts devseln,
ack64n and trdyn.

With lm_ldata_xfern and lm_hdata_xfern asserted on the previous cycle that was the
address phase, the local master increments the address counter while the Core transfers Data 1
and Data 2 and their byte enables to ad[63:0] and cben[7:0].

Because this is the first write data phase and devseln is just asserted, the master keeps framen
asserted and irdyn de-asserted to judge 64-bit or 32-bit transaction.

8 Wait
Since ack64n and trdyn are asserted on the previous cycle. The Core asserts
lm_64bit_transn to indicate the current data transaction is 64-bits wide. It de-asserts lm_gntn
to follow gntn.

9 Data 1 and 2
With lm_rdyn asserted in the previous cycle, the Core asserts irdyn and deasserts framen for
a single cycle transaction. Since both irdyn and trdyn are asserted, the data phase is com-
pleted on the cycle.

10 Turn around

The Core relinquishes control of framen, req64n, ad and cben. It de-asserts irdyn, decreases
‘lm_burst_cnt’ to zero and changes lm_status[3:0] into ‘Bus Termination’ with
lm_termination as ‘Normal Termination’ because both trdyn and irdyn were asserted last
cycle. The target de-asserts devseln, ack64n and trdyn.

11 Idle The Core relinquishes control of irdyn, par and par64.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 40 PCI IP Core User’s Guide

32-bit PCI Master with a 64-Bit Local Bus
This section discusses read and write transactions executed by the PCI IP core configured with a 32-bit PCI bus
and a 64-bit local bus. The 32-bit PCI master transactions, described in the 32-Bit PCI Master and 32-Bit Local Bus
section, are similar to these master transactions; however; the data is handled differently at the Local Master Inter-
face. Two 32-bit PCI data phases are required to transfer 64 bits of data to the Local Master Interface.

The Local Master Interface control latches the complete QWORD and routes the proper DWORD to the PCI data
bus. The lm_ldata_xfern and lm_hdata_xfern signals specify which DWORD is transferred.

If the starting address is aligned with QWORD, the first DWORD is assumed to be the lower DWORD of a QWORD
and is placed on the PCI data bus. Otherwise, the upper DWORD is placed on the PCI data bus.

The 64-bit memory read transaction is similar to the 32-bit target read transaction with additional PCI signals
required for 64-bit signaling. Figure 2-11 and Table 2-15 illustrate a basic 64-bit read transaction.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 41 PCI IP Core User’s Guide

Figure 2-11. 32-bit Master Single Read Transaction with a 64-bit Local Interface
1 2 3 4 5 6 7 8 9 10 11 12 13

Address
Loading

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

reqn

gntn

req64n

ad[63:32]

cben[7:4]

lm_gntn

lm_req64n

l_ad_in[31:0]

lm_rdyn

lm_ldata_xfern

lm_64bit_transn

lm_hdata_xfern

lm_cben_in[3:0]

lm_cben_in[7:4]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

par64

AddressDon’t care Data 1 Data 2

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care

Don’t care

Bus Length
(= 1) 0

Byte Enable 1

Byte Enable 1

Byte Enable 2

Don’t care

Bus
Transaction

Don’t care

Don’t careAddress

Bus
Command

Bus Length
(= 1)

2 1

Don’t care

Don’t care

Don’t care

Don’t care Don’t careByte
Enable 2

Don’t care

l_data_out[31:0]

l_data_out[63:32] Don’t care

Don’t care Data 1

Data 2 Don’t care

Don’t care

Data Parity 1 Data
Parity 2

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 42 PCI IP Core User’s Guide

Table 2-15. 32-bit Master Single Read Transaction with a 64-bit Local Interface

CLK Phase Description

1 Idle
The local master asserts lm_req64n for the 64-bit data transaction request. It also issues the PCI
starting address, the bus command and the burst length on l_ad_in, lm_cben_in and
lm_burst_length respectively on the same clock cycle.

2 Idle The Core's Local Master Interface detects the asserted lm_req64n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core is going to start the bus transactions.
The Core asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req64n and lm_gntn were asserted on the previous cycle, lm_status[3:0] is
changed to ‘Address Loading’ to indicate the starting address, the bus command and the burst
length are being latched.

6 Address

The local master de-asserts lm_req64n when the previous lm_status[3:0] was ‘Address
Loading’ and if it doesn’t want to request another PCI bus transaction.

The Core asserts framen and req64n initiate the 64-bit read transaction when gntn was still
asserted and lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the
PCI starting address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it
outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data
phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides the byte enables on lm_cben_in[7:0]. Asserting lm_rdyn also
means the local master is ready to read data. If it is not ready to read data, it keeps lm_rdyn de-
asserted until it is ready.

7 Turn around

The Core de-asserts reqn when framen was asserted but lm_req64n was de-asserted on the
previous cycle.

The Core tri-states the ad[63:0] lines and drives the byte enables (Byte Enable 1 and 2). Since
lm_rdyn was asserted on the previous cycle, it asserts irdyn to indicate it is ready to read data.

The target asserts devseln. Since the target is 32 bits, it doesn’t assert ack64n as devseln.

8 Wait

The Core de-asserts lm_gntn to follow gntn. The target asserts trdyn and puts Data 1
ad[31:0].

Since the Core detects the PCI bus transaction is 32 bits, it de-asserts lm_64bit_transn and
changes lm_burst_cnt to two. The transaction is changed from single cycle to burst cycle.

If the local master is ready to read the first DWORD, it keeps lm_rdyn asserted.

9 Data 1 The Core asserts irdyn and keeps framen asserted to signify the burst continues. Since both
irdyn and trdyn are asserted, the first data phase is completed on this cycle.

10 Data 2

Since the previous data phase was completed, the Core transfers Data 1 on l_data_out[31:0]
and decreases the lm_burst_cnt to one.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_ldata_xfern to the local master to signify Data is available on l_data_out[31:0]. With
lm_ldata_xfern asserted, the local master can safely read Data 1 and increment the address
counter.

If the local master keeps lm_rdyn asserted on the previous cycle, the Core keeps irdyn
asserted.

If the target is still ready to provide data, it keeps trdyn asserted and drives the next DWORD
(Data 2) on ad[31:0].

If the local master is ready to read the next DWORD, it keeps lm_rdyn asserted.

The Core keeps irdyn and de-asserts framen for the last data cycle.

Since both irdyn and trdyn are asserted, the second data phase is completed on this cycle.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 43 PCI IP Core User’s Guide

The 64-bit memory write transaction is similar to the 32-bit write transaction with additional PCI signals required for
64-bit signaling. Figure 2-12 and Table 2-16 show a basic 64-bit write transaction.

11 Turn around

Since the previous data phase was completed, the Core transfers Data 2 on
l_data_out[63:32] and decreases the lm_burst_cnt to zero.

The Core relinquishes control of framen, req64n and cben. It de-asserts irdyn and changes
lm_status[3:0] into ‘Bus Termination’ with lm_termination as ‘Normal Termination’
because both trdyn and irdyn were asserted last cycle.

The target relinquishes control of ad[31:0]. It de-asserts devseln and trdyn.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_hdata_xfern to the local master to signify Data 2 is available on l_data_out[63:32].
With lm_hdata_xfern asserted, the local master can safely read Data 2.

12 Idle The Core relinquishes control of irdyn and de-asserts lm_hdata_xfern, and the local master
de-asserts lm_rdyn since all of the burst data have been read.

Table 2-15. 32-bit Master Single Read Transaction with a 64-bit Local Interface (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 44 PCI IP Core User’s Guide

Figure 2-12. 32-bit Master Single Write Transaction with a 64-bit Local Interface
1 2 3 4 5 6 7 8 9 10 11 12 13

Address
Loading

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

reqn

gntn

req64n

ad[63:32]

cben[7:4]

lm_gntn

lm_req64n

l_ad_in[31:0]

lm_rdyn

lm_ldata_xfern

lm_64bit_transn

lm_hdata_xfern

lm_cben_in[3:0]

lm_cben_in[7:4]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

Data
Parity 1

par64

Data
Parity 2

AddressDon’t care Data 1 Data 2

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care 2

Don’t care

Bus Length
(= 1)

Data 2

0

Byte
Enable 1

Byte
Enable 2

Don’t care

Bus
Transaction

Don’t care

Don’t careData 1Address

Bus
Command

Bus Length
(= 1)

1

Don’t care

Don’t care

Don’t care

Don’t care Don’t care

Don’t care

Data 2

Don’t careByte
Enable 2

Don’t care

Byte Enable 1 Byte
Enable 2

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 45 PCI IP Core User’s Guide

Table 2-16. 32-bit Master Single Write Transaction with a 64-bit Local Interface

CLK Phase Description

1 Idle
The local master asserts lm_req64n for the master 64-bit data transaction request. It also issues
the PCI starting address, the bus command and the burst length on l_ad_in, lm_cben_in and
lm_burst_length respectively on the same clock cycle.

2 Idle The Core's Local Master Interface detects the asserted lm_req64n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core is going to start the bus transactions.
The Core asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req64n and gntn were asserted on the previous cycle, lm_status[3:0] is changed
to ‘Address Loading’ to indicate the starting address, the bus command and the burst length are
being latched.

6 Address

The local master de-asserts lm_req64n when the previous lm_status[3:0] was ‘Address
Loading’ and if it doesn’t want to request another PCI bus transaction.

The Core asserts framen and req64n to initiate the 64-bit write transaction when gntn was
asserted and lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the
PCI starting address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it
outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data
phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master should provide Data 1 and Data 2 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0]. The Core asserts lm_ldata_xfern and lm_hdata_xfern to the local
master to signify these data and byte enables are being read and will be transferred to the PCI
bus.

Asserting lm_rdyn means the local master is ready to write data. If it is not, it should keep
lm_rdyn de-asserted until it is ready.

7 Wait

If the target completes the fast decode and is ready to receive 32-bit data, it asserts devseln and
trdyn. But it doesn’t assert ack64n.

The Core de-asserts reqn when framen was asserted and lm_req64n was de-asserted on the
previous cycle.

With lm_data_xfern and lm_hdata_xfern asserted on the previous cycle that was the
address phase, the Core transfers Data 1, Data 2 and the byte enables to ad[63:0] and
cben[7:0].

8 Wait
The Core de-asserts lm_gntn to follow gntn. Since the Core detects the PCI bus transaction
width is 32 bits. It de-asserts lm_64bit_transn and changes lm_burst_cnt to two. The trans-
action is changed from a single cycle to a burst cycle.

9 Data 1

With both devseln and lm_rdyn asserted previous cycle, the Core asserts irdyn, and it pre-
pares for the 32-bit write burst.

Because the Core performs the burst transactions, it keeps framen asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

10 Data 2

Since the previous data phase was completed, the Core decreases lm_burst_cnt.

Since Data 1 PCI bus was read by the target, the Core transfers Data 2 and the byte enables to
ad[31:0] and cben[3:0].

With lm_rdyn asserted previous cycle, the Core keeps irdyn asserted. The Core de-asserts
framen for the last data cycle.

Since both irdyn and trdyn are asserted, the second data phase is completed on this cycle.

11 Turn around

The Core relinquishes control of framen, req64n, ad and cben. It de-asserts irdyn, decreases
lm_burst_cnt to zero and changes lm_status[3:0] into ‘Bus Termination’ with
lm_termination as ‘Normal Termination’ because both trdyn and irdyn were asserted last
cycle. The target de-asserts devseln and trdyn.

10 Idle The Core relinquishes control of irdyn par and par64.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 46 PCI IP Core User’s Guide

Configuration Read and Write Transactions
When operating as a PCI master, the PCI IP core supports Configuration cycles to CSR addresses 00h to FFh.
The Local Master Interface has full control of these types of accesses, which are similar to the memory transac-
tions described in earlier sections. The PCI IP core only supports 32-bit, single data phase transactions to the con-
figuration registers.

During a configuration access, the PCI master drives an address/data pin that is connected to the idsel signal for
all of the PCI target devices. For more information on the binding of the address/data signals to the idsel signal,
refer to the PCI Local Bus Specification, Revision 3.0.

PCI Master I/O Read and Write Transactions
The PCI IP core’s application executes I/O space transactions. Transactions to I/O address space are similar to the
basic memory transactions discussed in the Basic PCI Master Read and Write Transactions section.

By definition, read and write transactions to I/O space are executed using 32-bit PCI transactions only. Driving all
32 bits of the address and byte enables (cben[3:0]) is required.

Advanced Master Transactions
Most PCI applications require more than basic read and write transactions. For these applications, the PCI IP core
offers advanced features to handle the more difficult aspects of the PCI bus. The advanced features are used to
provide the PCI application with more flexibility and improve the overall PCI system performance.

Wait States
Care must be taken when processing wait states to be compliant with the PCI Local Bus Specification, Revision
3.0. Once a PCI master or a PCI target signals that it is ready to send or receive data, it must complete the current
PCI data phase. For example, if the PCI IP core, as a target, is ready to write data and the PCI master inserts wait
states, the PCI IP core must wait to write the data until the master is ready again. Additionally, if the PCI IP core
asserts trdyn for a data phase, it cannot insert any wait states until the next data phase. Coincident master and
target wait state insertion is also a possibility. Refer to the PCI Specification for more information regarding coinci-
dent wait state insertion.

Two types of wait states occur on the PCI bus: master wait state insertion and target wait state insertion. When the
PCI master inserts wait states, the PCI IP core must hold off data until the PCI master is ready to complete the data
phase. The PCI IP core inserts the second type of wait states. The back-end application controls the PCI IP core’s
wait state insertion via the Local Master Interface.

Figure 2-13 and Table 2-17 illustrate master-inserted and target-inserted wait states for read transactions. The fig-
ure illustrates the correlation between the PCI Interface and the Local Master Interface. The table gives a clock-by-
clock description of each event in the figure.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 47 PCI IP Core User’s Guide

Figure 2-13. 32-bit Master Read Transaction with Local Wait State

Table 2-17. 32-bit Master Read Transaction with Local Wait State

CLK
PCI Data

Phase Description

1 Idle

The lm_req32n signal is asserted on the Local Master interface, by the local master to request a
32-bit data transaction. The local master issues the PCI starting address, the bus command and
the burst length during the same clock cycle, to l_ad_in, lm_cben_in, and lm_burst_length,
respectively.

2 Idle The master detects the asserted lm_req32n and asserts reqn to request the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core starts the bus transactions. The Core
asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req32n and gntn were asserted on the previous cycle, lm_status[3:0] is changed
to ‘Address Loading’ to indicate the starting address, the bus command, and the burst length are
being latched.

1 2 3 4 5 6 7 8 9 10 11 12 13

Address
Loading

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

reqn

gntn

lm_gntn

lm_req32n

l_ad_in[31:0]

lm_rdyn

lm_data_xfern

lm_cben_in[3:0]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

AddressDon’t care Data 1 Data 3Data 2

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care 2Bus Length
(= 3) 0

Byte Enable 1

Byte Enable 1

Don’t care

Bus
Transaction

Don’t care

Don’t careAddress

Bus
Command

Bus Length
(= 3)

1

Don’t care

Don’t care

l_data_out[31:0] Don’t care Data 1 Data 3 Don’t care

Data
Parity 1 Data Parity 3Data

Parity 2

Data 2

14

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 48 PCI IP Core User’s Guide

6 Address

The Core asserts framen to start transaction and the local master de-asserts lm_req32n when
the previous lm_status[3:0] was ‘Address Loading’ and if it doesn’t want to request another
PCI bus transaction.

lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the PCI starting
address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it outputs
lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides the byte enables on lm_cben_in[3:0]. Asserting lm_rdyn also
means the local master is ready to read data. If it is not ready to read data, it keep lm_rdyn de-
asserted until it is ready.

7 Turn around

The Core de-asserts reqn when framen was asserted and lm_req32n was de-asserted on the
previous cycle.

The Core tri-states the ad[31:0] lines and drives the byte enables (Byte Enable 1). Since
lm_rdyn was asserted on the previous cycle, it asserts irdyn to indicate it is ready to read data.
Because this is not the last cycle transaction, the Core keeps framen.

The target asserts devseln to response the command.

8 Data 1

The Core de-asserts lm_gntn to follow gntn.

With the trdyn asserted, Data 1 is driven on to ad[31:0]. If the PCI IP core is ready to receive
data, irdyn remains asserted and it keeps the Byte Enables on cben[3:0].

The Local Master interface is ready to receive data, so it keeps lm_rdyn.

9 Data 2

If the PCI IP core is ready to receive data, it asserts irdyn and keeps the byte enables on
cben[3:0]. The target device drives Data 2 on the PCI bus.

Since the previous data phase was completed, the master transfers Data 1 on
l_data_out[31:0] and decreases lm_burst_cnt to two. The Core asserts lm_data_xfern
if lm_rdyn was asserted on the previous cycle.

The local master interface is not ready to receive next data, so it de-asserts lm_rdyn.

10 Master Wait

Since lm_rdyn was de-asserted on the previous cycle, the Core de-asserts irdyn to signify the
Core is inserting a wait state. The target device drives Data 3 on the PCI bus.

Since the previous data phase was completed, the Core transfers Data 2 on l_data_out[31:0]
and decreases lm_burst_cnt to one. The Core de-asserts lm_data_xfern if lm_rdyn wasn’t
asserted on the previous cycle.

The local master asserts lm_rdyn for being ready to receive data.

11 Data 3
The Core asserts irdyn and de-asserts framen for the last data phase. The target keeps
devseln, trdyn and Data 3 on PCI bus. The Core asserts lm_data_xfern if lm_rdyn was
asserted on the previous cycle. The local master asserts lm_rdyn for being ready to receive data.

12 Turn around

The Core de-asserts idyn, the target de-asserts both devseln and trdyn. The Core relin-
quishes control of framen, ad[31:0], and cben[3:0]. Since the previous data phase was com-
pleted, the Core transfers Data 1 on l_data_out[31:0] and decreases lm_burst_cnt to
zero. The Core asserts lm_data_xfern if lm_rdyn was asserted on the previous cycle.

The Core changes lm_status[3:0] into the ‘Bus Termination’ state with lm_termination as
‘Normal Termination’ because both trdyn and irdyn were asserted last cycle.

13 Idle The Core relinquishes control of irdyn.

Table 2-17. 32-bit Master Read Transaction with Local Wait State (Continued)

CLK
PCI Data

Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 49 PCI IP Core User’s Guide

Figure 2-14 and Table 2-18 show master-inserted and target-inserted wait states occurring on write transactions.
The figure illustrates the correlation of the PCI interface to the Local Master Interface. The table gives a clock-by-
clock description of each event in the figure.

Figure 2-14. 32-bit Master Write Transaction with Local Wait State

Table 2-18. 32-bit Master Write Transaction with Local Wait State

CLK
PCI Data

Phase Description

1 Idle

The lm_req32n signal is asserted on the Local Master interface by the local master to request for
32-bit data transaction. The local master issues the PCI starting address, the bus command, and
the burst length during the same clock cycle on l_ad_in, lm_cben_in and lm_burst_length,
respectively.

2 Idle The Core’s Local Master Interface detects the asserted lm_req32n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core is going to start the bus transactions.
The Core asserts lm_gntn to inform the local master that the bus request is granted.

1 2 3 4 5 6 7 8 9 10 11 12

Address
Loading

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

reqn

gntn

lm_gntn

lm_req32n

l_ad_in[31:0]

lm_rdyn

lm_data_xfern

lm_cben_in[3:0]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

AddressDon’t care Data 1 Data 3Data 2

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care 2
Bus Length

(= 3) 0

Don’t care

Bus
Transaction

Don’t care

Don’t careAddress

Bus
Command

Bus Length
(= 3)

1

Don’t care

Don’t care Data Parity 1 Data
Parity 3Data Parity 2

Data 1 Data 3Data 2

Byte
Enable 1

Byte
Enable 3

Byte
Enable 2

Byte
Enable 1

Byte
Enable 3

Byte
Enable 2

13 14

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 50 PCI IP Core User’s Guide

5 Idle
If both lm_req32n and gntn were asserted on the previous cycle, lm_status[3:0] is changed
to ‘Address Loading’ to indicate the starting address, the bus command and the burst length are
being latched.

6 Address

The local master de-asserts lm_req32n when the previous lm_status[3:0] was ‘Address
Loading’ and if it doesn’t want to request another PCI bus transaction.

The Core asserts framen to initiate the 32-bit write transaction when gntn was asserted and
lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the PCI starting
address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it outputs
lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle, the local master provides Data 1 on
l_ad_in[31:0] and byte enable 1 on lm_cben_in[3:0]. And the Core asserts
lm_data_xfern to the local master to signify these data and byte enables are being read and will
be transferred to the PCI bus.

Asserting lm_rdyn means the local master is ready to write data. If it is not, it keeps lm_rdyn de-
asserted until it is ready.

7 Wait

If the target completes the fast decode and is ready to receive 32-bit data, it asserts devseln and
trdyn.

The Core de-asserts reqn when framen was asserted and lm_req32n was de-asserted on the
previous cycle.

With lm_data_xfern asserted on the previous cycle that was the address phase, the local mas-
ter increments the address counter while the Core transfers Data 1 and the byte enables to
ad[31:0] and cben[3:0].

Because lm_rdyn was asserted on the previous cycle, the local master provides Data 2 on
l_ad_in[31:0] and byte enable 2 on lm_cben_in[3:0]. And the Core asserts
lm_data_xfern to the local master to signify these data and byte enables are being read and will
be transferred to the PCI bus. Data 2 will be buffered and put on PCI bus after Data 1 phase fin-
ished.

The local master de-asserts lm_rdyn to inform the Core it isn’t ready for Data 3.

8 Data 1

The Core de-asserts lm_gntn to follow gntn. It asserts irdyn. Framen, Data 1 and the byte
enable 1 are kept on the PCI bus. Since the irdyn and trdyn are asserted, the first data phase is
completed. The Core de-asserts lm_data_xfern if lm_rdyn was de-asserted on the previous
cycle.

9 Data 2

The Core asserted irdyn if it has gotten Data 2 from local master interface. It transfers Data 2
and byte enable 2 on ad[31:0] and cben[3:0] respectively.

The target keeps devseln and trdyn. Data 2 phase is completed.

Since the previous data phase was completed, the Core decreases lm_burst_cnt to two.

Lm_rdyn is asserted to ready for Data3.

10 Wait

Since the Core has not gotten Data 3 from local master interface. It de-asserts irdyn to inform a
wait cycle.

Because lm_rdyn was asserted on the previous cycle, the local master provides Data 3 on
l_ad_in[31:0] and byte enable 3 on lm_cben_in[3:0]. And the Core asserts
lm_data_xfern to local master to signify these data and byte enables are being read and will be
transferred to the PCI bus.

Since the previous data phase was completed, the Core decreases lm_burst_cnt to one.

11 data 3 The Core asserts irdyn and de-asserts framen to inform the last data phase. It transfer Data 3
and byte enable The third data phase is completed.

12 Turn around

The Core relinquishes control of framen, ad and cben. It de-asserts irdyn, decreases
lm_burst_cnt to zero and changes lm_status[3:0] into ‘Bus Termination’ with
lm_termination as ‘Normal Termination’ because both trdyn and irdyn were asserted last
cycle.

13 Idle The Core relinquishes control of irdyn, par.

Table 2-18. 32-bit Master Write Transaction with Local Wait State (Continued)

CLK
PCI Data

Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 51 PCI IP Core User’s Guide

Burst Read and Write Master Transactions
Burst read and write transactions to memory addresses are used to achieve the high throughput associated with
the PCI bus. The PCI IP core supports the zero-wait state and burst data transfers for the following commands:

• Memory Read

• Memory Write

• Memory Read Multiple

• Dual Address Cycle

• Memory Read Line

• Memory Write and Invalidate

The burst data transfers are described based on the different PCI and Local bus configurations supported by the
PCI IP core. Although the fundamentals of burst data transfers are similar for all PCI IP core configurations, differ-
ent bus configurations require slightly different Local Master Interface signaling. The PCI IP core does not execute
burst cycles for Configuration Space or I/O space accesses. Refer to the following sections for more information on
bursting with specific PCI IP core configurations:

• 32-Bit PCI Master and a 32-Bit Local Bus

• 64-Bit PCI Master with a 64-Bit Local Bus

• 32-Bit PCI Master with a 64-Bit Local Bus

32-Bit PCI Master and a 32-bit Local Bus
The following section discusses read and write burst data transfers for a PCI IP core configured with a 32-bit PCI
bus and a 32-bit Local bus. Figure 2-15 and Table 2-19 show a 32-bit burst data transfer during a read transaction.
The figure illustrates how the PCI interface correlates to the Local Master Interface. The table gives a clock-by-
clock description of each event that occurs in the figure.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 52 PCI IP Core User’s Guide

Figure 2-15. 32-bit Master Burst Read Transaction with a 32-bit Local Interface

Table 2-19. 32-bit Master Burst Read Transaction with a 32-bit Local Interface

CLK Phase Description

1 Idle
The lm_req32n signal is asserted by the local master to request a 32-bit data transaction. The
local master issues the PCI starting address, the bus command, and the burst length during the
same clock cycle to l_ad_in, lm_cben_in, and lm_burst_length, respectively.

2 Idle The Core’s Local Master Interface detects the asserted lm_req32n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core starts the bus transactions. The mas-
ter asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req32n and gntn were asserted on the previous cycle, lm_status[3:0] is
changed to ‘Address Loading’ to indicate the starting address, the bus command, and the burst
length are being latched.

1 2 3 4 5 6 7 8 9 10 11 12 13

Address
Loading

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

reqn

gntn

lm_gntn

lm_req32n

l_ad_in[31:0]

lm_rdyn

lm_data_xfern

lm_cben_in[3:0]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

AddressDon’t care Data 1 Data 3Data 2

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care 2Bus Length
(= 3) 0

Byte Enable 1

Byte Enable 1

Don’t care

Bus
Transaction

Don’t care

Don’t careAddress

Bus
Command

Bus Length
(= 3)

1

Don’t care

Don’t care

l_data_out[31:0] Don’t care Data 1 Data 3 Don’t care

Data
Parity 1

Data
Parity 3

Data
Parity 2

Data 2

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 53 PCI IP Core User’s Guide

6 Address

The Core asserts framen to start transaction and the local master de-asserts lm_req32n when
the previous lm_status[3:0] was ‘Address Loading’ and if it doesn’t want to request another
PCI bus transaction.

lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the PCI starting
address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it outputs
lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides the byte enables on lm_cben_in[3:0]. Asserting lm_rdyn also
means the local master is ready to read data. If it is not ready to read data, it keeps lm_rdyn de-
asserted until it is ready.

7 Turn around

The Core de-asserts reqn when framen was asserted but lm_req32n was de-asserted on the
previous cycle.

The Core tri-states the ad[31:0] lines and drives the byte enables (Byte Enable 1). Since
lm_rdyn was asserted on the previous cycle, it asserts irdyn to indicate it is ready to read data.

Because the Core performs the burst transactions, it keeps framen asserted.

8 Data 1

It de-asserts lm_gntn to follow gntn.

The target asserts trdyn and puts Data 1 on ad[31:0].

With lm_rdyn asserted on the previous cycle, the Core keeps irdyn asserted.

The Core keeps framen asserted to the target to signify the burst continues.

If the local master is ready to read the first DWORD, it keeps lm_rdyn asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

9 Data 2

Since the previous data phase was completed, the Core transfers Data 2 on
l_data_out[31:0] and decreases the lm_burst_cnt.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_data_xfern the local master to signify Data 1 are available on l_data_out[31:0]. With
lm_data_xfern asserted, the local master can safely read Data 1 and increment the address
counter.

If the local master keeps lm_rdyn asserted on the previous cycle, the Core keeps irdyn
asserted.

The Core keeps framen asserted to the target to signify the burst continues.

If the target is still ready to provide data, it keeps trdyn asserted and drives the next DWORD
(Data 2) on ad[31:0].

If the local master is ready to read the next DWORD, it keeps lm_rdyn asserted.

Since both irdyn and trdyn are asserted, the second data phase is completed on this cycle.

10 Data 3

Since the previous data phase was completed, the Core transfers Data 3 on
l_data_out[31:0] and decreases the lm_burst_cnt.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_data_xfern to the local master to signify Data 2 are available on l_data_out[31:0].
With lm_data_xfern asserted, the local master can safely read Data 2 and increment the
address counter.

With lm_rdyn asserted on the previous cycle, the Core keeps irdyn asserted.

Because the current transaction is the last, the master de-asserts framen to signal the end of the
burst.

If the target is still ready to provide data, it keeps trdyn asserted and drives the next DWORD
(Data 3) on ad[31:0]. If the local master is ready to read the next DWORD, it keeps lm_rdyn
asserted.

Since both irdyn and trdyn are asserted, the third data phase is completed on this cycle.

Table 2-19. 32-bit Master Burst Read Transaction with a 32-bit Local Interface (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 54 PCI IP Core User’s Guide

Figure 2-16 and Table 2-20 show an example of a 32-bit burst data transfer during a write transaction with the
assumption that the device select timing is set to slow and wait states are not inserted. The figure illustrates how
the PCI interface correlates to the Local Master Interface. The table gives a clock-by-clock description of each
event that occurs in the figure.

11 Turn around

Since the previous data phase was completed, the Core transfers Data 3 on
l_data_out[31:0] and decreases the lm_burst_cnt to zero.

The Core relinquishes control of framen and cben. It de-asserts irdyn and changes
lm_status[3:0] into ‘Bus Termination’ with lm_termination as ‘Normal Termination’
because both trdyn and irdyn were asserted last cycle.

The target relinquishes control of ad[31:0]. It de-asserts devseln and trdyn.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_data_xfern to the local master to signify Data 3 are available on l_data_out[31:0].
With lm_data_xfern asserted, the local master can safely read Data 3.

12 Idle The Core relinquishes control of irdyn and de-asserts lm_data_xfern, and the local master
de-asserts lm_rdyn since all of the burst data have been read.

Table 2-19. 32-bit Master Burst Read Transaction with a 32-bit Local Interface (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 55 PCI IP Core User’s Guide

Figure 2-16. 32-bit Master Burst Write Transaction with a 32-bit Local Interface

Table 2-20. 32-bit Master Burst Write Transaction with a 32-Bit Local Interface

CLK Phase Description

1 Idle
The lm_req32n signal is asserted by the local master to request a 32-bit data transaction. The
local master issues the PCI starting address, the bus command, and the burst length during the
same clock cycle on l_ad_in, lm_cben_in and lm_burst_length, respectively.

2 Idle The Core’s Local Master Interface detects the asserted lm_req32n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core is going to start the bus transactions.
The Core asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req32n and gntn were asserted on the previous cycle, lm_status[3:0] is changed
to ‘Address Loading’ to indicate the starting address, the bus command and the burst length are
being latched.

1 2 3 4 5 6 7 8 9 10 11 12

Address
Loading

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

reqn

gntn

lm_gntn

lm_req32n

l_ad_in[31:0]

lm_rdyn

lm_data_xfern

lm_cben_in[3:0]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

AddressDon’t care Data 1 Data 3Data 2

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care 2
Bus Length

(= 3) 0

Don’t care

Bus
Transaction

Don’t care

Don’t careAddressDon’t care

Bus
Command

Bus Length
(= 3)

Don’t care

Don’t care

1

Don’t care

Don’t care Data Parity 1 Data
Parity 3

Data
Parity 2

Data 1 Data 3Data 2

Byte
Enable 1

Byte
Enable 3

Byte
Enable 2

Byte
Enable 1

Byte
Enable 3

Byte
Enable 2

13

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 56 PCI IP Core User’s Guide

6 Address

The local master de-asserts lm_req32n when the previous lm_status[3:0] was ‘Address
Loading’ and if it doesn’t want to request another PCI bus transaction.

The Core asserts framen to initiate the 32-bit write transaction when gntn was asserted and
lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the PCI starting
address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it outputs
lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master should provide Data 1 on l_ad_in[31:0] and the byte enables on
lm_cben_in[3:0]. And the Core asserts lm_data_xfern to the local master to signify these
data and byte enables are being read and will be transferred to the PCI bus.

Asserting lm_rdyn means the local master is ready to write data. If it is not, it should keep
lm_rdyn de-asserted until it is ready.

7 Wait

The Core de-asserts reqn after the assertion of framen.

lm_data_xfern is asserted to signify Data 2 on l_ad_in[31:0] and the byte enables on
lm_cben_in[3:0] are being read and will be transferred to the PCI bus.

If the local master is ready to provide the next DWORD, it keeps lm_rdyn asserted.

8 Data 1

The Core keeps framen asserted and asserts irdyn. It also de-asserts lm_data_xfern to the
local master to signify Data 3 on l_ad_in[31:0] is not read.

If the local master is ready to provide the next DWORD, it keeps lm_rdyn asserted.

Because the Core performs the burst transactions, it keeps framen asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

9 Data 2

Since the previous data phase was completed, the Core decreases lm_burst_cnt.

Since Data 1 on PCI bus were read by the target, the Core transfers Data 2 and their byte enables
to ad[31:0] and cben[3:0].

With lm_rdyn asserted previous cycle, the Core keeps irdyn asserted.

Because both lm_rdyn and trdyn were asserted on the previous cycle, the Core asserts
lm_data_xfern to the local master to signify Data 3 on l_ad_in[31:0] and the byte enables
on lm_cben_in[3:0] are being read and will be transferred to the PCI bus.

Because Data 3 are the last data, the local master de-asserts lm_rdyn.

Since both irdyn and trdyn are asserted, the second data phase is completed on this cycle.

10 Data 3

Since the previous data phase was completed, the Core decreases lm_burst_cnt.

Since Data 2 on the PCI bus were read, the Core transfers Data 3 and their byte enables to
ad[31:0] and cben[3:0].

Because the current transaction is the last, the Core de-asserts framen to signal the end of the
burst, also it de-asserts lm_data_xfern.

Since both irdyn and trdyn are asserted, the third data phase is completed on this cycle.

11 Turn around

The Core relinquishes control of framen, ad and cben. It de-asserts irdyn, decreases
lm_burst_cnt to zero and changes lm_status[3:0] into ‘Bus Termination’ with
lm_termination as ‘Normal Termination’ because both trdyn and irdyn were asserted last
cycle. The target de-asserts devseln and trdyn.

12 Idle The Core relinquishes control of irdyn and par.

Table 2-20. 32-bit Master Burst Write Transaction with a 32-Bit Local Interface (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 57 PCI IP Core User’s Guide

64-bit PCI Master with a 64-bit Local Bus
The following discusses read and write burst transactions for the PCI IP core configured with a 64-bit PCI bus and
a 64-bit Local bus. Figure 2-17 and Table 2-21 illustrate a 64-bit burst write transaction. The figure shows how the
PCI Interface correlates to the Local Master Interface. The table gives a clock-by-clock description of each event
that occurs in the figure.

The 32-bit burst transaction is similar to a 32-bit burst transaction for the 64-bit PCI IP core configuration. When the
64-bit target core responds to a 32-bit burst transaction, the upper 32 bits of the data bus are ignored.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 58 PCI IP Core User’s Guide

Figure 2-17. 64-bit Master Burst Read Transaction with a 64-bit Local Interface
1 2 3 4 5 6 7 8 9 10 11 12 13

Address
Loading

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

reqn

gntn

req64n

ad[63:32]

cben[7:4]

lm_gntn

lm_req64n

l_ad_in[31:0]

lm_rdyn

lm_ldata_xfern

lm_64bit_transn

lm_hdata_xfern

lm_cben_in[3:0]

lm_cben_in[7:4]

lm_status[2:0]

lm_burst_cnt[12:0]

par Address
Parity

par64

AddressDon’t care Data 1 Data 5Data 3

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care

Don’t care

2Bus Length
(= 3) 0

Byte Enable 1

Byte Enable 1

Byte Enable 2

Don’t care

Bus
Transaction

Don’t care

Don’t careAddress

Bus
Command

Bus Length
(= 3)

1

Don’t care

Don’t care

Don’t care

Byte Enable 2

Don’t care

l_data_out[31:0]

l_data_out[63:32] Don’t care

Don’t care Data 1 Data 3 Data 5 Don’t care

Data
Parity 1

Data
Parity 5

Data
Parity 3

Data 2 Data 6Data 4

Data
Parity 2

Data
Parity 6

Data
Parity 4

Data 2 Data 4 Data 6 Don’t care

Don’t care

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 59 PCI IP Core User’s Guide

Table 2-21. 64-bit Master Burst Read Transaction with a 64-bit Local Interface

CLK Phase Description

1 Idle
The local master asserts lm_req64n to request 64-bit wide data transaction. It also issues the
PCI starting address, the bus command and the burst length will be available on l_ad_in,
lm_cben_in and lm_burst_length respectively on the same clock cycle.

2 Idle The Core’s Local Master Interface detects the asserted lm_req64n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core is going to start the bus transactions.
The Core asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req64n and lm_gntn were asserted on the previous cycle, lm_status[3:0] is
changed to ‘Address Loading’ to indicate the starting address, the bus command and the burst
length are being latched.

6 Address

The local master de-asserts lm_req64n when the previous lm_status[3:0] was ‘Address
Loading’ and if it doesn’t want to request another PCI bus transaction.

The Core asserts framen and req64n to initiate the 64-bit read transaction when gntn was still
asserted and lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the
PCI starting address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it
outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data
phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides the byte enables on lm_cben_in[7:0]. Asserting lm_rdyn also
means the local master is ready to read data. If it is not ready to read data, it keeps lm_rdyn de-
asserted until it is ready.

7 Turn around

The Core de-asserts reqn when framen was asserted but lm_req64n was de-asserted on the
previous cycle.

The target asserts devseln and ack64n to indicate it acknowledges the 64-bit transaction. The
Core tri-states the ad[63:0] lines and drives the byte enables (Byte Enable 1 and 2). Since
lm_rdyn was asserted on the previous cycle, it asserts irdyn to indicate it is ready to read data.

Because the Core performs burst data transfer, it keeps framen asserted.

8 Data 1 and 2

The Core asserts lm_64bit_transn to indicate the current data transaction is 64 bits wide. It
de-asserts lm_gntn to follow gntn.

The target asserts trdyn and puts Data 1 and 2 on ad[63:0].

With lm_rdyn asserted on the previous cycle, the Core keeps irdyn asserted.

The Core keeps framen asserted to the target to signify the burst continues. It de-asserts
lm_gntn to follow gntn.

If the local master is ready to read the first QWORD, it keeps lm_rdyn asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

9 Data 3 and 4

Since the previous data phase was completed, the Core transfers Data 1 and 2 on
l_data_out[63:0] and decreases the lm_burst_cnt.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_ldata_xfern and lm_hdata_xfern to the local master to signify Data 1 and 2 are avail-
able on l_data_out[63:0]. With lm_ldata_xfern and lm_hdata_xfern asserted, the
local master can safely read Data 1 and 2 and increment the address counter.

If the local master keeps lm_rdyn asserted on the previous cycle, the Core keeps irdyn
asserted.

The Core keeps framen asserted to the target to signify the burst continues.

If the target is still ready to provide data, it keeps trdyn asserted and drives the next QWORD
(Data 3 and 4) on ad[63:0].

If the local master is ready to read the next QWORD, it keeps lm_rdyn asserted.

Since both irdyn and trdyn are asserted, the second data phase is completed on this cycle.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 60 PCI IP Core User’s Guide

10 Data 5 and 6

Since the previous data phase was completed, the Core transfers Data 3 and 4 on
l_data_out[63:0] and decreases the lm_burst_cnt.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_ldata_xfern and lm_hdata_xfern to the local master to signify Data 3 and 4 are avail-
able on l_data_out[63:0]. With lm_ldata_xfern and lm_hdata_xfern asserted, the
local master can safely read Data 3 and 4 and increment the address counter.

With lm_rdyn asserted on the previous cycle, the Core keeps irdyn asserted.

Because the current transaction is the last, the Core de-asserts framen and req64n to signal the
end of the burst.

If the target is still ready to provide data, it keeps trdyn asserted and drives the next QWORD
(Data 5 and 6) on ad[63:0].

If the local master is ready to read the next QWORD, it keeps lm_rdyn asserted.

Since both irdyn and trdyn are asserted, the third data phase is completed on this cycle.

11 Turn around

Since the previous data phase was completed, the Core transfers Data 5 and 6 on
l_data_out[63:0] and decreases the lm_burst_cnt to zero.

The Core relinquishes control of framen, req64n and cben. It de-asserts irdyn and changes
lm_status[3:0] into ‘Bus Termination’ with lm_termination as ‘Normal Termination’
because both trdyn and irdyn were asserted last cycle.

The target relinquishes control of ad[63:0]. It de-asserts devseln, ack64n and trdyn.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_ldata_xfern and lm_hdata_xfern to the local master to signify Data 5 and 6 are avail-
able on l_data_out[63:0]. With lm_ldata_xfern and lm_hdata_xfern asserted, the
local master can safely read Data 5 and 6.

12 Idle
The Core relinquishes control of irdyn and de-asserts lm_ldata_xfern and
lm_hdata_xfern, and the local master de-asserts lm_rdyn since all of the burst data have
been read.

Table 2-21. 64-bit Master Burst Read Transaction with a 64-bit Local Interface (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 61 PCI IP Core User’s Guide

Figure 2-18 and Table 2-22 illustrate a 64-bit burst write transaction. The figure shows how the PCI interface corre-
lates to the Local Master Interface. The table gives a clock-by-clock description of each event that occurs in the fig-
ure.

Figure 2-18. 64-bit Master Burst Write Transaction with a 64-bit Local Interface
1 2 3 4 5 6 7 8 9 10 11 12

Address
Loading

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

reqn

gntn

req64n

ad[63:32]

cben[7:4]

lm_gntn

lm_req64n

l_ad_in[31:0]

lm_rdyn

lm_ldata_xfern

lm_64bit_transn

lm_hdata_xfern

lm_cben_in[3:0]

lm_cben_in[7:4]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

par64

AddressDon’t care Data 1 Data 5Data 3

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care

Don’t care

2Bus Length
(= 3) 0

Don’t care

Bus
Transaction

Don’t care

Don’t careAddress

Bus
Command

Bus Length
(= 3)

1

Don’t care

Don’t care Data Parity 1 Data
Parity 5

Data
Parity 3

Data 2 Data 6Data 4

Data Parity 2 Data
Parity 6

Data
Parity 4

Byte Enable 1 Byte
Enable 5

Byte
Enable 3

Byte Enable 2 Byte
Enable 6

Byte
Enable 4

13 14

Data 1 Data 5Data 3

Data 2 Data 6Data 4 Don’t care

Don’t careByte
Enable 1

Byte
Enable 5Byte Enable 3

Byte
Enable 2

Byte
Enable 6Byte Enable 4 Don’t care

Don’t care

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 62 PCI IP Core User’s Guide

Table 2-22. 64-bit Master Burst Write Transaction with a 64-bit Local Interface

CLK Phase Description

1 Idle
The local master asserts lm_req64n to request for 64-bit wide data transaction. It also issues the
PCI starting address, the bus command and the burst length on l_ad_in, lm_cben_in and
lm_burst_length respectively on the same clock cycle.

2 Idle The Core’s Local Master Interface detects the asserted lm_req64n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core is going to start the bus transactions.
The Core asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req64n and lm_gntn were asserted on the previous cycle, lm_status[3:0] is
changed to ‘Address Loading’ to indicate the starting address, the bus command and the burst
length are being latched.

6 Address

The local master de-asserts lm_req64n when the previous lm_status[3:0] was ‘Address
Loading’ and if it doesn’t want to request another PCI bus transaction.

The Core asserts framen and req64n to initiate the 64-bit write transaction when gntn was
asserted and lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the
PCI starting address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it
outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data
phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides Data 1 and Data 2 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0]. And the Core asserts lm_ldata_xfern and lm_hdata_xfern to the local
master to signify these data and byte enables are being read and will be transferred to the PCI
bus.

Asserting lm_rdyn means the local master is ready to write data. If it is not, it keeps lm_rdyn de-
asserted until it is ready.

7 Wait

The Core de-asserts reqn when framen was asserted but lm_req64n was de-asserted on the
previous cycle.

If the target completes the fast decode and is ready to receive 64-bit data, it asserts devseln,
ack64n and trdyn.

With lm_ldata_xfern and lm_hdata_xfern asserted on the previous cycle that was the
address phase, the local master should increment the address counter while the Core transfers
Data 1 and Data 2 and their byte enables to ad[63:0] and cben[7:0].

With lm_rdyn asserted on the previous cycle, the local master provides Data 3 and Data 4 on
l_ad_in[63:0] and the byte enables on lm_cben_in[7:0]. Because this is the first write data
phase and devseln is just asserted, the Core keeps framen asserted and irdyn de-asserted to
judge 64-bit or 32-bit transactions. It also de-asserts lm_ldata_xfern and lm_hdata_xfern to
the local master to signify that Data 3 and Data 4 on l_ad_in[63:0] are not read.

If the local master is ready to provide the next QWORD, it keeps lm_rdyn asserted.

Since irdyn is not asserted, the first data phase is not completed.

8 Wait

Since lm_ldata_xfern and lm_hdata_xfern were not asserted on the previous cycle, the
local master keeps Data 3 and Data 4 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0].

Because the Core needs one more cycle to decide 64-bit or 32-bit transaction, it keeps framen
asserted and irdyn de-asserted. It also keeps lm_ldata_xfern and lm_hdata_xfern de-
asserted to the local master to signify Data 3 and Data 4 on l_ad_in[63:0] are not read.

The Core asserts lm_64bit_transn to indicate the current data transaction is 64 bits wide. It
de-asserts lm_gntn to follow gntn.

If the local master is ready to provide the next QWORD, it keeps lm_rdyn asserted.

Since irdyn is not asserted, the first data phase is not completed.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 63 PCI IP Core User’s Guide

32-bit PCI Master with a 64-Bit Local Bus
The following discusses read and write transactions for a PCI IP core configured with a 32-bit PCI bus and a 64-bit
local bus. Two PCI data phases are required when writing or reading 64-bit data via the Local Master Interface.

The 32-bit PCI transaction, as described in the 32-Bit PCI Master and 32-Bit Local Bus section, is similar to these
transactions; however, 32-bit data on a 64-bit data path is handled differently at the Local Master Interface. When
the 64-bit target core responds to a 32-bit transaction, the upper 32 bits of the Local data bus should be ignored or
return 0’s.

With a 64-bit back-end, the address counter needs to increment only by a QWORD (eight bytes). As a result, the
local back-end control latches the complete QWORD and routes the proper DWORD to the PCI data bus. The
lm_ldata_xfern and lm_hdata_xfern signals specify which DWORD is transferred.

9 Data 1 and 2

Since lm_ldata_xfern and lm_hdata_xfern were not asserted on the previous cycle, the
local master keeps Data 3 and Data 4 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0].

With both devseln and lm_rdyn asserted in the previous cycle, the Core asserts irdyn, and it
prepares for the 64-bit write burst. So it asserts lm_ldata_xfern and lm_hdata_xfern to the
local master to signify Data 3 and Data 4 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0] are being read and will be transferred to the PCI bus.

The Core keeps framen asserted and asserts irdyn. It also keeps lm_ldata_xfern and
lm_hdata_xfern de-asserted to the local master to signify Data 3 and Data 4 on
l_ad_in[63:0] are not read.

If the local master is ready to provide the next QWORD, it keeps lm_rdyn asserted.

Because the Core performs the burst transactions, it keeps framen asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

10 Data 3 and 4

Since the previous data phase was completed, the Core decreases ‘lm_burst_cnt’.
With lm_ldata_xfern and lm_hdata_xfern asserted on the previous cycle, the local master
should increment the address counter.

Since Data 1 and Data 2 on the PCI bus were read by the target, the Core transfers Data 3 and
Data 4 and their byte enables to ad[63:0] and cben[7:0].

With lm_rdyn asserted previous cycle, the Core keeps irdyn asserted.

With lm_ldata_xfern and lm_hdata_xfern asserted on the previous cycle, the local master
provides Data 5 and Data 6 on l_ad_in[63:0] and the byte enables on lm_cben_in[7:0].

Because both lm_rdyn and trdyn were asserted on the previous cycle, the Core asserts
lm_ldata_xfern and lm_hdata_xfern to the local master to signify Data 5 and Data 6 on
l_ad_in[63:0] and the byte enables on lm_cben_in[7:0] are being read and will be trans-
ferred to the PCI bus. Because Data 5 and Data 6 are the last data, the local master de-asserts
lm_rdyn. The Core keeps framen asserted to signify the burst continues. Since both irdyn and
trdyn are asserted, the second data phase is completed on this cycle.

11 Data 5 and 6

Since the previous data phase was completed, the Core decreases ‘lm_burst_cnt’.

Since Data 3 and Data 4 on PCI bus were read, the Core transfers Data 5 and Data 6 and their
byte enables to ad[63:0] and cben[7:0].

With lm_rdyn asserted previous cycle, the Core keeps irdyn asserted.

Because the current transaction is the last, the Core de-asserts framen and req64n to signal the
end of the burst, also it de-asserts lm_ldata_xfern and lm_hdata_xfern.

Since both irdyn and trdyn are asserted, the third data phase is completed on this cycle.

12 Turn around

The Core relinquishes control of framen, req64n, ad and cben. It de-asserts irdyn, decreases
‘lm_burst_cnt’ to zero and changes lm_status[3:0] into ‘Bus Termination’ with
lm_termination as ‘Normal Termination’ because both trdyn and irdyn were asserted last
cycle. The target de-asserts devseln, ack64n and trdyn.

13 Idle The Core relinquishes control of irdyn, par and par64.

Table 2-22. 64-bit Master Burst Write Transaction with a 64-bit Local Interface (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 64 PCI IP Core User’s Guide

If the starting address is QWORD aligned, the first DWORD is assumed to be the lower DWORD of a QWORD.
Otherwise, it is the upper DWORD. If the starting address is not QWORD aligned, it must be DWORD aligned.

Figure 2-19 and Table 2-23 illustrate a burst transaction to a 32-bit PCI IP core with a 64-bit Local Master Interface.
The figure illustrates how the PCI interface correlates to the Local Master Interface. The table gives a clock-by-
clock description of each event in the figure.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 65 PCI IP Core User’s Guide

Figure 2-19. 32-bit Master Burst Read Transaction with a 64 bit Local Interface
1 2 3 4 5 6 7 8 9 10 11 12 13

Address
Loading

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

reqn

gntn

req64n

ad[63:32]

cben[7:4]

lm_gntn

lm_req64n

l_ad_in[31:0]

lm_rdyn

lm_ldata_xfern

lm_64bit_transn

lm_hdata_xfern

lm_cben_in[3:0]

lm_cben_in[7:4]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

par64

AddressDon’t care Data 1 Data 3Data 2 Data 4

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care 4

Don’t care

3Bus Length
(= 2)

14

0

Byte Enable 1

Byte Enable 1

Byte Enable 2

Don’t care

Bus
Transaction

Don’t care

Don’t careAddressDon’t care

Bus
Command

Bus Length
(= 2)

Don’t care

Don’t care

2 1

Don’t care

Don’t care

Don’t care

Don’t careByte
Enable 2

Don’t care

l_data_out[31:0]

l_data_out[63:32] Don’t care

Don’t care Data 1 Data 3

Data 2 Data 4

Don’t care

Don’t care Don’t care

Don’t care

Data
Parity 1

Data
Parity 3

Data
Parity 2

Data
Parity 4

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 66 PCI IP Core User’s Guide

Table 2-23. 32-bit Master Burst Read Transaction with a 64-Bit Local Interface

CLK Phase Description

1 Idle
The lm_req32n signal is asserted by the local master to request 32-bit data transaction. The
local master issues the PCI starting address, the bus command, and the burst length during the
same clock cycle to l_ad_in, lm_cben_in, and lm_burst_length, respectively.

2 Idle The Core’s Local Master Interface detects the asserted lm_req32n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core starts the bus transactions. The Core
asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req32n and gntn were asserted on the previous cycle, lm_status[3:0] is changed
to ‘Address Loading’ to indicate the starting address, the bus command, and the burst length are
being latched.

6 Address

The Core asserts framen to start transaction and the local master de-asserts lm_req32n when
the previous lm_status[3:0] was ‘Address Loading’ and if it doesn’t want to request another
PCI bus transaction.

lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the PCI starting
address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it outputs
lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides the byte enables on lm_cben_in[3:0]. Asserting lm_rdyn also
means the local master is ready to read data. If it is not ready to read data, it keep lm_rdyn de-
asserted until it is ready.

7 Turn around

The Core de-asserts reqn when framen was asserted but lm_req64n was de-asserted on the
previous cycle.

The target only asserts devseln to indicate it doesn’t acknowledge the 64-bit transaction.

The Core tri-states the ad[31:0] lines and drives the byte enables (Byte Enable 1). Since
lm_rdyn was asserted on the previous cycle, it asserts irdyn to indicate it is ready to read data.
Because the master performs the burst transactions, it keeps framen asserted.

8 Data 1

The Core de-asserts lm_64bit_transn to indicate the current data transaction is 32-bit wide. It
de-asserts lm_gntn to follow gntn.

The target asserts trdyn and puts Data 1 on ad[31:0].

With lm_rdyn asserted on the previous cycle, the Core keeps irdyn asserted.

The Core keeps framen asserted to the target to signify the burst continues.

If the local master is ready to read the first DWORD, it keeps lm_rdyn asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

9 Data 2

Since the previous data phase was completed, the Core transfers Data 1 on l_data_out[31:0]
and decreases the lm_burst_cnt.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_ldata_xfern and de-asserts lm_hdata_xfern to the local master to signify Data 1 are
available on l_data_out[31:0]. With lm_ldata_xfern asserted, the local master can safely
read Data 1 and increment the address counter.

If the local master keeps lm_rdyn asserted on the previous cycle, the Core keeps irdyn
asserted.

The Core keeps framen asserted to the target to signify the burst continues.

If the target is still ready to provide data, it keeps trdyn asserted and drives the next DWORD
(Data 2) on ad[31:0].

If the local master is ready to read the next DWORD, it keeps lm_rdyn asserted. Since both
irdyn and trdyn are asserted, the second data phase is completed on this cycle.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 67 PCI IP Core User’s Guide

10 Data 3

Since the previous data phase was completed, the Core transfers Data 2 on
l_data_out[63:32] and decreases the lm_burst_cnt.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core de-asserts
lm_ldata_xfern and asserts lm_hdata_xfern to the local master to signify Data 2 are avail-
able on l_data_out[63:32]. With lm_hdata_xfern asserted, the local master can safely
read Data 2 and increment the address counter.

With lm_rdyn asserted on the previous cycle, the Core keeps irdyn asserted. If the target is still
ready to provide data, it keeps trdyn asserted and drives the next DWORD (Data 3) on
ad[31:0].

If the local master is ready to read the next DWORD, it keeps lm_rdyn asserted.

Since both irdyn and trdyn are asserted, the third data phase is completed on this cycle.

11 Data 4

Since the previous data phase was completed, the Core transfers Data 3 on l_data_out[31:0]
and decreases the lm_burst_cnt.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_ldata_xfern and de-asserts lm_hdata_xfern to the local master to signify Data 3 are
available on l_data_out[31:0]. With lm_ldata_xfern asserted, the local master can safely
read Data 3 and increment the address counter.

With lm_rdyn asserted on the previous cycle, the Core keeps irdyn asserted.

Because the current transaction is the last, the Core de-asserts framen and req64n to signal the
end of the burst. If the target is still ready to provide data, it keeps trdyn asserted and drives the
next DWORD (Data 4) on ad[31:0].

If the local master is ready to read the next DWORD, it keeps lm_rdyn asserted.

Since both irdyn and trdyn are asserted, the fourth data phase is completed on this cycle.

12 Turn around

Since the previous data phase was completed, the Core transfers Data 4 on
l_data_out[63:32] and decreases the lm_burst_cnt to zero.

The Core relinquishes control of framen, req64n and cben. It de-asserts irdyn and changes
lm_status[3:0] into ‘Bus Termination’ with lm_termination as ‘Normal Termination’
because both trdyn and irdyn were asserted last cycle.

The target relinquishes control of ad[31:0]. It de-asserts devseln and trdyn.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core de-asserts
lm_ldata_xfern and asserts lm_hdata_xfern to the local master to signify Data 4 are avail-
able on l_data_out[63:32]. With lm_hdata_xfern asserted, the local master can safely
read Data 4.

12 Idle
The Core relinquishes control of irdyn and de-asserts lm_ldata_xfern and
lm_hdata_xfern, and the local master de-asserts lm_rdyn since all of the burst data have
been read.

Table 2-23. 32-bit Master Burst Read Transaction with a 64-Bit Local Interface (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 68 PCI IP Core User’s Guide

Figure 2-20 and Table 2-24 illustrate a burst transaction for a 32-bit PCI IP core with a 64-bit Local Interface. The
figure shows how the PCI interface correlates to the Local Interface. The table gives a clock-by-clock description of
each event illustrated in the figure.

Figure 2-20. 32-bit Master Burst Write Transaction With a 64-bit Local Interface
1 2 3 4 5 6 7 8 9 10 11 12 13

Address
Loading

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

reqn

gntn

req64n

ad[63:32]

cben[7:4]

lm_gntn

lm_req64n

l_ad_in[31:0]

lm_rdyn

lm_ldata_xfern

lm_64bit_transn

lm_hdata_xfern

lm_cben_in[3:
0]

lm_cben_in[7:4]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

Data
Parity 1

Data
Parity 3

par64

Data
Parity 2

AddressDon’t care Data 1 Data 3Data 2 Data 4

Don’t care Bus
 Command

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care 4

Don’t care

3Bus Length
(= 2)

Data 2

14 15

Data
Parity 4

0

Don’t care

Bus
Transaction

Don’t care

Don’t careData 1 Data 3

Data 4

Address

Bus
Command

Bus Length
(= 2)

2 1

Don’t care

Don’t care

Don’t care Don’t care

Don’t care

Data 2

Don’t careByte
Enable 2

Don’t care

Byte
Enable 2

Don’t careByte
Enable 1 Byte Enable 3

Byte Enable 4

Byte Enable 1 Byte
Enable 3

Byte
Enable 2

Byte
Enable 4

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 69 PCI IP Core User’s Guide

Table 2-24. 32-bit Master Burst Write Transaction With a 64-bit Local Interface

CLK Phase Description

1 Idle
The local master asserts lm_req32n for the master 32-bit data transaction request. It also issues
the PCI starting address, the bus command and the burst length on l_ad_in, lm_cben_in and
lm_burst_length respectively during the same clock cycle.

2 Idle The Core’s Local Master Interface detects the asserted lm_req64n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the current bus is idle, the Core starts the bus transactions. The Core
asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req64n and gntn were asserted on the previous cycle, lm_status[3:0] is changed
to ‘Address Loading’ to indicate the starting address, the bus command and the burst length are
being latched.

6 Address

The local master de-asserts lm_req64n when the previous lm_status[3:0] was ‘Address
Loading’ and if it doesn’t want to request another PCI bus transaction.

The Core asserts framen and req64n to initiate the 64-bit write transaction when gntn was
asserted and lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the
PCI starting address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it
outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data
phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master should provide Data 1 and Data 2 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0]. And the Core asserts lm_ldata_xfern and lm_hdata_xfern to the local
master to signify these data and byte enables are being read and will be transferred to the PCI
bus.

Asserting lm_rdyn means the local master is ready to write data. If it is not, it should keep
lm_rdyn de-asserted until it is ready.

7 Wait

The Core de-asserts reqn when framen was asserted but lm_req64n was de-asserted on the
previous cycle.

If the target completes the fast decode and is ready to receive 32-bit data, it asserts devseln and
trdyn and doesn’t asserts ack64n.

With lm_ldata_xfern and lm_hdata_xfern asserted on the previous cycle that was the
address phase, the local master should increment the address counter while the Core transfers
Data 1 and Data 2 and their byte enables to ad[63:0] and cben[7:0].

With lm_rdyn asserted on the previous cycle, the local master provides Data 3 and Data 4 on
l_ad_in[63:0] and the byte enables on lm_cben_in[7:0].

Because this is the first write data phase and devseln is just asserted, the Core keeps framen
asserted and irdyn de-asserted to judge 64-bit or 32-bit transaction. It also de-asserts
lm_ldata_xfern and lm_hdata_xfern to the local master to signify Data 3 and Data 4 on
l_ad_in[63:0] are not read.

Since irdyn is not asserted, the first data phase is not completed.

8 Wait

Since lm_ldata_xfern and lm_hdata_xfern were not asserted on the previous cycle, the
local master keeps Data 3 and Data 4 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0].

Because the Core needs one more cycle to decide 64-bit or 32-bit transaction, it keeps framen
asserted and irdyn de-asserted. It also keeps lm_ldata_xfern and lm_hdata_xfern de-
asserted to the local master to signify Data 3 and Data 4 on l_ad_in[63:0] are not read.

The Core de-asserts lm_64bit_transn and changes lm_burst_cnt to four to indicate the cur-
rent data transaction is 32-bit wide. It de-asserts lm_gntn to follow gntn.

Since irdyn is not asserted, the first data phase is not completed.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 70 PCI IP Core User’s Guide

Dual Address Cycle (DAC)
The PCI IP core application logic issues a Dual Address Cycle (DAC) command to inform the PCI IP core of its
usage of 64-bit addressing. In response, the Core executes two back-to-back address phases for the target. The
PCI IP core issues DAC to handle memory maps that are larger than the 4GB limitation of the 32-bit memory map.
64-bit addressing is not restricted to only 64-bit configurations of the PCI IP core.

Figure 2-21 shows an example of the DAC during a 32-bit read transaction. Table 2-25 gives a clock-by-clock
description of the dual address cycle.

9 Data 1

Since lm_ldata_xfern and lm_hdata_xfern were not asserted on the previous cycle, the
local master keeps Data 3 and Data 4 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0].

With both devseln and lm_rdyn asserted previous cycle, the master asserts irdyn, and it pre-
pares for the 32-bit write burst.

The Core keeps framen asserted. It also keeps lm_ldata_xfern and lm_hdata_xfern de-
asserted to the local master to signify Data 3 and Data 4 on l_ad_in[63:0] are not read.

Because the Core performs the burst transactions, it keeps framen asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

10 Data 2

Since the previous data phase was completed, the Core decreases ‘lm_burst_cnt’.
Since Data 1 on PCI bus were read by the target, the Core transfers Data 2 and their byte enables
to ad[31:0] and cben[3:0].

The Core keeps irdyn asserted.

Because trdyn were asserted on the previous cycle, the Core asserts lm_ldata_xfern and
de-asserts lm_hdata_xfern to the local master to signify Data 3 on l_ad_in[31:0] and the
byte enables on lm_cben_in[3:0] are being read and will be transferred to the PCI bus.

The Core keeps framen asserted to the target to signify the burst continues.

Since both irdyn and trdyn are asserted, the second data phase is completed on this cycle.

11 Data 3

Since the previous data phase was completed, the Core decreases ‘lm_burst_cnt’.Since Data
2 on PCI bus was read, the Core transfers Data 3 and its byte enables to ad[31:0] and
cben[3:0].The Core keeps irdyn asserted. Because trdyn was asserted on the previous
cycle, the master de-asserts lm_ldata_xfern and asserts lm_hdata_xfern to the local mas-
ter to signify Data 4 on l_ad_in[63:32] and the byte enables on lm_cben_in[7:4] are
being read and will be transferred to the PCI bus. Since both irdyn and trdyn are asserted, the
third data phase is completed on this cycle.

11 Data 4

Since the previous data phase was completed, the Core decreases ‘lm_burst_cnt’.

Since Data 3 on PCI bus were read, the Core transfers Data 4 and their byte enables to ad[31:0]
and cben[3:0].

The Core keeps irdyn asserted. Because the current transaction is the last, the Core de-asserts
framen and req64n to signal the end of the burst, also it de-asserts lm_ldata_xfern and
lm_hdata_xfern.

Since both irdyn and trdyn are asserted, the fourth data phase is completed on this cycle.

12 Turn around

The Core relinquishes control of framen, req64n, ad and cben. It de-asserts irdyn, decreases
‘lm_burst_cnt’ to zero and changes lm_status[3:0] into ‘Bus Termination’ with
lm_termination as ‘Normal Termination’ because both trdyn and irdyn were asserted last
cycle.The target de-asserts devseln and trdyn.

13 Idle The Core relinquishes control of irdyn, par and par64.

Table 2-24. 32-bit Master Burst Write Transaction With a 64-bit Local Interface (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 71 PCI IP Core User’s Guide

Figure 2-21. Master Dual Address Cycle – Read Transaction

Table 2-25. 32- Bit Dual Address Cycle – Read Transaction

CLK Phase Description

1 Idle
The lm_req32n signal is asserted by the local master to request for 32-bit data transaction. The
local master issues the PCI lower starting address, the bus command (DAC), and the burst length
on the same clock cycle to l_ad_in, lm_cben_in, and lm_burst_length, respectively.

2 Idle The Core’s Local Master Interface detects the asserted lm_req32n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master.

4 Idle Since gntn is asserted and the bus is idle, the Core starts the bus transactions. The Core asserts
lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req32n and gntn were asserted on the previous cycle, lm_status[3:0] is changed
to ‘Address Loading’ to indicate the lower starting address, the bus command, and the burst length
are being latched.

1 2 3 4 5 6 7 8 9 10 11 12 13

Address
Loading

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

reqn

gntn

lm_gntn

lm_req32n

l_ad_in[31:0]

lm_rdyn

lm_data_xfern

lm_cben_in[3:
0]

lm_status[3:0]

lm_burst_cnt[12:0]

par L-Address
Parity

Low
AddressDon’t care Data 1 Data 3Data 2

Don’t care DAC

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care 2Bus Length
(= 3) 0

Byte Enable 1

Byte Enable 1

Don’t care

Bus
Transaction

Don’t care

Don’t careLow Address

DAC

Bus Length
(= 3)

1

Don’t care

Don’t care

l_data_out[31:0] Don’t care Data 1 Data 3 Don’t care

Data
Parity 1

Data
Parity 3

Data
Parity 2

Data 2

14

High
Address

Bus
 Command

H-Address
Parity

High
Address

Bus
Command

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 72 PCI IP Core User’s Guide

6 Low
Address

The Core asserts framen and the local master de-asserts lm_req32n when the previous
lm_status[3:0] was ‘Address Loading’ and if it doesn’t want to request another PCI bus trans-
action.

Since lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the PCI start-
ing address on ad[31:0] and the PCI command (DAC) on cben[3:0]. On the same cycle, it
keeps lm_status[3:0] as ‘Address Loading’ for the Dual Address Cycle.

Local master provides higher address on l_ad_in[31:0].

lm_burst_cnt gets the value of the burst length.

7 High
Address

The Core de-asserts reqn when framen was asserted but lm_req32n was de-asserted on the
previous cycle.

The Core keeps framen to start transaction.

Since lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the PCI
higher starting address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle,
it outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data
phases.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides the byte enables on lm_cben_in[3:0]. Asserting lm_rdyn also
means the local master is ready to read. If it is not ready to read data, it keep lm_rdyn de-
asserted until it is ready.

8 Turn around

The Core de-asserts lm_gntn to follow gntn.

The target asserts to indicate it acknowledges the 32-bit transaction.

The Core tri-states the ad[63:0] lines and drives the byte enables (Byte Enable 1). Since
lm_rdyn was asserted on the previous cycle, it asserts irdyn to indicate it is ready to read data.

Because the Core performs the burst transactions, it keeps framen asserted.

9 Data 1

The target asserts trdyn and puts Data 1 on ad[31:0].

With lm_rdyn asserted on the previous cycle, the Core keeps irdyn asserted.

The Core keeps framen asserted to the target to signify the burst continues.

If the local master is ready to read the first DWORD, it keeps lm_rdyn asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

10 Data 2

Since the previous data phase was completed, the Core transfers Data 1 on l_data_out[31:0]
and decreases the lm_burst_cnt.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_data_xfern to the local master to signify Data 1 are available on l_data_out[31:0]. With
lm_data_xfern asserted, the local master can safely read Data 1 and increment the address
counter.

If the local master keeps lm_rdyn asserted on the previous cycle, the master keeps irdyn
asserted.

The Core keeps framen asserted to the target to signify the burst continues.

If the target is still ready to provide data, it keeps trdyn asserted and drives the next DWORD
(Data 2) on ad[31:0].

If the local master is ready to read the next DWORD, it keeps lm_rdyn asserted.

Since both irdyn and trdyn are asserted, the second data phase is completed on this cycle.

Table 2-25. 32- Bit Dual Address Cycle – Read Transaction (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 73 PCI IP Core User’s Guide

Figure 2-22 shows an example of the DAC during a 32-bit write transaction. Table 2-26 gives a clock-by-clock
description of the dual address cycle.

11 Data 3

Since the previous data phase was completed, the Core transfers Data2 on l_data_out[31:0]
and decreases the lm_burst_cnt.

If both trdyn and lm_rdyn were asserted on the previous cycle, the master asserts
lm_data_xfern to the local master to signify Data 2 are available on l_data_out[31:0]. With
lm_data_xfern asserted, the local master can safely read Data 2 and increment the address
counter.

With lm_rdyn asserted on the previous cycle, the Core keeps irdyn asserted.

Because the current transaction is the last, the Core de-asserts framen to signal the end of the
burst.

If the target is still ready to provide data, it keeps trdyn asserted and drives the next DWORD
(Data 3) on ad[31:0].

If the local master is ready to read the next DWORD, it keeps lm_rdyn asserted.

Since both irdyn and trdyn are asserted, the third data phase is completed in this cycle.

11 Turn around

Since the previous data phase was completed, the Core transfers Data 3 on l_data_out[31:0]
and decreases the lm_burst_cnt to zero.

The Core relinquishes control of framen and cben. It de-asserts irdyn and changes
lm_status[3:0] into ‘Bus Termination’ with lm_termination as ‘Normal Termination’
because both trdyn and irdyn were asserted during the last cycle.

The target relinquishes control of ad[31:0]. It de-asserts devseln and trdyn.

If both trdyn and lm_rdyn were asserted on the previous cycle, the Core asserts
lm_data_xfern to the local master to signify Data 3 are available on l_data_out[31:0]. With
lm_data_xfern asserted, the local master can safely read Data 3.

12 Idle The Core relinquishes control of irdyn and de-asserts lm_data_xfern, and the local master
de-asserts lm_rdyn since all of the burst data have been read.

Table 2-25. 32- Bit Dual Address Cycle – Read Transaction (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 74 PCI IP Core User’s Guide

Figure 2-22. 32-Bit Master Dual Address Cycle – Write Transaction

Table 2-26. 32-bit Master Dual Address Cycle – Write Transaction

CLK Phase Description

1 Idle
The lm_req32n signal is asserted by the local master to request for 32-bit data transaction. The
local master issues the PCI starting address, the bus command (DAC), and the burst length during
the same clock cycle on l_ad_in, lm_cben_in and lm_burst_length, respectively.

2 Idle The Core’s Local Master Interface detects the asserted lm_req32n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now the PCI master

4 Idle Since gntn is asserted and the current bus is idle, the Core is going to start the bus transactions.
The Core asserts lm_gntn to inform the local master that the bus request is granted.

1 2 3 4 5 6 7 8 9

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

req64n

ad[63:32]

cben[7:4]

bar_hit[5:0]

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_ldata_xfern

lt_64bit_transn

lt_hdata_xfern

Address Data 1

Bus
 Command

Byte Enable 1

Don't careDon't care

Don't care

Byte Enable 2

lt_address_out

Data 2

Don't care

Don't care

Don't care

0x00 0x01 0x00

Data 1

Data 2Don't care Don't care

AddressDon't care

par
Address
Parity

par64 Don't care

Don't care

Don't care

Data
Parity 1

Data
Parity 2

lt_accessn

Bus CommandDon't carelt_command_out[3:0]

lt_cben_out[3:0] Don't care Byte Enable 1 Don't care

lt_cben_out[7:4] Don't care Byte Enable 2 Don't care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 75 PCI IP Core User’s Guide

5 Idle
If both lm_req32n and gntn were asserted on the previous cycle, lm_status[3:0] is changed
to ‘Address Loading’ to indicate the starting address, the bus command and the burst length are
being latched.

6 Low
Address

The Core asserts framen and the local master de-asserts lm_req32n when the previous
lm_status[3:0] was ‘Address Loading’ and if it doesn’t want to request another PCI bus trans-
action.

Since lm_status[3:0] was ‘Address Loading’ on the previous cycle, it also drives the PCI start-
ing address on ad[31:0] and the PCI command (DAC) on cben[3:0]. On the same cycle, it
keeps lm_status[3:0] as ‘Address Loading’ for the Dual Address Cycle.

Local master provides high 32-bit address on l_ad_in[31:0].

lm_burst_cnt gets the value of the burst length.

7 High
Address

The Core de-asserts reqn when framen was asserted but lm_req32n was de-asserted on the
previous cycle.

The Core keeps framen to start transaction.

Since lm_status[3:0] was ‘Address Loading’ on the previous cycle, it also drives the PCI
higher starting address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle,
it outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data
phases.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master should provide Data 1 on l_ad_in[31:0] and the byte enables on
lm_cben_in[3:0]. And the Core asserts lm_data_xfern to the local master to signify these
data and byte enables are being read and will be transferred to the PCI bus.

Asserting lm_rdyn means the local master is ready to write data. If it is not, it should keep
lm_rdyn de-asserted until it is ready.

8 Wait

The Core de-asserts reqn when framen was asserted.

lm_data_xfern is kept asserted to signify Data 2 on l_ad_in[31:0] and the byte enables on
lm_cben_in[3:0] are being read and will be transferred to the PCI bus.

If the local master is ready to provide the next DWORD, it keeps lm_rdyn asserted.

9 Data 1

The Core keeps framen asserted and asserts irdyn. It also de-asserts lm_data_xfern to the
local master to signify Data 3 on l_ad_in[31:0] are not read.

If the local master is ready to provide the next DWORD, it keeps lm_rdyn asserted.

Because the Core performs the burst transactions, it keeps framen asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

10 Data 2

Since the previous data phase was completed, the Core decreases lm_burst_cnt.

Since Data 1 on PCI bus were read by the target, the Core transfers Data 2 and their byte enables
to ad[31:0] and cben[3:0].

With lm_rdyn asserted previous cycle, the Core keeps irdyn asserted.

Because both lm_rdyn and trdyn were asserted on the previous cycle, the Core asserts
lm_data_xfern to signify Data 3 on l_ad_in[31:0] and the byte enables on
lm_cben_in[3:0] are being read and will be transferred to the PCI bus.

Because Data 3 are the last data, the local master de-asserts lm_rdyn.

Since both irdyn and trdyn are asserted, the second data phase is completed on this cycle.

Table 2-26. 32-bit Master Dual Address Cycle – Write Transaction (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 76 PCI IP Core User’s Guide

Fast Back-to-Back Transactions
The PCI IP core, as a master, is capable of executing fast back-to-back transactions if two or more consecutive
transactions are required. The fast back-to-back transaction consists of two or more complete PCI transactions
without an idle state between them. To execute fast back-to-back transaction with the PCI IP core, lm_req32n or
lm_req64n must be asserted once lm_status changes to the ‘Address Loading’ state. Otherwise, the assertion
will not be recognized and the next transaction will be treated as a basic transaction having the ‘Idle State’ on the
PCI bus. An effective way for handling fast back-to-back transfers is to keep lm_req32n or lm_req64n asserted
until required data has been transferred.

For fast back-to-back transaction, the previous transaction must be a write transaction.

Figure 2-23 and Table 2-27 illustrate a 64-bit, fast back-to-back write transaction. The figure illustrates how the PCI
interface correlates to the Local Master Interface. The table explains each event in the figure with a clock-by-clock
description.

11 Data 3

Since the previous data phase was completed, the Core decreases lm_burst_cnt.

Since Data 2 on the PCI bus were read, the Core transfers Data 3 and their byte enables to
ad[31:0] and cben[3:0].

Because the current transaction is the last, the Core de-asserts framen to signal the end of the
burst and it de-asserts lm_data_xfern.

Since both irdyn and trdyn are asserted, the third data phase is completed on this cycle.

12 Turn around

The Core relinquishes control of framen, ad and cben. It de-asserts irdyn, decreases
lm_burst_cnt to zero and changes lm_status[3:0] into ‘Bus Termination” with
lm_termination as ‘Normal Termination’ because both trdyn and irdyn were asserted dur-
ing the last cycle. The target de-asserts devseln and trdyn.

13 Idle The Core relinquishes control of irdyn and par.

Table 2-26. 32-bit Master Dual Address Cycle – Write Transaction (Continued)

CLK Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 77 PCI IP Core User’s Guide

Figure 2-23. 64-bit Master Fast Back-to-Back Transaction
1 2 3 4 5 6 7 8 9 10 11 12

Address
Loading

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

reqn

gntn

req64n

ad[63:32]

cben[7:4]

lm_gntn

lm_req64n

l_ad_in[31:0]

lm_rdyn

lm_ldata_xfern

lm_64bit_transn

lm_hdata_xfern

lm_cben_in[3:0]

lm_cben_in[7:4]

lm_status[3:0]

lm_burst_cnt[12:0]

par Address
Parity

par64

Address 1Don’t care Data 1 Data 5Data 3

Don’t care Bus
 Command1

lm_termination[2:0] Normal
Termination

Bus
Termination

lm_burst_length[11:0]

Bus
Termination

Don’t care

Don’t care

Bus Length
(= 2) 0

Don’t care

Bus
Transaction

Don’t care

Don’t careAddress 1

Bus
Command 1

Bus Length
(= 2)

1

Don’t care

Don’t care Data Parity 1 Data Parity 5Data Parity 3

Data 2 Data 6Data 4

Data Parity 2 Data Parity 6Data Parity 4

Byte Enable 1 Byte
Enable 3

Byte Enable 2 Byte
Enable 4

13 14

Data 1 Data 7Data 3

Data 2 Data 4

Byte
Enable 1 Byte Enable 3

Byte
Enable 2 Byte Enable 4

15 16 17 18 19

Address 2

Don’t care

Data 7

Data 8

Bus
 Command2

Don’t care

Byte Enable 5

Byte Enable 6

Byte
Enable 7

Byte
Enable 8

Data
Parity 7

Data
Parity 8

Address
Parity

Don’t care

Address 2 Data 5

Don’t careData 8Don’t care Data 6

Don’t careByte Enable 7Bus
command2

Byte
Enable 5

Don’t care

Byte Enable 8Byte
Enable 6Don’t care

Bus Length
(= 2) Don’t care

Address
Loading

Fast
Back2Back

Bus
Transaction

Bus Length
(= 2) 1

Normal
Termination

Don’t care

Don’t care

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 78 PCI IP Core User’s Guide

Table 2-27. Fast Back-to-Back Transaction

CLK
PCI Data

Phase Description

1 Idle
The local master asserts lm_req64n to request for 64-bit data transaction. It also issues the PCI
starting address, the bus command and the burst length on l_ad_in, lm_cben_in and
lm_burst_length respectively during the same clock cycle.

2 Idle The Core’s Local Master Interface detects the asserted lm_req64n and asserts reqn to request
the use of PCI bus.

3 Idle gntn is asserted to grant the Core access to the PCI bus. Core is now PCI master

4 Idle Since gntn is asserted and the current bus is idle, the Core is going to start the bus transactions.
The Core asserts lm_gntn to inform the local master that the bus request is granted.

5 Idle
If both lm_req64n and lm_gntn were asserted on the previous cycle, lm_status[3:0] is
changed to ‘Address Loading’ to indicate the starting address, the bus command and the burst
length are being latched.

6 Address

The local master keeps lm_req64n because it wants to request another PCI bus transaction for
fast back-to-back transaction.

The Core asserts framen and req64n to initiate the 64-bit write transaction when gntn was
asserted and lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives the
PCI starting address on ad[31:0] and the PCI command on cben[3:0]. On the same cycle, it
outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the address/data
phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides Data 1 and Data 2 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0]. And the Core asserts lm_ldata_xfern and lm_hdata_xfern to the local
master to signify these data and byte enables are being read and will be transferred to the PCI
bus.

Asserting lm_rdyn means the local master is ready to write data. If it is not, it keeps lm_rdyn de-
asserted until it is ready.

7 Wait

The Core keeps reqn when framen and lm_req64n were asserted to indicate fast back-to-back
transaction.

If the target completes the fast decode and is ready to receive 64-bit data, it asserts devseln,
ack64n and trdyn.

With lm_ldata_xfern and lm_hdata_xfern asserted on the previous cycle that was the
address phase, the local master should increment the address counter while the Core transfers
Data 1 and Data 2 and their byte enables to ad[63:0] and cben[7:0].

With lm_rdyn asserted on the previous cycle, the local master provides Data 3 and Data 4 on
l_ad_in[63:0] and the byte enables on lm_cben_in[7:0].

Because this is the first write data phase and devseln is just asserted, the Core keeps framen
asserted and irdyn de-asserted to judge 64-bit or 32-bit transaction. It also de-asserts
lm_ldata_xfern and lm_hdata_xfern to the local master to signify Data 3 and Data 4 on
l_ad_in[63:0] are not read.

If the local master is ready to provide the next QWORD, it keeps lm_rdyn asserted.

Since irdyn is not asserted, the first data phase is not completed.

8 Wait

Since lm_ldata_xfern and lm_hdata_xfern were not asserted on the previous cycle, the
local master keeps Data 3 and Data 4 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0].

Because the Core needs one more cycle to decide 64-bit or 32-bit transaction, it keeps framen
asserted and irdyn de-asserted. It also keeps lm_ldata_xfern and lm_hdata_xfern de-
asserted to the local master to signify Data 3 and Data 4 on l_ad_in[63:0] are not read.

The Core asserts lm_64bit_transn to indicate the current data transaction is 64-bit wide. It de-
asserts lm_gntn to follow gntn.

If the local master is ready to provide the next QWORD, it keeps lm_rdyn asserted.

Since irdyn is not asserted, the first data phase is not completed.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 79 PCI IP Core User’s Guide

9 Data 1 and 2

Since lm_ldata_xfern and lm_hdata_xfern were not asserted on the previous cycle, the
local master keeps Data 3 and Data 4 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0].

With both devseln and lm_rdyn asserted previous cycle, the Core asserts irdyn, and it pre-
pares for the 64-bit write burst. So it asserts lm_ldata_xfern and lm_hdata_xfern to the
local master to signify Data 3 and Data 4 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0] are being read and will be transferred to the PCI bus.

The Core keeps framen asserted and irdyn de-asserted. It also keeps lm_ldata_xfern and
lm_hdata_xfern de-asserted to the local master to signify Data 3 and Data 4 on
l_ad_in[63:0] are not read.

If the local master is ready to provide the next QWORD, it keeps lm_rdyn asserted. Because the
Core performs the burst transactions, it keeps framen asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

10 Wait

Since the previous data phase was completed, the Core decreases ‘lm_burst_cnt’.

At the last data phase of first transaction, the Core inserts a wait cycle to prepare next transaction.
So it de-asserts irdyn and changes lm_status[3:0] from ‘Bus Transaction’ to ‘Fast
Back2Back’, and it also de-asserts lm_ldata_xfern and lm_data_xfern.

With lm_ldata_xfern and lm_hdata_xfern asserted on the previous cycle, the local master
should put next transaction’s address, bus command and burst length on l_ad_in[31:0],
lm_cbe_in[3:0] and lm_burst_length[11:0] respectively.

Since Data 1 and Data 2 on PCI bus were read by the target, the Core transfers Data 3 and Data 4
and their byte enables to ad[63:0] and cben[7:0].

11 Data 3 and 4

The Core de-asserts framen and req64n, asserts irdyn to signal Data 3 and 4 transferred.

Since both irdyn and trdyn are asserted, the second data phase is completed on this cycle.

If both lm_req64n and lm_gntn were asserted on the previous cycle, lm_status[3:0] is
changed to ‘Address Loading’ to indicate the starting address, the bus command and the burst
length are being latched.

12 Address

The local master de-asserts lm_req64n when the previous lm_status[3:0] was ‘Address
Loading’.

The Core asserts framen and req64n to initiate the second 64-bit write transaction when gntn
was asserted and lm_status[3:0] was ‘Address Loading’ on the previous cycle. It also drives
the PCI starting address on ad[31:0] and the PCI command on cben[3:0]. On the same
cycle, it outputs lm_status[3:0] as ‘Bus Transaction’ to indicate the beginning of the
address/data phases.

lm_burst_cnt gets the value of the burst length.

Because lm_rdyn was asserted on the previous cycle and the next cycle is the first data phase,
the local master provides Data 5 and Data 6 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0]. And the Core asserts lm_ldata_xfern and lm_hdata_xfern to the local
master to signify these data and byte enables are being read and will be transferred to the PCI
bus.

Asserting lm_rdyn means the local master is ready to write data. If it is not, it keeps lm_rdyn de-
asserted until it is ready.

Table 2-27. Fast Back-to-Back Transaction (Continued)

CLK
PCI Data

Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 80 PCI IP Core User’s Guide

13 Wait

The Core de-asserts reqn when framen was asserted but lm_req64n was de-asserted on the
previous cycle.

If the target completes the fast decode and is ready to receive 64-bit data, it asserts devseln,
ack64n and trdyn.

With lm_ldata_xfern and lm_hdata_xfern asserted on the previous cycle that was the
address phase, the local master should increment the address counter while the Core transfers
Data 5 and Data 6 and their byte enables to ad[63:0] and cben[7:0].

With lm_rdyn asserted on the previous cycle, the local master provides Data 7 and Data 8 on
l_ad_in[63:0] and the byte enables on lm_cben_in[7:0].

Because this is the first write data phase and devseln is just asserted, the Core keeps framen
asserted and irdyn de-asserted to judge 64-bit or 32-bit transaction. It also de-asserts
lm_ldata_xfern and lm_hdata_xfern to the local master to signify Data 7 and Data 8 on
l_ad_in[63:0] are not read.

If the local master is ready to provide the next QWORD, it keeps lm_rdyn asserted.

Since irdyn is not asserted, the first data phase is not completed.

14 Wait

Since lm_ldata_xfern and lm_hdata_xfern were not asserted on the previous cycle, the
local master keeps Data 7 and Data 8 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0].

Because the Core needs one more cycle to decide 64-bit or 32-bit transaction, it keeps framen
asserted and irdyn de-asserted. It also keeps lm_ldata_xfern and lm_hdata_xfern de-
asserted to the local master to signify Data 7 and Data 8 on l_ad_in[63:0] are not read.

The Core asserts lm_64bit_transn to indicate the current data transaction is 64-bit wide. It de-
asserts lm_gntn to follow gntn.

If the local master is ready to provide the next QWORD, it keeps lm_rdyn asserted.

Since irdyn is not asserted, the first data phase is not completed.

15 Data 5 and 6

Since lm_ldata_xfern and lm_hdata_xfern were not asserted on the previous cycle, the
local master keeps Data 7 and Data 8 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0].

With both devseln and lm_rdyn asserted previous cycle, the Core asserts irdyn, and it pre-
pares for the 64-bit write burst. So it asserts lm_ldata_xfern and lm_hdata_xfern to the
local master to signify Data 7 and Data 8 on l_ad_in[63:0] and the byte enables on
lm_cben_in[7:0] are being read and will be transferred to the PCI bus.

The Core keeps framen asserted and asserts irdyn. It also keeps lm_ldata_xfern and
lm_hdata_xfern de-asserted to the local master to signify Data 3 and Data 4 on
l_ad_in[63:0] are not read.

If the local master is ready to provide the next QWORD, it keeps lm_rdyn asserted.

Because the Core performs the burst transactions, it keeps framen asserted.

Since both irdyn and trdyn are asserted, the first data phase is completed on this cycle.

16 Data 7 and 8

Since the previous data phase was completed, the Core decreases ‘lm_burst_cnt’.

Since Data 5 and Data 6 on PCI bus were read, the Core transfers Data 7 and Data 8 and their
byte enables to ad[63:0] and [7:0].

With lm_rdyn asserted previous cycle, the Core keeps irdyn asserted.

Because the current transaction is the last, the Core de-asserts framen and req64n to signal the
end of the burst, also it de-asserts lm_ldata_xfern and lm_hdata_xfern.

Since both irdyn and trdyn are asserted, the second data phase is completed on this cycle.

17 Turn around

The Core relinquishes control of framen, req64n, ad and cben. It de-asserts irdyn, decreases
‘lm_burst_cnt’ to zero and changes lm_status[3:0] into ‘Bus Termination’ with
lm_termination as ‘Normal Termination’ because both trdyn and irdyn were asserted last
cycle.The target de-asserts devseln, ack64n and trdyn.

18 Idle The Core relinquishes control of irdyn, par and par64.

Table 2-27. Fast Back-to-Back Transaction (Continued)

CLK
PCI Data

Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 81 PCI IP Core User’s Guide

Master and Target Termination
The signal lm_termination[2:0] indicates the different types of Master-initiated terminations. In addition, the
state of the target’s response when the master executes the transaction is made available for the user’s master
application. This enables the master application to complete, terminate or refer the transaction to software via inter-
rupt.

The master-initiated early termination commands include timeout and Master Abort. When the master’s gntn line
is de-asserted and its internal latency timer is expired, the master ends the current transaction. When it doesn’t
detect the assertion of devseln within the required period after it asserts framen, the master terminates the cur-
rent transaction. This is called Master Abort termination.

The back-end application monitors and controls early termination of PCI transactions by asserting lm_abortn.
Any lm_abortn assertion is ignored during ‘Address Loading’ and the first clock cycle of ‘Bus Transaction’. If
lm_abortn is asserted after first clock cycle of ‘Bus Transaction’, the transaction is terminated at next data phase.
When next clock cycle is a wait cycle, the transaction is not terminated until one data phase is completed, except
when the target aborts the transaction.

A summary of the four types of target-initiated termination commands are described in Table 2-28.

Table 2-28. Master Initiated Termination Summary

Basic PCI Target Read and Write Transactions
Read and write transactions to memory and I/O space are used to transfer data on the PCI bus. The basic read
and write transactions use the following PCI commands:

• I/O Read

• I/O Write

• Memory Read

• Memory Write

• Configuration Read

• Configuration Write

To make the integration of the PCI IP core as simple as possible, the basic transactions are described based on dif-
ferent bus configurations supported with this PCI IP core. Although the fundamentals of the basic transactions are
the same, different bus configurations require slightly different local bus signaling. The PCI and local bus configura-
tions do not affect configuration access because configuration accesses require no local bus intervention. Refer to
the following sections for more information on the basic bus transactions with specific PCI IP core configurations:

Lm_termination[2:0] Name Description

000 Normal termination Normal Termination takes place.

001 Timeout termination The cycle timed out.

010 No target response termination Also known as Master Abort. The Master terminates the transaction
because devseln was not asserted during the expected time.

011 Target abort termination The Target issues an abort termination

100 Retry termination The target of the transaction is not ready for the transaction. The
Master issues a retry.

101 Disconnect data termination The target device is terminating the burst transaction.

110 Grant abort termination A Grant termination has occurred.

111 Local master termination The Local Interface cannot complete the transaction.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 82 PCI IP Core User’s Guide

• 32-Bit PCI Target with a 32-Bit Local Bus

• 64-Bit PCI Target with a 64-Bit Local Bus

• 32-Bit PCI Target with a 64-Bit Local Bus

Refer to the advanced bus transactions in the Advanced Target Transactions section for more information on proper
wait state insertion and early termination of bus transactions by the PCI IP core.

Design Hint: Using the base address registers as memory space and not I/O space in a device is highly recom-
mended. In a legacy PC environment the I/O space is extremely limited and fragmented due to legacy issues.

32-bit PCI Target with a 32-bit Local Bus Memory Transactions
This section discusses read and write transactions for the PCI IP core, operating as a Target, configured with a 32-
bit PCI bus and a 32-bit local bus. Because 32-bit I/O and memory transactions are alike, they are discussed
together.

Figure 2-24 illustrates an example of a basic 32-bit read transaction. Table 2-29 gives a clock-by-clock description
of the basic 32-bit transaction in Figure 2-24. On a read transaction it is important to realize and understand the
latency between the PCI and Local Target Interface. For instance, two clock cycles of latency exist between
lt_rdyn and trdyn.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 83 PCI IP Core User’s Guide

Figure 2-24. 32-bit Target Single Read Transaction with a 32-bit Local Interface

1 2 3 4 5 6 7 8 9

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

Address Data 1

Bus
 Command Byte Enable 1

Don’t care

0x00 0x01 0x00

par Address
Parity Don’t care Data

Parity 1

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_data_xfern

Don’t careDon’t care

lt_address_out

Data 1

AddressDon’t care

lt_accessn

 Bus CommandDon’t care

Byte Enable 1Don’t carelt_cben_out[3:0] Don’t care

lt_command_out[3:0]

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 84 PCI IP Core User’s Guide

Table 2-29. 32-bit Target Single Read Transaction with a 32-Bit Local Interface

CLK
PCI Data

Phase Description

1 Address The master asserts framen and drives ad[31:0] and cben[3:0].

2 Turn around

The master tri-states the ad[31:0] lines and drives the byte enables cben[3:0]. If the master is
ready to receive single data, it asserts irdyn and de-asserts framen to indicate single data
phase transaction.

The PCI IP core starts to decode the address and command It also registers and drives the
lt_address_out lt_command_out to the back end.

3 Wait If there is an address match, the Core drives the bar_hit signals to the back-end. It also asserts
lt_accessn. The back-end can use the bar_hit signals as a chip select.

4 Wait
With the device select timing set to Slow, the Core asserts devseln one clock after bar_hit. If
the back-end is ready to put data out on the next cycle, it can assert lt_rdyn. The local target can
insert wait states by not asserting lt_rdyn.

5 Wait

The Core’s Local Target Interface asserts lt_data_xfern since lt_rdyn was asserted the pre-
vious cycle. The back end drives the first DWORD (Data 1) on l_ad_in[31:0]. The Core
asserts lt_data_xfern to indicate that data from the back-end logic must be valid at this time in
order for the master to read the data correctly.

6 Data 1 With lt_rdyn asserted during the previous two cycles the Core asserts trdyn and puts Data 1
on ad[31:0].

7 Turn around
The master relinquishes control of framen and cben[3:0] and de-asserts irdyn since the data
transfer only requires one data phase.

The Core relinquishes control of ad[31:0] and de-asserts both devseln and trdyn.

8 Idle The Core relinquishes control of devseln and trdyn.The Core also clears bar_hit, to signal to
the back end that the transaction is complete, and de-asserts lt_data_xfern.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 85 PCI IP Core User’s Guide

Figure 2-25 illustrates an example of a basic 32-bit write transaction to the PCI IP core operating as a Target.
Table 2-30 gives a clock-by-clock description of the 32-bit write transaction.

Figure 2-25. 32-bit Target Single Write Transaction with a 32-bit Local Interface

1 2 3 4 5 6 7 8

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

Address Data 1

Bus
 Command

0x00 0x01 0x00

Byte Enable 1

par Address
Parity Data Parity 1

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_data_xfern

Don’t careDon’t care

lt_address_out

Data 1

Bus Command

Don’t care

lt_accessn

lt_command_out[3:0]

lt_cben_out[3:0]

Address

Don’t care

Byte Enable 1Don’t care Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 86 PCI IP Core User’s Guide

Table 2-30. 32-bit Target Single Write Transaction with a 32-bit Local Interface

CLK
PCI Data

Phase Description

1 Address The master asserts framen and drives ad[31:0] and cben[3:0].

2 Wait

The master drives the byte enable (Byte Enable 1).The master asserts irdyn, indicating that it is
ready to write the data, and de-asserts framen. To indicate a single data phase transaction, it
drives DWORD (Data 1) on ad[31:0].The Core starts to decode the address and command and
drives the lt_address_out to the back-end.

3 Wait If an address match is present, the Core drives the bar_hit signals to the back-end. The back-
end can use bar_hit as a chip select.

4 Wait With the DEVSEL_TIMING set to slow, the Core asserts devseln one clock after bar_hit. If
the back-end will be ready to write data in two cycles, it can assert lt_rdyn.

5 Data 1 trdyn is asserted by the Core since lt_rdyn was asserted by the application logic during the
previous cycle.

6 Turn around

If both irdyn and trdyn were asserted on the previous cycle, the master relinquishes control of
framen, ad[31:0] and cben[3:0]. The master also de-asserts irdyn since only one data
phase is required. The Core asserts lt_data_xfern to indicate that the valid PCI data is avail-
able for writing.

7 Idle The Core relinquishes control of devseln and trdyn.The target clears bar_hit to signal to the
back-end that the transaction is complete. It also de-asserts lt_data_xfern.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 87 PCI IP Core User’s Guide

64-Bit PCI Target with a 64-Bit Local Bus
This section discusses read and write transactions for a PCI IP core, operating as a target, configured with a 64-bit
PCI bus and a 64-bit local bus. All 64-bit PCI devices are required by the PCI Specification to handle both 64-bit
and 32-bit applications. The 32-bit transactions, described in the 32-Bit PCI Target with a 32-Bit Local Bus Memory
Transactions section, are similar to a 32-bit transaction for the 64-bit PCI IP core configuration with the exception
that when the 64-bit Core responds to a 32-bit transaction the upper 32 bits of the data bus should be ignored.

The 64-bit memory read transaction is similar to the 32-bit target read transaction with additional PCI signals
required for 64-bit signaling. Figure 2-27 and Table 2-31 illustrate a basic 64-bit read transaction.

Figure 2-26. 64-Bit Target Single Read Transaction with a 64-Bit Local Interface
1 2 3 4 5 6 7 8 9

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

req64n

ad[63:32]

cben[7:4]

bar_hit[5:0]

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_ldata_xfern

lt_64bit_transn

lt_hdata_xfern

Address Data 1

Bus
 Command

Byte Enable 1

Don't careDon't care

Don't care

Byte Enable 2

lt_address_out

Data 2

Don't care

Don't care

Don't care

0x00 0x01 0x00

Data 1

Data 2Don't care Don't care

AddressDon't care

par
Address
Parity

par64 Don't care

Don't care

Don't care

Data
Parity 1

Data
Parity 2

lt_accessn

Bus CommandDon't carelt_command_out[3:0]

lt_cben_out[3:0] Don't care Byte Enable 1 Don't care

lt_cben_out[7:4] Don't care Byte Enable 2 Don't care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 88 PCI IP Core User’s Guide

Table 2-31. 64-bit Target Single Read Transaction with a 64-bit Local Interface

CLK
PCI Data

Phase Description

1 Address The master asserts framen, req64n and drives ad[31:0] and cben[3:0].

2 Turn around

The master tri-states the ad[63:0] lines and drives the first byte enables (Byte Enable 1 and 2).
If the master is ready to receive data, it asserts irdyn.

The Core starts to decode the address and command. The Core drives the lt_address_out to
the back-end. The lt_64bit_transn signal is driven low to signal the back-end that a 64-bit
transaction has been requested.

3 Wait If an address match is present, the Core drives the bar_hit signals to the back-end. The back-
end can use the bar_hit as a chip select.

4 Wait
If the DEVSEL_TIMING is set to slow, the Core asserts devseln one clock after bar_hit. The
ack64n signal is also asserted to acknowledge the 64-bit request. If the back-end is ready to put
data out on the next cycle, it can assert lt_rdyn.

5 Wait

The local target asserts lt_hdata_xfern and lt_ldata_xfern since lt_rdyn was asserted
the previous cycle. The back-end drives the first QWORD (Data 1) on l_ad_in[63:0].

With lt_rdyn asserted during the previous two cycles, the burst cycle starts the Core asserts
trdyn and puts Data 1 on ad[31:0].

6 Data 1

With lt_rdyn asserted previous two cycles, the burst cycle starts. The Core asserts trdyn and
puts Data 1 on ad[63:0].

If both irdyn and lt_rdyn are asserted on the previous cycle, the Core keeps
lt_hdata_xfern and lt_ldata_xfern asserted to the back-end. The back-end can incre-
ment the address counter and put the next QWORD (Don’t care) on l_ad_in[63:0].

9 Turn around

The master relinquishes control of framen, ack64n and cben[7:0]. It de-asserts irdyn if both
trdyn and irdyn were asserted last cycle.

The Core relinquishes control of ad[63:0]. It de-asserts both devseln and trdyn if both
trdyn and irdyn were asserted during the last cycle. The Core also clears bar_hit to signal to
the back-end that the transaction is complete. The Core de-asserts lt_hdata_xfern and
lt_ldata_xfern.

10 Idle

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 89 PCI IP Core User’s Guide

The 64-bit memory write transaction is similar to the 32-bit target write transaction with additional PCI signals
required for 64-bit signaling. Figure 2-27 and Table 2-31 show a basic 64-bit write transaction.

Figure 2-27. 64-bit Target Single Write Transaction with a 64-bit Local Interface
1 2 3 4 5 6 7 8

l_data_out[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

req64n

ad[63:32]

cben[7:4]

bar_hit[5:0]

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_ldata_xfern

lt_64bit_transn

lt_hdata_xfern

Address Data 1

Bus
 Command

Don’t careDon’t care

Don’t care

lt_address_out

Data 2

Don’t care

0x00 0x01 0x00

Data 1

Data 2Don’t care Don’t care

AddressDon’t care

Byte Enable 1

Byte Enable 2

par

par64

Address
Parity Data Parity 1

Don’t care Data Parity2

lt_accessn

lt_cben_out[3:0]

lt_cben_out[7:4]

Don’t care

Don’t care

Don’t care

Don’t care

lt_command_out[3:0] Bus CommandDon’t care

Byte Enable 1

Byte Enable 2

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 90 PCI IP Core User’s Guide

32-Bit PCI Target with a 64-Bit Local Bus
This section discusses read and write transactions for a PCI IP core, operating as a target, configured with a 32-bit
PCI bus and a 64-bit local bus. The 32-bit PCI transactions, described in the 32-Bit PCI Target with a 32-Bit Local
Bus Memory Transactions section, look similar to the transaction; however; the data is handled differently at the
Local Target Interface.

In order to present a full 64 bits of data to the Local Target Interface, two PCI data phase are required. Like retriev-
ing 64 bits of data from the Local Target Interface, two PCI data phases are required

The Local Target Interface control latches the complete QWORD and routes the proper DWORD to the PCI data
bus. The lt_ldata_xfern and lt_hdata_xfern signals specify which DWORD is transferred.

If the starting address is QWORD aligned, the first DWORD is assumed to be the lower DWORD of a QWORD and
is placed on the PCI data bus. Otherwise, the upper DWORD is placed on the PCI data bus.

The 64-bit memory write transaction is similar to the 32-bit target write transaction with additional PCI signals
required for 64-bit signaling. Figure 2-28 and Table 2-33 illustrate a basic 64-bit write transaction.

Table 2-32. 64-bit Target Single Write Transaction with a 64-bit Local Interface

CLK
PCI Data

Phase Description

1 Address The master asserts framen and req64n and drives ad[63:0] and cben[3:0].

2 Wait

The master drives the first byte enables (Byte Enable 1). If the master is ready to write data, it
asserts irdyn and drives the first QWORD (Data 1) on ad[63:0].The Core starts to decode the
address and command. The Core drives the lt_address_out to the back-end. The
lt_64bit_transn signal is driven low to signal the back-end that a 64-bit transaction has been
requested.

3 Wait If there is an address match, the Core drives the bar_hit signals to the back-end. The back-end
can use the bar_hit as a chip select.

4 Wait
If the DEVSEL_TIMING is set to slow, the Core asserts devseln on clock after bar_hit. The
ack64n signal is also asserted to acknowledge the 64-bit request. If the back-end will be ready to
put data out on the next cycle, it can assert lt_rdyn.

5 Data 1 trdyn is asserted since lt_rdyn was asserted during the previous cycle.

6 Turn around
If both irdyn and trdyn are asserted during the previous cycle, the master relinquishes control
of framen, req64n, ad[63:0] and cben[7:0]. It also de-asserts irdyn if both trdyn and
irdyn were asserted last cycle.

7 Idle The Core signals to the back-end that the transaction is complete by clearing bar_hit. It also de-
asserts lt_hdata_xfern and lt_ldata_xfern.

8 Idle

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 91 PCI IP Core User’s Guide

Figure 2-28. 32-bit Target Single Read Transaction with a 64-bit Local Interface

1 2 3 4 5 6 7 8 9 10

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

Address Data 1 Data 2

Bus
 Command

Byte Enable 1

Don't care

0x00 0x01 0x00

par
Address
Parity

Don't care
Data

Parity 1
Data

Parity 2

l_ad_in[63:32]

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_ldata_xfern

lt_64bit_transn

lt_hdata_xfern

Don't careDon't care

lt_address_out

Data 1 Data 3

Data 2Don't care Don't care

AddressDon't care

Don't care

lt_accessn

lt_cben_out[3:0]

Don't care Bus Command

Byte Enable 1Don't care Don't care

lt_cben_out[7:4] Byte Enable 1Don't care Don't care

lt_command_out[3:0]

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 92 PCI IP Core User’s Guide

Table 2-33. 32-bit Target Single Read Transaction with a 64-bit Local Interface

The 64-bit memory write transaction is very similar to the 32-bit target write transaction with additional PCI signals
required for 64-bit signaling. Figure 2-29 and Table 2-34 show a basic 64-bit write transaction.

CLK
PCI Data

Phase Description

1 Address The master asserts framen and drives ad[31:0] and cben[3:0].

2 Turn around

The master tri-states the ad lines and drives the first byte enables (Byte Enable 1). If the master is
ready to receive data, it asserts irdyn.

The Core starts to decode the address and command. The Core drives the lt_address_out to
the back-end.

3 Wait If there is an address match, the Core drives the bar_hit signals to the back-end. The back-end
can use the bar_hit as a chip select.

4 Wait If the DEVSEL_TIMING is set to slow, the Core asserts devseln on clock after bar_hit. If the
back-end will be ready to put data out on the next cycle, it can assert lt_rdyn.

5 Wait

Quad Word Aligned
With lt_rdyn asserted on the previous cycle, the local interface asserts lt_ldata_xfern. The
back-end drives the first DWORD (Data 1) on l_ad_in[31:0].

Double Word Aligned
With lt_rdyn asserted on the previous cycle, the local interface asserts lt_hdata_xfern. The
back-end drives the first DWORD (Data 1) on l_ad_in[63:32].

6 Data 1

With trdyn and irdyn asserted Data 1 is placed on ad[31:0]

Quad Word Aligned

The Core de-asserts lt_ldata_xfern. If irdyn is asserted on the previous cycle, the Core
asserts lt_hdata_xfern to the back-end. With lt_hdata_xfern de-asserted the previous
cycle, the back-end does not increment the address counter and holds the QWORD (Data 2) on
l_ad_in[63:0].

Double Word Aligned
With lt_rdyn asserted during the previous two cycles, the burst cycle starts, so the Core asserts
trdyn and puts Data 1 on ad since the initial address is DWORD aligned. Notice that the lower
DWORD from l_ad_in[31:0] is discarded.

The Core de-asserts lt_hdata_xfern. If both irdyn and lt_rdyn are asserted on the previ-
ous cycle, the Core asserts lt_ldata_xfern to the back-end. With lt_hdata_xfern asserted
the previous cycle, the back-end can increment the address counter and put the next QWORD
(Data 2) on l_ad_in[31:0].

7 Data 2 The Core keeps trdyn asserted and puts Data 2 on ad[31:0].

8 Turn around
The master relinquishes control of framen and cben[3:0]. It de-asserts irdyn if both trdyn
and irdyn were asserted last cycle.The Core relinquishes control of ad[31:0]. It de-asserts
both devseln and trdyn if both trdyn and irdyn were asserted last cycle.

9 Idle The Core relinquishes control of devseln and trdyn.The Core also signals to the back-end that
the transaction is complete by clearing bar_hit. The Core de-asserts lt_data_xfern.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 93 PCI IP Core User’s Guide

Figure 2-29. 32-bit Target Single Write Transaction with a 64-bit Local Interface

1 2 3 4 5 6 7 8 9

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

Address Data 1 Data 2

Bus
 Command

0x00 0x01 0x00

Byte Enable 1 Byte
Enable 2

par Address
Parity Data Parity 1 Data

Parity 2

l_data_out[63:32]

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_ldata_xfern

lt_64bit_transn

lt_hdata_xfern

Don’t care

Don’t care

lt_address_out

Data 1

Data 2Don’t care

Don’t care

AddressDon’t care

lt_accessn

lt_cben_out[3:0]

Don’t care Bus Command

Byte Enable 1Don’t care Don’t care

lt_command_out[3:0]

lt_cben_out[7:4] Byte
Enable 2Don’t care

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 94 PCI IP Core User’s Guide

Table 2-34. 32-bit Target Single Write Transaction with a 64-bit Local Interface

Configuration Read and Write Transactions
The PCI IP core handles configuration transactions from addresses 00h to 40h. The Local Target Interface has no
control of these types of accesses and is independent these transactions. However, these transactions are still pro-
vided for verification purposes.

The PCI IP core only supports 32-bit, single data phase transactions to configuration registers. An individual idsel
signal is connected to each PCI IP core device. Otherwise, read and write transactions are like the standard mem-
ory and I/O transactions. Figure 2-30 and Table 2-35 illustrate an example of a configuration read. Figure 2-31 and
Table 2-36 shows an example of a configuration write.

The Capabilities List accesses and other configuration accesses over address 40h are beyond the PCI IP core’s
ability to complete the transaction without intervention from the Local Target Interface. Therefore, accesses to
memory locations over address 40h are treated as local accesses and handled by the local target interface control.
These configuration accesses are discussed further in Advanced Configuration Accesses section.

CLK
PCI Data

Phase Description

1 Address The master asserts framen and drives ad[31:0] and cben[3:0].

2 Wait

The master drives the first byte enables (Byte Enable 1). If the master is ready to write data, it
asserts irdyn and drives the first DWORD (Data 1) on ad[31:0].

The Core starts to decode the address and command. The Core drives the lt_address_out and
lt_command_out to the back-end.

3 Wait If there is an address match, the Core drives the bar_hit signals to the back-end. The back-end
can use the bar_hit as a chip select.

4 Wait If the DEVSEL_TIMING is set to slow, the Core asserts devseln on clock after bar_hit. If the
back-end will be ready to write data in two cycles, it can assert lt_rdyn.

5 Data 1 trdyn is asserted since lt_rdyn was asserted the previous cycle.

6 Data 2

Quad Word Aligned

The Core keeps trdyn asserted and puts Data 1 on the lower DWORD of lt_data_out.

If both irdyn and trdyn are asserted on the previous cycle, the master drives the next byte
enables (Byte Enable 2) on cben[3:0]. If the PCI master is still ready to write data, it keeps
irdyn asserted and drives the next DWORD (Data 2) on ad[31:0].

If both irdyn and trdyn were asserted on the previous cycle, the Core asserts
lt_ldata_xfern to the back-end to signify that Data 1 is valid. With lt_ldata_xfern
asserted, the back-end doesn’t write the data or increment the address counter.

Double Word Aligned
The Core keeps trdyn asserted and puts Data 1 on the upper DWORD of lt_data_out.

If both irdyn and trdyn are asserted on the previous cycle, the master drives the next byte
enables (Byte Enable 2) on cben[3:0]. If the master is still ready to write data, it keeps irdyn
asserted and drives the next DWORD (Data 2) on ad[31:0].

If irdyn, trdyn and lt_rdyn are asserted on the previous cycle, the Core asserts
lt_hdata_xfern to the back-end to signify that Data 1 is valid. With lt_hdata_xfern
asserted, the back-end can safely write the QWORD (Don’t care and Data 1) and increment the
address counter.

7 Turn around

If both irdyn and trdyn are asserted on the previous cycle, the master relinquishes control of
framen, ad[31:0] and cben[3:0].

It also de-asserts irdyn if both trdyn and irdyn were asserted last cycle.It de-asserts both
devseln and trdyn if both trdyn and irdyn were asserted last cycle.

8 Idle The Core relinquishes control of devseln and trdyn.The target signals to the back-end that the
transaction is complete by clearing bar_hit. It also de-asserts lt_data_xfern.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 95 PCI IP Core User’s Guide

Figure 2-30. Basic Configuration Read

Table 2-35. Basic Configuration Read

CLK
PCI Bus
Phase Description

1 Address
The master asserts framen and idsel. It drives the configuration address and Configuration
Read command. The configuration address is ad[1:0] = 00 (type zero access); ad[7:2] = con-
figuration DWORD address; ad[10:8] = function number; and ad[31:11] = unused.

2 Turn around The master tri-states ad[31:0]and drives the first byte enable (Byte Enable 1). If the master is
ready to receive data, it asserts irdyn.The Core starts to decode the address and command.

3 Wait The address decode continues.

4 Wait If the devsel_timing is set to slow, the Core asserts devseln. The Core is ready to put data out on
the next cycle.

5 Data 1 The data cycle starts as the target Core trdyn and puts Data 1 on ad. The Core also asserts
stopn to ensure the configuration transaction is single data phase.

6 Turn around

The master relinquishes control of framen and cben[3:0]. It de-asserts irdyn if both trdyn
and irdyn were asserted during the last cycle.

The Core relinquishes control of ad[31:0]. It de-asserts both devseln, trdyn and stopn if
both trdyn and irdyn were asserted during the last cycle.

7 Idle The Core relinquishes control of devseln, trdyn and stopn.

1 2 3 4 5 6 7 8 9

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

Address Data 1

Bus
 Command

Byte
Enable 1

par Address
Parity

Data Parity
1

Don’t care

idsel

Don’t care

stopn

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 96 PCI IP Core User’s Guide

Figure 2-31. Basic Configuration Write

Table 2-36. Basic Configuration Write

PCI Target I/O Read and Write Transactions
Designing a PCI target application using I/O space is not recommended for several reasons. They include legacy
device conflicts, and full address and byte enable decoding for all I/O locations. However, the PCI IP core does sup-
port I/O space. Transactions to I/O locations are similar to the basic memory transactions discussed in the Basic
PCI Target Read and Write Transactions section.

CLK
PCI Bus
Phase Description

1 Address
The master asserts framen and idsel. It drives the configuration address and configuration
write command. The configuration address is ad[1:0] = 00 (type zero access); ad[7:2] =
(Configuration DWORD address); ad[10:8] = (function number); ad[31:11] = unused.

2 Wait
The master drives the first byte enables (Byte Enable 1). If the bridge is ready to write data, it
asserts irdyn and drives the first DWORD (Data 1) on ad[31:0]. The master signals the last
data phase when it de-asserts framen.The Core starts to decode the address and command.

3 Wait The address decode continues.

4 Wait If the DEVSEL_TIMING is set to slow, the Core asserts devseln. The Core should be ready to
get the data on the next cycle.

5 Data The trdyn signal is asserted and the Core writes the DWORD. The Core also asserts stopn to
ensure the configuring transaction is single data phase.

6 Turn around

The master relinquishes control of framen, ad[31:0] and cben[3:0]. It de-asserts irdyn if
both trdyn and irdyn were asserted last cycle.

The Core de-asserts devseln, trdyn and stopn if both trdyn and irdyn were asserted last
cycle.

7 Idle The Core relinquishes control of devseln, trdyn and stopn.

1 2 3 4 5 6 7 8 9

clk

framen

irdyn

trdyn

devseln

cben[3:0] Bus
 Command

Byte
Enable 1

par Address
Parity Data Parity 1

idsel

ad[31:0] Address Data 1

stopn

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 97 PCI IP Core User’s Guide

In legacy systems, I/O space is limited. The system generally uses I/O space for vital system components such as
interrupt controllers. These system components are spread throughout the I/O space, leaving only small gaps for
additional devices that require I/O space. If I/O space is used in a legacy system, it is limited to 256 bytes.

By definition, read and write transactions to I/O space can only be completed using 32-bit PCI transactions. Decod-
ing all 32 bits in the address and determining which byte enables (cben[3:0]) are supported is necessary. The
back-end application responds with a target abort if any unsupported byte enable combinations are requested.

Advanced Target Transactions
Some PCI applications require more than basic read and write transactions. For these applications, the PCI Local
Bus Specification, Revision 3.0 offers advanced features to handle the more difficult aspects of the PCI bus. The
advanced features are used to provide the PCI application with more flexibility and improve the overall PCI system
performance. The following sections offer more detail on these advanced PCI bus features.

Wait States
Care must be taken when processing wait states to be compliant with the PCI Local Bus Specification, Revision
3.0. Once a PCI master or a PCI target signals that it is ready to send or receive data, it must complete the current
PCI data phase. For example, if the PCI IP core is ready to write data and the PCI master inserts wait states, the
PCI IP core must wait to write the data until the master is ready again. Additionally, if the PCI IP core has commit-
ted to a data phase by asserting trdyn, it can not insert any wait states until the next data phase. Coincident mas-
ter and target wait state insertion is also a possibility. Refer to the PCI Specification for more information regarding
coincident wait state insertion.

Two types of wait states that can occur on the PCI bus. The first is master wait state insertion. When the PCI mas-
ter inserts wait states, the PCI IP core must hold off data until the PCI master is ready. The PCI IP core inserts the
second type of wait states. The back-end application controls the PCI IP core’s wait state insertion via the Local
Target Interface.

Figure 2-32 and Table 2-37 illustrate master-inserted and target-inserted wait states for read transactions. The fig-
ure illustrates how the PCI interface correlates to the Local Target Interface. The table gives a clock-by-clock
description of each event in the figure.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 98 PCI IP Core User’s Guide

Figure 2-32. 32-bit Target Read Transaction with Master Wait State

Table 2-37. 32-bit Target Read Transaction with Master Wait State

CLK
PCI Data

Phase Description

1 Address The PCI master asserts framen and drives ad[31:0] and cben[3:0].

2 Turn around The PCI master tri-states ad[31:0].The PCI master is ready to receive data. It asserts irdyn.

3 Target Wait The Core starts to decode the address and command.

4 Target Wait

If the DEVSEL_TIMING is set to slow, the Core asserts devseln one clock after bar_hit.
trdyn is kept asserted since the back-end logic did not assert lt_rdyn during clock cycle 3.

The back-end logic asserts lt_rdyn during this cycle.

5 Target Wait The PCI IP core inserts a wait state as it has not yet asserted the trdyn signal. Since both irdyn
and lt_rdyn were asserted on the previous cycle, the Core asserts lt_data_xfern.

6 Data 1

The Core asserts trdyn and drives Data 1 from the local target on to the PCI ad[31:0] bus. If
the PCI master is still ready to receive data, it keeps irdyn asserted and drives the next byte
enables (Byte Enables) on cben[3:0]. If the back-end kept lt_rdyn asserted in the previous
two cycles, the Core keeps trdyn asserted and puts Data 2 on ad[31:0].If both irdyn and
lt_rdyn are asserted on the previous cycle, the Core re-asserts lt_data_xfern to the back-
end.

7 Master Wait

The PCI master is not ready to receive data, it de-asserts irdyn If the back-end keeps lt_rdyn
asserted previous two cycles, the Core keeps trdyn asserted and puts Data 2 on ad[31:0].If
both irdyn and lt_rdyn are asserted on the previous cycle, the Core re-asserts
lt_data_xfern to the back-end. The back-end should increment the address counter.

1 2 3 4 5 6 7 8 9 10 11

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_data_xfern

Address Data 1 Data 3Data 2

Bus
 Command Byte Enable 1

Don’t careDon’t care

lt_address_out

Don’t care

0x00 0x01 0x00

Data 1 Data 3Data 2

AddressDon’t care

par Address
Parity Don’t care Data Parity

1
Data Parity

3Data Parity 2

12

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 99 PCI IP Core User’s Guide

Figure 2-33 and Table 2-38 show master-inserted and target-inserted wait states that are inserted on write transac-
tions. The figure illustrates how the PCI interface correlates to the Local Target Interface. The table gives a clock-
by-clock description of each event in the figure.

Figure 2-33. 32-bit Target Write Transaction with Master Wait State

8 Data 2
If the PCI master is ready to receive data, it asserts irdyn and drives the next byte enables (Byte
Enable 3) on cben[3:0].Because irdyn is not asserted on the previous cycle, the Core de-
asserts lt_data_xfern on the local interface.

9 Data 3
Since the last data phase, the master asserts irdyn and de-asserts framen.If both irdyn and
lt_rdyn are asserted on the previous cycle, the Core re-asserts lt_data_xfern to the back-
end.

10 Turn around The master relinquishes control of framen, ad[31:0] and cben[3:0].The Core de-asserts
both devseln and trdyn.

11 Idle The Core relinquishes control of devseln and trdyn.

Table 2-37. 32-bit Target Read Transaction with Master Wait State (Continued)

CLK
PCI Data

Phase Description

1 2 3 4 5 6 7 8 9 10 11

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_data_xfern

Address Data 1 Data 3Data 2

Bus
 Command

Don’t careDon’t care

lt_address_out

0x00 0x01 0x00

Data 1 Data 3Data 2

AddressDon’t care

Byte Enable 1 Byte
Enable 3

Byte
Enable 2

par Address
Parity Data Parity 1 Data Parity 3Data Parity

2

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 100 PCI IP Core User’s Guide

Table 2-38. 32-bit Target Write Transaction with Master Wait State

Burst Read and Write Target Transactions
Burst read and write transactions to memory addresses are used to achieve the high throughput that is typically
associated with the PCI bus. The following lists the commands for the PCI IP core that support bursting.

• Memory Read

• Memory Write

• Memory Read Multiple

• Dual Address Cycle

• Memory Read Line

• Memory Write and Invalidate

These PCI burst transactions are described based on the different PCI and Local bus configurations supported by
the PCI IP core. Although the fundamentals of bursting are similar for all PCI IP core configurations, different bus
configurations require slightly different Local Target Interface signaling. The PCI IP core does not support bursting
for Configuration Space or I/O space accesses. Refer to the following sections for more information on bursting with
specific PCI Target configurations:

• 32-Bit PCI Target with a 32-Bit Local Bus

• 64-Bit PCI Target with a 64-Bit Local Bus

• 32-Bit PCI Target with a 64-Bit Local Bus

Typically for burst transactions, the PCI master and the PCI target has a predefined number of PCI data phases
that are to be transferred. The PCI master will know the number of data phases that are to be transferred based on
the software driver and specifications that were defined by the PCI IP core’s implementation. The PCI IP core will
have a predefined number of data phases based on the design requirements of the PCI Target core’s application.
The design requirements include items like FIFO depth and the general ability to handle throughput. Handling
these requirements is covered in more detail in the PCI Local Bus Specification, Revision 3.0.

CLK
PCI Data

Phase Description

1 Address The master asserts framen and drives ad[31:0] and cben[3:0].

2 Target Wait The PCI master is ready to receive data. It asserts irdyn.

3 Target Wait The Core starts to decode the address and command.

4 Target Wait If the DEVSEL_TIMING is set to slow, the target asserts devseln on clock after bar_hit.The
lt_rdyn signal is driven low to indicate that the back-end application is ready to receive data.

5 Data 1 The irdyn and trdyn signals are asserted Data 1 is registered from ad[31:0].

6 Master Wait
With lt_data_xfern signal asserted Data1 is registered on lt_data_out[31:0].The master is not
ready to receive data. It inserts a wait state by de-asserting irdyn. The master holds Data 1 on
the ad[31:0] lines and continues to drive the first byte enables (Byte Enable 1).

7 Data 2 With the irdyn signal asserted Data 2 is driven on to ad[31:0].Because irdyn is not asserted
on the previous cycle, the Core de-asserts lt_data_xfern on the local interface.

8 Data 3 With the irdyn signal asserted Data 3 is driven on to ad[31:0].If both irdyn and lt_rdyn are
asserted on the previous cycle, the Core re-asserts lt_data_xfern to the back-end.

9 Turn around
With lt_data_xfern signal asserted Data 2 is registered on lt_data_out[31:0].The master relin-
quishes control of framen, ad[31:0] and cben[3:0].The Core de-asserts both devseln and
trdyn if both trdyn and irdyn were asserted last cycle.

10 Idle The Core relinquishes control of devseln and trdyn.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 101 PCI IP Core User’s Guide

32-Bit PCI Bus and a 32-Bit Local Bus
The following section discusses read and write, burst transactions for a PCI IP core configured with a 32-bit PCI
bus and a 32-bit Local bus. Figure 2-34 and Table 2-39 show a 32-bit burst read transaction. The figure illustrates
how the PCI interface correlates to the Local Target Interface. The table gives a clock-by-clock description of each
event that occurs in the figure.

Figure 2-34. 32-bit Target Burst Read Transaction with a 32-bit Local Interface

Table 2-39. 32-bit Target Burst Read Transaction with a 32-bit Local Interface

CLK
PCI Data

Phase Description

1 Address The PCI master asserts framen and drives ad[31:0] and cben[3:0].

2 Turn around
The PCI master tri-states ad[31:0] and drives the first byte enables (Byte Enable 1) on
cben[3:0]. If the PCI master is ready to receive data, it asserts irdyn.The Core starts to
decode the address and command and drives the lt_address_out to the back-end application.

3 Wait If there is an address match, the Core drives the bar_hit signals to the back-end. The back-end
can use the bar_hit as a chip select.

1 2 3 4 5 6 7 8 9 10 11

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

Address Data 1 Data 3Data 2

Bus
 Command Byte Enable 1

Don’t care

0x00 0x01 0x00

par Address
Parity Don’t care Data Parity

1
Data Parity

3
Data Parity

2

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_data_xfern

Don’t careDon’t care

lt_address_out

Data 1 Data 3Data 2

AddressDon’t care

lt_access

 Bus CommandDon’t care

Byte Enable 1Don’t carelt_cben_out[3:0] Don’t care

lt_command_out[3:0]

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 102 PCI IP Core User’s Guide

4 Wait If the DEVSEL_TIMING is set to slow, the Core asserts devseln on clock after bar_hit. If the
back-end will be ready to put data out on the next cycle, it can assert lt_rdyn.

5 Wait The Core asserts lt_data_xfern since lt_rdyn was asserted the previous cycle. The back-
end drives the first DWORD (Data 1) on l_ad_in.

6 Data 1

With lt_rdyn asserted for the previous two cycles, the burst cycle starts, so the Core asserts
trdyn and puts Data 1 on ad[31:0].

If both irdyn and lt_rdyn are asserted on the previous cycle, the target keeps
lt_data_xfern asserted to the back-end. The back-end can increment the address counter and
put the next DWORD (Data 2) on l_ad_in.

7 Data 2

If the PCI master is still ready to receive data, it keeps irdyn asserted and drives the next byte
enables (Byte Enable 2) on cben[3:0].

If the back-end keeps lt_rdyn asserted for the previous two cycles, the Core keeps trdyn
asserted and puts Data 2 on ad[31:0].

If both irdyn and lt_rdyn are asserted on the previous cycle, the Core keeps lt_data_xfern
asserted to the back-end. The back-end can increment the address counter and put the next
DWORD (Data 3) on l_ad_in.

8 Data 3

If the PCI master is still ready to receive data, it keeps irdyn asserted and drives the next byte
enables (Byte Enable 3) on cben[3:0].

The master signals the end of the burst when it de-asserts framen.If the back-end keeps
lt_rdyn asserted previous two cycles, the Core keeps trdyn asserted and puts Data 3 on
ad[31:0].

If both irdyn and lt_rdyn are asserted on the previous cycle, the Core keeps lt_data_xfern
asserted to the back-end application. The back-end can increment the address counter and put
the next DWORD (Don’t care) on l_ad_in.

9 Turn around

The master relinquishes control of framen and cben[3:0]. It de-asserts irdyn if both trdyn
and irdyn were asserted last cycle.The Core relinquishes control of ad[31:0]. It de-asserts
both devseln and trdyn if both trdyn and irdyn were asserted last cycle. The Core also sig-
nals to the back-end that the transaction is complete by clearing bar_hit. The Core de-asserts
lt_data_xfern.

10 Idle The Core relinquishes control of devseln and trdyn.

Table 2-39. 32-bit Target Burst Read Transaction with a 32-bit Local Interface (Continued)

CLK
PCI Data

Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 103 PCI IP Core User’s Guide

Figure 2-35 and Table 2-40 show an example of a 32-bit burst write transaction. The assumption is that the device
select timing is set to slow and wait states are not inserted. The figure illustrates how the PCI interface correlates to
the Local Target Interface. The table gives a clock-by-clock description of each event that occurs in the figure.

Figure 2-35. 32-bit Target Burst Write Transaction with a 32-bit Local Interface
1 2 3 4 5 6 7 8 9 10

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

Address Data 1 Data 3Data 2

Bus
 Command

0x00 0x01 0x00

Byte Enable 1 Byte
Enable 3

Byte
Enable 2

par Address
Parity Data Parity 1 Data

Parity 3
Data

Parity 2

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_data_xfern

Don’t careDon’t care

lt_address_out

Data 1 Data 3Data 2

Bus Command

Don’t care

lt_access

lt_command_out[3:0]

lt_cben_out[3:0]

Address

Don’t care

Byte Enable 1 Byte
Enable 3

Byte
Enable 2Don’t care Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 104 PCI IP Core User’s Guide

Table 2-40. 32-bit Target Burst Write Transaction with a 32-bit Local Interface

CLK
PCI Data

Phase Description

1 Address The PCI master asserts framen and drives ad[31:0] and cben[3:0].

2 Wait
The PCI master drives the first byte enables (Byte Enable 1) on cben[3:0]. If the master is ready
to write data, it asserts irdyn and drives the first DWORD (Data 1) on ad[31:0]. The PCI IP core
starts to decode the address and command and drives the lt_address_out to the back-end.

3 Wait If there is an address match, the Core drives the bar_hit signals on the Local Interface. The back-
end can use the bar_hit as a chip select.

4 Wait If the DEVSEL_TIMING is set to slow, the Core asserts devseln on clock after bar_hit. If the
back-end will be ready to write data in two cycles, it can assert lt_rdyn.

5 Data 1 trdyn is asserted since lt_rdyn was asserted the previous cycle.

6 Data 2

If the back-end keeps lt_rdyn asserted for the previous cycle, the Core keeps trdyn asserted
and puts Data 1 on l_data_out. If both irdyn and trdyn are asserted on the previous cycle, the
master drives the next byte enables (Byte Enable 2) on cben[3:0]. If the master is still ready to
write data, it keeps irdyn asserted and drives the next DWORD (Data 2) on ad[31:0]. If both
irdyn and lt_rdyn are asserted on the previous cycle, the Core asserts lt_data_xfern to the
back-end to signify Data 1 was transferred successfully. With lt_data_xfern asserted, the back-
end can safely write Data 1 and increment the address counter.

7 Data 3

If the back-end keeps lt_rdyn asserted for the previous cycle, the Core keeps trdyn asserted
and puts Data 2 on l_data_out.

If both irdyn and trdyn are asserted on the previous cycle, the master drives the next byte
enables (Byte Enable 3) on cben[3:0]. If the master is still ready to write data, it keeps irdyn
asserted and drives the next DWORD (Data 3) on ad[31:0].

The master signals the end of the burst when it de-asserts framen. If both irdyn and lt_rdyn
are asserted on the previous cycle, the Core keeps lt_data_xfern asserted to the back-end to
signify Data 2 was transferred successfully.

8 Turn around

If the back-end keeps lt_rdyn asserted for the previous cycle, the Core puts Data 3 on
l_data_out.

If both irdyn and trdyn are asserted on the previous cycle, the master relinquishes control of
framen, ad and cben. It also de-asserts irdyn if both trdyn and irdyn were asserted last
cycle.

If both irdyn and lt_rdyn are asserted on the previous cycle, the Core keeps lt_data_xfern
asserted to the back-end to signify Data 3 was transferred successfully. With lt_data_xfern
asserted the back-end can safely write Data 3 and increment the address counter.

The PCI IP core de-asserts both devseln and trdyn if both trdyn and irdyn were asserted last
cycle.

9 Idle The target signals to the back-end that the transaction is complete by clearing bar_hit. It also de-
asserts lt_data_xfern. The Core relinquishes control of devseln and trdyn.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 105 PCI IP Core User’s Guide

64-Bit PCI Target with a 64-Bit Local Bus
The following discusses read and write burst transactions for the PCI IP core configured with a 64-bit PCI bus and
a 64-bit local bus. Figure 2-36 and Table 2-41 illustrate a 64-bit burst write transaction. The figure shows how the
PCI interface correlates to the local interface. The table gives a clock-by-clock description of each event that occurs
in the figure.

The 32-bit burst transaction, as described in the 32-Bit PCI Bus and a 32-Bit Local Bus section, is similar to a 32-bit
burst transaction for the 64-bit PCI IP core configuration. When the 64-bit target core responds to a 32-bit burst
transaction, the upper 32 bits of the data bus should be ignored.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 106 PCI IP Core User’s Guide

Figure 2-36. 64-bit Target Burst Read Transaction with a 64-bit Local Interface
1 2 3 4 5 6 7 8 9 10 11

l_ad_in[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

req64n

ad[63:32]

cben[7:4]

bar_hit[5:0]

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_ldata_xfern

lt_64bit_transn

lt_hdata_xfern

Address Data 1 Data 5Data 3

Bus
 Command

Byte Enable 1

Don't careDon't care

Don't care

Byte Enable 2

lt_address_out

Data 2 Data 6Data 4

Don't care

Don't care

Don't care

0x00 0x01 0x00

Data 1 Data 5Data 3

Data 2 Data 6Data 4Don't care Don't care

AddressDon't care

par
Address
Parity

par64 Don't care

Don't care

Don't care

Data
Parity 1

Data
Parity 5

Data
Parity 3

Data
Parity 2

Data
Parity 6

Data
Parity 4

lt_access

Bus CommandDon't carelt_command_out[3:0]

lt_cben_out[3:0] Don't care Byte Enable 1 Don't care

lt_cben_out[7:4] Don't care Byte Enable 2 Don't care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 107 PCI IP Core User’s Guide

Table 2-41. 64-bit Target Burst Read Transaction with a 64-bit Local Interface

CLK
PCI Data

Phase Description

1 Address The PCI master asserts framen and drives ad[31:0] and cben[3:0]. It requests a 64-bit
transaction by asserting req64n with framen.

2 Turn around

The master tri-states ad[63:0] and drives the first byte enables (Byte Enable 1 and 2)
cben[7:0]. If the PCI master is ready to receive data, it asserts irdyn.The Core starts to
decode the address and command.

The target drives the lt_address_out to the back-end. The lt_64bit_trans signal is driven
high to signal the back-end that a 64-bit transaction has been requested.

3 Wait If there is an address match, the Core drives the bar_hit signals to the Local Interface. The
back-end application can use the bar_hit as a chip select.

4 Wait
If the DEVSEL_TIMING is set to slow, the PCI IP core asserts devseln and ack64n on clock
after bar_hit. If the back-end will be ready to put data out on the next cycle, it can assert
lt_rdyn. The Core acknowledges the 64-bit transaction by asserting ack64n.

5 Wait The PCI IP core asserts lt_ldata_xfern and lt_hdata_xfern since lt_rdyn was asserted
the previous cycle. The back-end drives the first QWORD (Data 1 and 2) on l_ad_in.

6 Data 1 and 2

With lt_rdyn asserted previous two cycles, the burst cycle starts, so the Core asserts trdyn
and puts (Data 1 and 2) on ad[63:0].If both irdyn and lt_rdyn are asserted on the previous
cycle, the Core keeps lt_ldata_xfern and lt_hdata_xfern asserted to the back-end. The
back-end can increment the address counter and put the next QWORD (Data 3 and 4) on
l_ad_in.

7 Data 3 and 4

If the master is still ready to receive data, it keeps irdyn asserted and drives the next byte
enables (Byte Enable 3 and 4) on cben[7:0].If the back-end keeps lt_rdyn asserted previous
two cycles, the PCI IP core keeps trdyn asserted and puts (Data 3 and 4) on ad[63:0].

If both irdyn and lt_rdyn are asserted on the previous cycle, the Core keeps
lt_ldata_xfern and lt_hdata_xfern asserted. The back-end application can increment the
address counter and put the next QWORD (Data 5 and 6) on l_ad_in.

8 Data 5 and 6

If the PCI master is still ready to receive data, it keeps irdyn asserted and drives the next byte
enables (Byte Enable 5 and 6) on cben[7:0].

The PCI master signals the end of the burst when it de-asserts framen and req64n.If the back-
end application keeps lt_rdyn asserted for the previous two cycles, the Core keeps trdyn
asserted and puts Data 5 and 6 on ad[63:0].

If both irdyn and lt_rdyn are asserted on the previous cycle, the Core keeps
lt_ldata_xfern and lt_hdata_xfern asserted. The back-end application can increment the
address counter and put the next QWORD (Don’t care) on l_ad_in.

9 Turn around

The master relinquishes control of framen, req64n and cben[7:0]. It de-asserts irdyn if both
trdyn and irdyn were asserted last cycle.

The Core relinquishes control of ad[63:0]. It de-asserts devseln, ack64n and trdyn if both
trdyn and irdyn were asserted last cycle. The Core also signals to the back-end that the trans-
action is complete by clearing bar_hit. The target de-asserts lt_ldata_xfern and
lt_hdata_xfern.

10 Idle The Core relinquishes control of devseln, ack64n and trdyn.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 108 PCI IP Core User’s Guide

Figure 2-37 and Table 2-42 illustrate a 64-bit burst write transaction. The figure shows how the PCI interface corre-
lates to the Local Interface. The table gives a clock-by-clock description of each event that occurs in the figure.

Figure 2-37. 64-bit Target Burst Write Transaction with a 64-bit Local Interface
1 2 3 4 5 6 7 8 9 10

l_data_out[63:32]

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

ack64n

req64n

ad[63:32]

cben[7:4]

bar_hit[5:0]

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_ldata_xfern

lt_64bit_transn

lt_hdata_xfern

Address Data 1 Data 5Data 3

Bus
 Command

Don’t careDon’t care

Don’t care

lt_address_out

Data 2 Data 6Data 4

Don’t care

0x00 0x01 0x00

Data 1 Data 5Data 3

Data 2 Data 6Data 4Don’t care Don’t care

AddressDon’t care

Byte Enable 1 Byte
Enable 5

Byte
Enable 3

Byte Enable 2 Byte
Enable 6

Byte
Enable 4

par

par64

Address
Parity Data Parity 1 Data

Parity 5
Data

Parity 3

Don’t care Data Parity2 Data
Parity 6

Data
Parity 4

lt_access

lt_cben_out[3:0]

lt_cben_out[7:4]

Don’t care

Don’t care

Don’t care

Don’t care

lt_command_out[3:0] Bus CommandDon’t care

Byte Enable 1 Byte
Enable 5

Byte
Enable 3

Byte Enable 2 Byte
Enable 6

Byte
Enable 4

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 109 PCI IP Core User’s Guide

32-Bit PCI Target with a 64-bit Local Bus
The following discusses read and write transactions for a PCI IP core configured with a 32-bit PCI bus and a 64-bit
local bus. In order to present a full 64 bits of data to the Local Interface, two PCI data phase are required. Likewise
retrieving 64 bits of data from the Local Interface, two PCI data phases are required.

The 32-bit PCI transaction, as described in the 32-Bit PCI Bus and 32-Bit Local Bus section, looks similar to these
transactions; however, the data is handled differently at the Local Interface. When the 32-bit target core responds
to a 32-bit burst transaction, the upper 32 bits of the Local data bus should be ignored or return 0’s.

With a 64-bit back-end, it is assumed that the address counter needs to increment only by a Quad Word (QWORD)
(8 bytes), so the local back-end control latches the complete QWORD and routes the proper DWORD to the PCI
data bus. The lt_ldata_xfern and lt_hdata_xfern signals specify which DWORD is transferred.

Table 2-42. 64-bit Target Burst Write Transaction with a 64-bit Local Interface

CLK
PCI Data

Phase Description

1 Address The PCI master asserts framen and drives ad[31:0] and cben[3:0]. It requests a 64-bit trans-
action by asserting req64n with framen.

2 Wait

The PCI master drives the first byte enables (Byte Enable 1 and 2) on cben[7:0]. If the PCI mas-
ter is ready to write data, it asserts irdyn and drives the first QWORD (Data 1 and 2) on
ad[63:0].The Core starts to decode the address and command. The target drives
lt_address_out to the back-end. The lt_64bit_trans signal is driven high to signal the
back-end application that a 64-bit transaction has been requested.

3 Wait If there is an address match, the Core drives the bar_hit signals to the back-end application. It
can use bar_hit as a chip select.

4 Wait
If the DEVSEL_TIMING is set to slow, the Core asserts devseln on the clock after bar_hit. If
the back-end is ready to write data in two cycles it can assert lt_rdyn. The PCI IP core acknowl-
edges the 64-bit transaction by asserting ack64n.

5 Data 1 and 2 The trdyn signal is asserted since lt_rdyn was asserted on the previous cycle.

6 Data 3 and 4

If the back-end keeps lt_rdyn asserted on the previous cycle, the Core keeps trdyn asserted
and puts Data 1 and 2 on lt_data_out.If both irdyn and trdyn are asserted on the previous
cycle, the master drives the next byte enables (Byte Enable 3 and 4) on cben[7:0]. If the PCI
master is still ready to write data, it keeps irdyn asserted and drives the next QWORD (Data 3
and 4) on ad[63:0]. If both irdyn and lt_rdyn are asserted on the previous cycle, the Core
asserts lt_ldata_xfern and lt_hdata_xfern to the back-end to signify Data 1 and 2 is valid.
With lt_ldata_xfern and lt_hdata_xfern asserted the back-end can safely write Data 1
and 2 and increment the address counter.

7 Data 5 and 6

If the back-end keeps lt_rdyn asserted on the previous cycle, the Core keeps trdyn asserted
and puts Data 3 and 4 on lt_data_out. If both irdyn and trdyn are asserted on the previous
cycle, the PCI master drives the next byte enables (Byte Enable 5 and 6) on cben[7:0]. If it is still
ready to write data, it keeps irdyn asserted and drives the next QWORD (Data 5 and 6) on
ad[63:0]. The master signals the end of the burst when it de-asserts framen and req64n. If
both irdyn and lt_rdyn are asserted on the previous cycle, the Core keeps lt_ldata_xfern
and lt_hdata_xfern asserted to the back-end to signify Data 3 and 4 is valid. With
lt_ldata_xfern and lt_hdata_xfern asserted the back-end can safely write Data 3 and 4
and increment the address counter. There is no signal yet to the back-end that the burst is over.

8 Turn around

If the back-end keeps lt_rdyn asserted the previous cycle, the target puts Data 5 and 6 on
lt_data_out.If both irdyn and trdyn are asserted on the previous cycle, the master relin-
quishes control of framen, req64n, ad[63:0] and cben[7:0]. It also de-asserts irdyn if both
trdyn and irdyn were asserted on the last cycle. If both irdyn and lt_rdyn were asserted on
the previous cycle, the target keeps lt_ldata_xfern and lt_hdata_xfern asserted to the
back-end to signify Data 5 and 6 is valid. With lt_ldata_xfern and lt_hdata_xfern asserted
the back-end can safely write Data 5 and 6 and increment the address counter. It de-asserts
devseln, ack64n and trdyn if both trdyn and irdyn were asserted last cycle.

9 Idle
The Core signals to the back-end that the transaction is complete by clearing bar_hit. It also de-
asserts lt_ldata_xfern and lt_hdata_xfern.The target relinquishes control of devseln,
ack46n and trdyn.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 110 PCI IP Core User’s Guide

If the starting address is QWORD aligned, the first DWORD is assumed to be the lower DWORD of a QWORD.
Otherwise, it is the upper DWORD. If the starting address is not QWORD aligned, it must be DWORD aligned.

Figure 2-38 and Table 2-43 illustrate a burst transaction to a 32-bit PCI IP core with a 64-bit Local Interface. The
figure illustrates how the PCI interface correlates to the Local Interface. The table gives a clock-by-clock description
of each event in the figure.

Figure 2-38. 32-bit Target Burst Read Transaction with a 64-bit Local Interface
1 2 3 4 5 6 7 8 9 10 11

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

Address Data 1 Data 3Data 2

Bus
 Command

Byte Enable 1

Don't care

0x00 0x01 0x00

par
Address
Parity

Don't care
Data

Parity 1
Data

Parity 3
Data

Parity 2

l_ad_in[63:32]

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_ldata_xfern

lt_64bit_transn

lt_hdata_xfern

Don't careDon't care

lt_address_out

Data 1 Data 3

Data 2Don't care Don't care

AddressDon't care

Don't care

lt_access

lt_cben_out[3:0]

Don't care Bus Command

Byte Enable 1Don't care Don't care

lt_cben_out[7:4] Byte Enable 1Don't care Don't care

lt_command_out[3:0]

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 111 PCI IP Core User’s Guide

Table 2-43. 32-bit Target Burst Read Transaction with a 64-bit Local Interface

CLK
PCI Data

Phase Description

1 Address The master asserts framen and drives ad[31:0] and cben[3:0].

2 Turn around
The master tri-states ad[31:0] and drives the first byte enables (Byte Enable 1) on cben[3:0].
If the master is ready to receive data, it asserts irdyn.The Core starts to decode the address and
command. It drives the lt_address_out to the back-end.

3 Wait If there is an address match, the Core drives the bar_hit signals to the back-end. The back-end
can use bar_hit as a chip select.

4 Wait If the DEVSEL_TIMING is set to slow, the Core asserts devseln on the clock following bar_hit.
If the back-end application is ready to put data out on the next cycle, it asserts lt_rdyn.

5 Wait
The Core asserts lt_ldata_xfern since lt_rdyn was asserted on the previous cycle and the
initial address is QWORD aligned. The back-end drives the first QWORD (Data 1 and Data 2) on
l_ad_in.

6 Data 1

Quad Word Aligned

With lt_rdyn asserted for the previous two cycles, the burst cycle starts. The PCI IP core asserts
trdyn and puts Data 1 on ad[31:0].

The Core de-asserts lt_ldata_xfern. If irdyn is asserted on the previous cycle, the Core
asserts lt_hdata_xfern to the back-end. With lt_hdata_xfern de-asserted the previous
cycle, the back-end does not increment the address counter and holds the QWORD (Data 1 and
Data 2) on l_ad_in.

Double Word Aligned

With lt_rdyn asserted for the previous two cycles, the burst cycle starts, so the Core asserts
trdyn and puts Data 1 on ad since the initial address is DWORD aligned. Notice that the lower
DWORD from l_ad_in is discarded.

The Core de-asserts lt_hdata_xfern. If both irdyn and lt_rdyn are asserted on the previ-
ous cycle, the Core asserts lt_ldata_xfern to the back-end. With lt_hdata_xfern asserted
the previous cycle, the back-end can increment the address counter and put the next QWORD
(Data 2 and Data 3) on l_ad_in.

7 Data 2

Quad Word Aligned

If the master is still ready to receive data, it keeps irdyn asserted and drives the next byte
enables. The Core keeps trdyn asserted and puts Data 2 on and loads the appropriate byte
enables.

The Core de-asserts lt_hdata_xfern. If both irdyn and lt_rdyn are asserted on the previ-
ous cycle, the Core asserts lt_ldata_xfern to the back-end. With lt_hdata_xfern asserted
the previous cycle, the back-end can increment the address counter and put the next QWORD
(Data 3 and Data 4) on l_ad_in.

Double Word Aligned

If the master is still ready to receive data, it keeps irdyn asserted and drives the next byte
enables on cben[3:0].

If the back-end keeps lt_rdyn asserted previous two cycles, the Core keeps trdyn asserted
and puts Data 2 on ad[31:0]. If the master is still ready to receive data, it keeps irdyn asserted
and drives the byte enables on cben[3:0].

The Core de-asserts lt_ldata_xfern. If irdyn is asserted on the previous cycle, the Core
asserts lt_hdata_xfern to the back-end. With lt_hdata_xfern de-asserted on the previous
cycle, the back-end does not increment the address counter and holds the QWORD (Data 2 and
Data 3) on l_ad_in.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 112 PCI IP Core User’s Guide

8 Data 3

Quad Word Aligned

If the PCI master is still ready to receive data, it keeps irdyn asserted and drives the next byte
enables (Byte Enable 3) on cben[3:0]. It signals the end of the burst when it de-asserts framen.

If the back-end keeps lt_rdyn asserted for the previous two cycles, the Core keeps trdyn
asserted and puts Data 3 on ad[31:0].

The Core de-asserts lt_ldata_xfern. If irdyn is asserted on the previous cycle, the Core
asserts lt_hdata_xfern to the back-end. With lt_hdata_xfern de-asserted on the previous
cycle, the back-end does not increment the address counter and holds the QWORD (Data 3 and
Data 4) on l_ad_in.

Double Word Aligned

If the master is still ready to receive data, it keeps irdyn asserted and drives the next byte
enables (Byte Enable 3) on cben[3:0]. It signals the end of the burst when it de-asserts framen.

The Core keeps trdyn asserted and puts Data 3 on ad[31:0] since it latched it with Data 2.

The Core de-asserts lt_hdata_xfern. If both irdyn and lt_rdyn are asserted on the previ-
ous cycle, the Core asserts lt_ldata_xfern to the back-end. With lt_hdata_xfern asserted
on the previous cycle, the back-end can increment the address counter and put the next QWORD
(Don’t care and Don’t care) on l_ad_in.

9 Turn around

The master relinquishes control of framen and cben[3:0]. It de-asserts irdyn if both trdyn
and irdyn were asserted for the last cycle.

The PCI IP core relinquishes control of ad[31:0]. It de-asserts both devseln and trdyn. If both
trdyn and irdyn were asserted last cycle. The PCI IP core also signals to the back-end applica-
tion that the transaction is complete by clearing bar_hit. The target de-asserts
lt_hdata_xfern.

10 Idle The Core relinquishes control of devseln and trdyn.

Table 2-43. 32-bit Target Burst Read Transaction with a 64-bit Local Interface (Continued)

CLK
PCI Data

Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 113 PCI IP Core User’s Guide

Figure 2-39 and Table 2-44 illustrate a burst transaction to a 32-bit PCI IP core with a 64-bit Local Interface. The
figure shows how the PCI interface correlates to the Local Interface. The table gives a clock-by-clock description of
each event illustrated in the figure.

Figure 2-39. 32-bit Target Burst Write Transaction With a 64-bit Local Interface

1 2 3 4 5 6 7 8 9 10

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

Address Data 1 Data 3Data 2

Bus
 Command

0x00 0x01 0x00

Byte Enable 1 Byte
Enable 3

Byte
Enable 2

par Address
Parity Data Parity 1 Data

Parity 3
Data

Parity 2

l_data_out[63:32]

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_ldata_xfern

lt_64bit_transn

lt_hdata_xfern

Don’t careDon’t care

lt_address_out

Data 1 Data 3

Data 2Don’t care Don’t care

AddressDon’t care

Don’t care

lt_access

lt_cben_out[3:0]

Don’t care Bus Command

Byte Enable 1 Byte
Enable 3Don’t care Don’t care

lt_command_out[3:0]

lt_cben_out[7:4] Byte
Enable 2Don’t care Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 114 PCI IP Core User’s Guide

Table 2-44. 32-bit Target Burst Write Transaction With a 64-bit Local Interface

CLK
PCI Data

Phase Description

1 Address The master asserts framen and drives ad[31:0] and cben[3:0].

2 Wait
The PCI master drives the first byte enable (Byte Enable 1) on cben[3:0]. If it is ready to write
data, it asserts irdyn and drives the first DWORD (Data 1) on ad[31:0].The Core starts to
decode the address and command. It drives the lt_address_out to the back-end.

3 Wait If there is an address match, the Core drives the bar_hit signals to the back-end application.
The back-end can use bar_hit as a chip select.

4 Wait If the DEVSEL_TIMING is set to slow, the Core asserts devseln on the clock after bar_hit. If
the back-end will be ready to write data in two cycles, it can assert lt_rdyn.

5 Data 1 trdyn is asserted since lt_rdyn was asserted the previous cycle.

6 Data 2

Quad Word Aligned

The Core keeps trdyn asserted and puts Data 1 on the lower DWORD of lt_data_out.

If both irdyn and trdyn are asserted on the previous cycle, the master drives the next byte
enable (Byte Enable 2) on cben[3:0]. If the PCI master is still ready to write data, it keeps
irdyn asserted and drives the next DWORD (Data 2) on ad[31:0].

If both irdyn and trdyn were asserted on the previous cycle, the Core asserts
lt_ldata_xfern to the back-end to signify that Data 1 is valid. With lt_ldata_xfern
asserted, the back-end doesn’t write the data or increment the address counter.

Double Word Aligned

The Core keeps trdyn asserted and puts Data 1 on the upper DWORD of lt_data_out.

If both irdyn and trdyn are asserted on the previous cycle, the master drives the next byte
enables (Byte Enable 2) on cben[3:0]. If the master is still ready to write data, it keeps irdyn
asserted and drives the next DWORD (Data 2) on ad[31:0].

If irdyn, trdyn and lt_rdyn are asserted on the previous cycle, the Core asserts
lt_hdata_xfern to the back-end to signify that Data 1 is valid. With lt_hdata_xfern
asserted, the back-end can safely write the QWORD (Don’t care and Data 1) and increment the
address counter.

7 Data 3

Quad Word Aligned

The back-end puts Data 2 on lt_data_out. If the back-end keeps lt_rdyn asserted on the pre-
vious cycle, the Core keeps trdyn asserted.

If both irdyn and trdyn are asserted on the previous cycle, the master drives the next byte
enables (Byte Enable 3) on cben[3:0]. If the master is still ready to write data, it keeps irdyn
asserted and drives the next DWORD (Data 3) on ad[31:0]. The master signals the end of the
burst when it de-asserts framen.

The Core de-asserts lt_ldata_xfern. If irdyn, trdyn and lt_rdyn are asserted on the pre-
vious cycle, the Core asserts lt_hdata_xfern to the back-end to signify that Data 2 is valid.
With lt_hdata_xfern asserted, the back-end can safely write the QWORD (Data 1 and Data 2)
and increment the address counter.

Double Word Aligned

The Core keeps trdyn asserted and puts Data 2 on lt_data_out.

If both irdyn and trdyn are asserted on the previous cycle, the master drives the next byte
enables (Byte Enable 3) on cben[3:0]. If the master is still ready to write data, it keeps irdyn
asserted and drives the next DWORD (Data 3) on ad. The master signals the end of the burst
when it de-asserts framen.

The Core de-asserts lt_hdata_xfern. If both irdyn and trdyn are asserted on the previous
cycle, the Core asserts lt_ldata_xfern to the back-end to signify Data 2 is valid. With
lt_ldata_xfern asserted, the back-end doesn’t write the data or increment the address coun-
ter.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 115 PCI IP Core User’s Guide

Dual Address Cycle (DAC)
The PCI master uses a Dual Address Cycle (DAC) to inform the PCI IP core, operating as a target, that it is using
64-bit addressing with two back-to-back address phases. The PCI IP core can respond to 64-bit addressing when
the memory address being accessed is over the 4GB limit. 64-bit addressing is not restricted to only 64-bit configu-
rations of the PCI IP core.

Figure 2-40 shows an example of the DAC during a 32-bit read transaction. Table 2-45 gives a clock-by-clock
description of the dual address cycle.

8 Turn around

Quad Word Aligned

The Core puts Data 3 on lt_data_out.

If both irdyn and trdyn are asserted on the previous cycle, the master relinquishes control of
framen, ad and cben. It also de-asserts irdyn if both trdyn and irdyn were asserted last
cycle.
The Core de-asserts lt_hdata_xfern. If both irdyn and trdyn are asserted on the previous
cycle, the Core asserts lt_ldata_xfern to the back-end to signify Data 3 was transferred suc-
cessfully. With lt_ldata_xfern asserted, the back-end doesn’t write the data yet nor increment
the address counter. It de-asserts both devseln and trdyn if both trdyn and irdyn were
asserted last cycle.

9 Cleanup
The Core de-asserts lt_ldata_xfern. If lt_rdyn is asserted on the previous cycle, the Core
asserts lt_hdata_xfern to signify to the back-end that it can safely write the QWORD (Data 3
and Don’t care).

10 Idle The Core signals to the back-end that the transaction is complete by clearing bar_hit. It also de-
asserts lt_hdata_xfern.The target relinquishes control of devseln and trdyn.

Table 2-44. 32-bit Target Burst Write Transaction With a 64-bit Local Interface (Continued)

CLK
PCI Data

Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 116 PCI IP Core User’s Guide

Figure 2-40. 32-Bit Target Dual Address Cycle
1 2 3 4 5 6 7 8 9 10 11

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_data_xfern

High
Address Data 1 Data 3Data 2

Bus
 Command Byte Enable 1

Don’t careDon’t care

lt_address_out

Don’t care

0x00 0x01 0x00

Data 1 Data 3Data 2

AddressDon’t care

12

Low
Address

DAC

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 117 PCI IP Core User’s Guide

Fast Back-to-Back Transactions
The PCI IP core, as a target, can respond to a fast back-to-back transaction if a PCI master wants to perform two or
more consecutive transactions to the PCI IP core. The fast back-to-back transaction consists of two or more com-
plete PCI transactions without an idle state between them. Figure 2-41 and Table 2-46 illustrate a fast back-to-back
write transaction. The figure illustrates how the PCI interface correlates to the Local Interface. The table explains
each event in the figure with a clock-by-clock description.

Table 2-45. 32-Bit Target Dual Address Cycle

CLK
PCI Data

Phase Description

1 Address The master asserts framen and drives ad[31:0](lower address and cben[3:0](DAC).

2 Address The master drives the ad[31:0](higher address) and cben[3:0] (Bus command).

3 Turn around

The master tri-states ad[31:0] and drives the first byte enables (Byte Enable 1) on cben[3:0].
If the master is ready to receive data, it asserts irdyn.

The Core starts to decode the address and command. The Core drives the lt_address_out to
the back-end application.

4 Wait If there is an address match, the Core drives the bar_hit signals to the back-end. The back-end
can use bar_hit as a chip select.

5 Wait If the DEVSEL_TIMING is set to slow, the Core asserts devseln on the clock after bar_hit. If
the back-end will be ready to put data out on the next cycle, it asserts lt_rdyn.

6 Wait The Core asserts lt_data_xfern since lt_rdyn was asserted on the previous cycle. The
back-end drives the first DWORD (Data 1) on l_ad_in.

7 Data 1

With lt_rdyn asserted previous two cycles, the PCI IP core asserts trdyn and puts Data 1 on
ad[31:0].

The Core asserts lt_data_xfern since lt_rdyn was asserted on the previous cycle. The
back-end drives the second DWORD (Data 2) on l_ad_in.

8 Data 2

With lt_rdyn asserted previous two cycles, the PCI IP core asserts trdyn and puts Data 1 on
ad[31:0].

The Core asserts lt_data_xfern since lt_rdyn was asserted on the previous cycle. The
back-end drives the second DWORD (Data 3) on l_ad_in.

9 Data3
The master asserts irdyn and de-asserts framen.

With lt_rdyn asserted previous two cycles, the PCI IP core asserts trdyn and puts Data 3 on
ad[31:0].

10 Turn around

The master relinquishes control of framen and cben[3:0]. It de-asserts irdyn if both trdyn
and irdyn were asserted last cycle.

The Core relinquishes control of ad. It de-asserts both devseln and trdyn if both trdyn and
irdyn were asserted last cycle. The Core also signals to the back-end that the transaction is
complete by clearing bar_hit. The Core de-asserts lt_data_xfern.

11 Idle The Core relinquishes devseln and trdyn.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 118 PCI IP Core User’s Guide

Figure 2-41. 32-bit Target Fast Back-to-Back Transaction

Table 2-46. 32-bit Target Fast Back-to-Back Transaction

CLK
PCI Data

Phase Description

1 Address The PCI master asserts framen and drives ad[31:0] and cben[3:0].

2 Wait

The PCI master drives the first byte enables (Byte Enable 1) on cben[3:0]. If the master is ready
to write data, it asserts irdyn and drives the first DWORD (Data 1) on ad[31:0].

The Core starts to decode the address and command. The target drives the lt_address_out to
the back-end application.

3 Wait If there is an address match, the Core drives the bar_hit signals to the back-end. The back-end
application can use bar_hit as a chip select.

4 Wait If the DEVSEL_TIMING is set to slow, the Core asserts devseln on the clock after bar_hit. If
the back-end will be ready in two cycles to write data, it can assert lt_rdyn.

5 Data 1 trdyn is asserted since lt_rdyn was asserted the previous cycle.

6 Address

The master asserts framen and drives the ad[31:0] and cben[3:0].

If both irdyn and lt_rdyn are asserted on the previous cycle, the Core asserts
lt_data_xfern to the back-end to signify Data 1 is valid. With lt_data_xfern asserted the
back-end can safely write Data 1.

7 Wait

The PCI master drives the first byte enables (Byte Enable 1) on cben[3:0]. If the master is ready
to write data, it asserts irdyn and drives the first DWORD (Data 1) on ad[31:0].

The Core starts to decode the address and command. The Core drives the lt_address_out to
the back-end.

8 Wait If there is an address match, the Core drives the bar_hit signals to the back-end. The back-end
can use bar_hit as a chip select.

1 2 3 4 5 6 7 8 9 10

clk

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_data_xfern

Address Data 1

Bus
 Command

Don’t careDon’t care

lt_addressout

0x00 0x01 0x00

Data 1

AddressDon’t care

Byte Enable 1

par Address
Parity Data Parity 1

framen

11 12 13

Address Data 2

Bus
 Command Byte Enable 2

Address
Parity Data Parity 2

0x01 0x00

Data 2 Don’t care

Address

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 119 PCI IP Core User’s Guide

9 Wait If the DEVSEL_TIMING is set to slow, the Core asserts devseln on the clock after bar_hit. If
the back-end will be ready to write data in two cycles, it can assert lt_rdyn.

10 Data 1 trdyn is asserted since lt_rdyn was asserted the previous cycle.

12 Termination
If both irdyn and trdyn are asserted on the previous cycle, the master relinquishes control of
framen, ad[31:0] and cben[3:0]. It also de-asserts irdyn if both trdyn and irdyn were
asserted last cycle.

13 Idle The Core relinquishes devseln and trdyn.

Table 2-46. 32-bit Target Fast Back-to-Back Transaction (Continued)

CLK
PCI Data

Phase Description

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 120 PCI IP Core User’s Guide

Advanced Configuration Accesses
Advanced Configuration Space read accesses are very similar to the 32-bit target read transactions with additional
PCI and Local bus signals. Figure 2-42 and Table 2-47 illustrate advanced Configuration Space read transactions.

Figure 2-42. Advanced Configuration Read Transaction

1 2 3 4 5 6 7 8 9

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

new_cap_hit

Address Data 1

Bus
 Command Byte Enable 1

Don’t care

par Address
Parity Don’t care Data Parity

1

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_data_xfern

Don’t careDon’t care

lt_address_out

Data 1

AddressDon’t care

lt_accessn

 Bus CommandDon’t care

Byte Enable 1Don’t carelt_cben_out[3:0] Don’t care

lt_command_out[3:0]

idsel

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 121 PCI IP Core User’s Guide

Table 2-47. Advanced Configuration Read Transactions

Advanced Configuration Space write accesses are similar to the 32-bit target write transactions with additional PCI
and Local bus signals. Figure 2-43 and Table 2-48 illustrate advanced Configuration Space write transactions.

CLK
PCI Data

Phase Description

1 Address The master asserts framen and idsel. It and drives the configuration address on ad[31:0]
and the read command on cben[3:0].

2 Turn around

The master tri-states the ad[31:0] lines and drives the first byte enables cben[3:0]. If the mas-
ter is ready to receive data, it asserts irdyn.

The Core starts to decode the address and command. The target drives the lt_address_out to
the back-end.

3 Wait If there is an address match, the Core drives the new_cap_hit signals to the back-end. The
back-end can use the new_cap_hit as a chip select.

4 Wait If the device select timing is set to slow, the Core asserts devseln on the clock after
new_cap_hit. If the back-end is ready to put data out on the next cycle, it can assert lt_rdyn.

5 Wait The Core asserts lt_data_xfern since lt_rdyn was asserted the previous cycle. The back-
end drives the first DWORD (Data 1) on l_ad_in.

6 Data 1 With lt_rdyn asserted for the previous two cycles, the Core asserts trdyn and puts Data 1 on
ad[31:0].

7 Turn around

The master relinquishes control of framen and cben[3:0]. It de-asserts irdyn if both trdyn
and irdyn were asserted on the last cycle.

The Core relinquishes control of ad[31:0]. It de-asserts both devseln and trdyn if both trdyn
and irdyn were asserted on the last cycle. The Core also signals to the back-end that the trans-
action is complete by clearing new_cap_hit. The Core de-asserts lt_data_xfern.

8 Idle The Core relinquishes devseln and trdyn.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 122 PCI IP Core User’s Guide

Figure 2-43. Advanced Configuration Write Transaction

1 2 3 4 5 6 7 8

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

new_cap_hit

Address Data 1

Bus
 Command Byte Enable 1

par Address
Parity Data Parity 1

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_data_xfern

Don’t careDon’t care

lt_address_out

Data 1

Bus Command

Don’t care

lt_accessn

lt_command_out[3:0]

lt_cben_out[3:0]

Address

Don’t care

Byte Enable 1Don’t care Don’t care

idsel

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 123 PCI IP Core User’s Guide

Table 2-48. Advanced Configuration Write Transaction

Target Termination
The back-end application has full control over the termination of all PCI transactions requesting information from
the Local Interface. The back-end application must handle the termination properly. The four types of target-initi-
ated termination are:

• Retry

• Target Abort

• Disconnect With Data

• Disconnect Without Data

The back-end application utilizes the Local Interface signals lt_abortn, lt_disconnectn, and lt_rdyn to ini-
tiate termination. These signals control the target’s response and termination of PCI transactions that request data
from the Local Interface. Table 2-49 shows a summary of the different target initiated termination types.

In order to prevent a PCI IP core from monopolizing the PCI bus, the PCI Local Bus Specification, Revision 3.0
includes limitations on the amount of transferring time for a target. During the initial data phase, the target must
issue a Retry if it cannot respond within 16 clocks of framen being asserted. For subsequent data phases follow-
ing the initial data phase, the PCI IP core must respond within eight clock cycles or issue a Disconnect Without
Data or a Target Abort. The first option is preferred. The different target initiated termination sequences are dis-
cussed in the following section.

CLK
PCI Data

Phase Description

1 Address The master asserts framen and idsel. It and drives the configuration address on ad[31:0] and
the read command on cben[3:0].

2 Wait
The PCI master drives the first byte enables (Byte Enable 1) on cben[3:0]. If it is ready to write
data, it asserts irdyn and drives the first DWORD (Data 1) on ad[31:0].The Core starts to
decode the address and command.

3 Wait If there is an address match, the Core drives the new_cap_hit signals to the back-end. The
back-end can use new_cap_hit as a chip select.

4 Wait If the DEVSEL_TIMING is set to slow, the Core asserts devseln on the clock after
new_cap_hit. If the back-end is ready to write data in two cycles, it can assert lt_rdyn.

5 Data 1 trdyn is asserted since lt_rdyn was asserted the previous cycle.

6 Turn around

If both irdyn and trdyn are asserted on the previous cycle, the master relinquishes control of
framen, ad[31:0] and cben[3:0]. It also de-asserts irdyn if both trdyn and irdyn were
asserted last cycle.

It de-asserts both devseln and trdyn if both trdyn and irdyn were asserted last cycle.

7 Idle
The Core signals to the back-end that the transaction is complete by clearing new_cap_hit. It
also de-asserts lt_data_xfern.

The Core relinquishes devseln and trdyn.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 124 PCI IP Core User’s Guide

Table 2-49. Target Initiated Termination Summary

Disconnect With Data
A Disconnect With Data occurs after at least one DWORD or QWORD has been transferred. The difference
between a Disconnect With Data and a Disconnect Without Data depends on the state of lt_rdyn when the Local
Interface requests a disconnect using the lt_disconnectn signal. This condition indicates if the bus transaction
is terminated before or after the completion of the current data phase. Once the current data phase is completed,
the bus transaction is terminated with a Disconnect With Data. Figure 2-44 and Table 2-50 show a Disconnect With
Data on a read transaction.

Below is a list of the reasons for the PCI IP core to perform a Disconnect With Data:

• Target is slow to complete subsequent data phase

• Target does not support requested burst mode

• Memory target does not understand addressing sequence

• Transfer crosses over target’s address boundary

Termination
Type lt_rdyn lt_disconnectn lt_abortn Comments

Disconnect
With Data Asserted Asserted De-asserted

Some data is transferred. This includes the current DWORD or
QWORD. If the PCI master needs to transfer more data, the
transaction is re-initiated using the next address.

Disconnect
Without Data De-asserted Asserted De-asserted

Some data is transferred but not the current DWORD or
QWORD. This occurs in a data phase other than the first phase.
The master may resume the transaction or not. If resumed, it
starts on the same address.

Retry De-asserted Asserted De-asserted No data is transferred. This occurs during the first data phase.
Master may or may not try the same transaction.

Target Abort Don’t Care Don’t Care Asserted Indicates a fatal error. Data is disregarded.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 125 PCI IP Core User’s Guide

Figure 2-44. 32-bit Target Disconnect with Data for Read Transaction

Table 2-50. 32-bit Target Disconnect with Data for Read Transaction

CLK Description

4

The devseln signal is driven low to indicate that the PCI IP core is selected for the transaction. The lt_rdyn
signal is driven low to indicate that the back-end application is ready to provide data on the next clock cycle.
Because the target cannot complete any more PCI data phases, the lt_disconnectn signal is also driven
low.

5 The lt_data_xfern signal is driven low by the PCI IP core to the back-end to indicate that data in available on
l_ad_in.

6
The trdyn and stopn signals are driven low because both lt_rdyn and lt_disconnectn were driven low
during the previous two clock cycles. The lt_data_xfern signal is de-asserted because lt_rdyn was de-
asserted during the previous cycle.Data 1 is presented on the PCI bus via ad[31:0]

7 The PCI master de-asserts framen to acknowledge the disconnection initiated by the target.The PCI IP core
de-asserts trdyn since the completion of the last PCI data phase and the assertion of stopn.

1 2 3 4 5 6 7 8 9 10

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_data_xfern

Address Data 1

Bus
 Command

Don’t careDon’t care

lt_addressout

0x00 0x01 0x00

Data 1

AddressDon’t care

Byte
Enable 1

par Address
Parity Data Parity 1 Data Parity

1

stopn

lt_disconnectn

Don’t care

Don’t care

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 126 PCI IP Core User’s Guide

Figure 2-45 and Table 2-51 illustrate a Disconnect With Data on a write transaction.

Figure 2-45. 32-bit Target Disconnect with Data for Write Transaction

8 De-asserting irdyn disconnects the PCI master. De-asserting devseln and stopn. Disconnects the PCI IP
core from the PCI bus.

9 The larger relinquishes devseln, stopn and trdyn.

Table 2-50. 32-bit Target Disconnect with Data for Read Transaction (Continued)

CLK Description

1 2 3 4 5 6 7 8 9 10

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_data_xfern

Address Data 1

Bus
 Command

Don’t careDon’t care

lt_addressout

0x00 0x01 0x00

Data 1

AddressDon’t care

Byte Enable 1

par Address
Parity Data Parity 1

stopn

lt_disconnectn

Don’t care

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 127 PCI IP Core User’s Guide

Table 2-51. 32-bit Target Disconnect with Data for Write Transaction

Disconnect Without Data
A Disconnect Without Data occurs after at least one data DWORD or QWORD has been transferred. A Disconnect
Without Data is used if the PCI IP core is incapable of completing the current PCI data phase. Figure 2-46 and
Table 2-52 show a Disconnect Without Data for a read transaction.

Below is a list of the reasons that the PCI IP core may Disconnect Without Data:

• Target slow to complete subsequent data phase

• Target does not support burst mode requested

• Memory target doesn’t understand addressing sequence

• Transfer crosses over target’s address boundary

CLK Description

4
The devseln signal is driven low to indicate that the PCI IP core has been selected for the transaction. The
lt_rdyn signal is driven low to indicate that the back-end application is ready to receive data. Because the tar-
get can not complete any more PCI data phases the lt_disconnectn signal is also driven low.

5 The trdyn and the stopn signals are driven low because both the lt_rdyn and the lt_disconnectn signals
were driven low the previous cycle.

6

The target asserts lt_data_xfern to the back-end to signify Data 1 is available on the lt_data_out.

The PCI IP core de-asserts trdyn since the last PCI data phase was complete and the stopn was asserted.

The PCI master de-asserts the framen to acknowledge the disconnection initiated by the target.

7 The PCI master disconnects by de-asserting irdyn. The PCI IP core disconnects from the PCI bus by de-
asserting devseln and stopn.

8 The target relinquishes devseln, stopn and trdyn.

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 128 PCI IP Core User’s Guide

Figure 2-46. 32-bit Target Disconnect Without Data for Read Transaction

Table 2-52. 32-bit Target Disconnect Without Data for Read Transaction

Figure 2-47 and Table 2-53 illustrate a Disconnect Without Data for a write transaction.

CLK Description

4 The devseln signal is driven low to indicate that the PCI IP core is selected for the transaction. The lt_rdyn
signal is driven low to indicate that the back-end application is ready to provide data on the next clock cycle.

5
The lt_data_xfern signal is driven low by the PCI IP core to indicate that data is valid on
l_ad_in[31:0].Because the target can not complete any more PCI data phases the lt_rdyn signal is driven
high and lt_disconnectn signals are driven low.

6
The trdyn signal is driven low because the lt_rdyn signal was driven low two clock cycle before. The
lt_data_xfern signal is de-asserted because the lt_rdyn signal was de-asserted in the previous
cycle.Data 1 is presented to the PCI bus via ad[31:0].

7 The trdyn signal is de-asserted since the lt_rdyn signal was driven high two clock cycles before. The stopn
signal is asserted since the lt_disconnectn signal was driven low two clock cycles before.

8 The PCI master de-asserts the framen to acknowledge the disconnection initiated by the target.

9 The PCI master disconnects by de-asserting the irdyn. The PCI IP core disconnects from the PCI bus by de-
asserting the devseln and stopn.

1 2 3 4 5 6 7 8 9 10 11

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_data_xfern

Address Data 1

Bus
 Command

Don’t careDon’t care

lt_addressout

0x00 0x01 0x00

Data 1

AddressDon’t care

Byte
Enable 1

par Address
Parity Data Parity 1 Data Parity

1

stopn

lt_disconnectn

Don’t care

Don’t care

Don’t care

Don’t care

12

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 129 PCI IP Core User’s Guide

Figure 2-47. 32-bit Target Disconnect Without Data for Write Transaction

Table 2-53. 32-bit Target Disconnect Without Data for Write Transaction

CLK Description

4 The devseln signal is driven low to indicate that the PCI IP core is selected for the transaction. The lt_rdyn
signal is driven low to indicate that the back-end application is ready to receive data.

5

The trdyn signal is driven low because the lt_rdyn signal was driven low on the previous clock cycle.

Data 1 is presented to the PCI bus via ad[31:0].

Because the target can not complete any more PCI data phases the lt_rdyn signal is driven high and
lt_disconnectn signals are driven low.

6
The target asserts lt_data_xfern to the back-end to signify Data 1 is available on the lt_data_out.

The trdyn signal is de-asserted since the lt_rdyn signal was driven high the previous cycle. And the stopn
signal is asserted since the lt_disconnectn signal was driven low the previous cycle.

7 The PCI master de-asserts the framen to acknowledge the disconnection initiated by the target.

8 The PCI IP core disconnects from the PCI bus by de-asserting the devseln and stopn.

9 Idle

1 2 3 4 5 6 7 8 9 10 11

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_data_xfern

Address Data 1

Bus
 Command

Don’t careDon’t care

lt_addressout

0x00 0x01 0x00

Data 1

AddressDon’t care

Byte Enable 1

par Address
Parity Data Parity 1

stopn

lt_disconnectn

Don’t care

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 130 PCI IP Core User’s Guide

Retry
A Retry may be necessary if the PCI IP core cannot assert the trdyn signal within the maximum number of clock
cycles defined by the PCI Local Bus Specification, Revision 3.0. A Retry occurs if lt_rdyn is not asserted before
lt_disconnectn is asserted. A Retry can also occur if the PCI IP core does not assert lt_rdyn within 16 clocks
after the assertion of framen. Figure 2-48 and Table 2-54 show a Retry on a read transaction.

Below is a list of the reasons for a Retry.

• Target is very slow to respond to complete first data phase

• Snoop hit occurs on modified cache line

• Resource is busy

Figure 2-48. 32-bit Target Retry for Read Transaction
1 2 3 4 5 6 7 8 9 11

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_data_xfern

Address

Bus
 Command

Don’t care

lt_addressout

0x00 0x01 0x00

AddressDon’t care

Byte Enable 1

par Address
Parity

stopn

lt_disconnectn

Don’t care

Don’t care

Don’t care

10

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 131 PCI IP Core User’s Guide

Table 2-54. 32-bit Target Retry for Read Transaction

CLK Description

4

The devseln signal is driven low to indicate that the PCI IP core is selected for the transaction. The lt_rdyn
signal remains high to indicate that the back-end application is not ready to provide data. Because the target can
not complete any PCI data phases, the lt_rdyn signal remains high and the lt_disconnectn signal is driven
low.

5 The lt_data_xfern signal remains high because the lt_rdyn signal was high during the previous cycle.

6 The stopn signal is driven low on the PCI bus as the lt_disconnectn signal was driven low for the previous
two clock cycles.

7 The PCI master de-asserts the framen to acknowledge the retry initiated by the target.

8 The PCI master terminates the transaction by de-asserting the irdyn. The PCI IP core de-asserts the devseln
and stopn.

9 Idle

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 132 PCI IP Core User’s Guide

Figure 2-49 and Table 2-55 show a Retry on a write transaction.

Figure 2-49. 32-bit Target Retry for Write Transaction

Table 2-55. 32-bit Target Retry for Write Transaction

CLK Description

4

The devseln signal is driven low to indicate that the PCI IP core is selected for the transaction. The lt_rdyn
signal remains high to indicate that the back-end application is not ready to provide data. Because the target can
not complete any PCI data phases, the lt_rdyn signal remains high and the lt_disconnectn signal is
driven low.

5 The lt_data_xfern signal remains high because the lt_rdyn signal was high during the previous cycle.

6 The stopn signal is driven low on the PCI bus as the lt_disconnectn signal was driven low for the previous
two clock cycles.

7 The PCI master de-asserts the framen to acknowledge the retry initiated by the target.

1 2 3 4 5 6 7 8 9 10

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_data_xfern

Address Data 1

Bus
 Command

Don’t care

lt_addressout

0x00 0x01 0x00

AddressDon’t care

Byte Enable 1

par Address
Parity Data Parity 1

stopn

lt_disconnectn

Don’t care

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 133 PCI IP Core User’s Guide

Target Abort
Unlike the other types of disconnects, the state of irdyn does not have any effect on termination during a Target
Abort. Figure 2-50 illustrates a Target Abort during a read transaction.

Some possible reasons for a target abort are:

• Broken target

• I/O addressing error

• Address phase parity error

Figure 2-50 and Table 2-56 show a target abort on a read transaction.

Figure 2-50. 32-bit Target Abort for Read Transaction

8 The PCI master terminates the transaction by de-asserting the irdyn. The PCI IP core de-asserts the devseln
and stopn.

9 Idle

Table 2-55. 32-bit Target Retry for Write Transaction (Continued)

CLK Description

1 2 3 4 5 6 7 8 9

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_ad_in[31:0]

lt_rdyn

lt_data_xfern

Address Data 1

Bus
 Command

lt_addressout

0x00 0x01 0x00

AddressDon’t care

Byte Enable 1

par Address
Parity

Data Parity
1

stopn

lt_abortn

Don’t care

11 12

Don’t care

Don’t care

Don’t care

Don’t careDon’t care Data 1

10

Don’t care

Don’t care

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 134 PCI IP Core User’s Guide

Table 2-56. 32-bit Target Abort for Read Transaction

Figure 2-51 and Table 2-57 show a target abort on a write transaction.

Figure 2-51. 32-bit Target Abort for Write Transaction

CLK Description

4 The devseln signal is driven low to indicate that the PCI IP core is selected for the transaction. The lt_rdyn
signal is driven low to indicate that the back-end application is ready to put data out on the next cycle.

5 The lt_data_xfern signal is driven low by the PCI IP core to the back-end to indicate that data on l_ad_in is
being read.The lt_rdyn signal is driven low to indicate the back-end is ready to provide the next data.

6

The trdyn signal is driven low because the lt_rdyn signal was driven low two clock cycles before. The
lt_data_xfern signal is asserted because the lt_rdyn signal was asserted in the previous cycle.

Data 1 is presented to the PCI bus via ad[31:0].

Because the back-end wants to abort the transaction the lt_abortn signal is driven low. The data on l_ad_in is
also invalid.

7 A target abort is requested as the devseln and the trdyn signals are de-asserted and the stopn signal is
asserted.

8 The PCI master de-asserts the framen to acknowledge the target abort.

9 The PCI master terminates the transaction by de-asserting the irdyn. The PCI IP core de-asserts the stopn.

1 2 3 4 5 6 7 8 9

clk

framen

ad[31:0]

irdyn

trdyn

devseln

cben[3:0]

bar_hit[5:0]

lt_r_nw

l_data_out[31:0]

lt_rdyn

lt_data_xfern

Address Data 1

Bus
 Command

lt_addressout

0x00 0x01 0x00

AddressDon’t care

Byte Enable 1

par Address
Parity Data Parity 1

stopn

lt_abortn

Don’t care

11 12

Data 2

Byte
Enable 2

Data Parity
2

Don’t care

Don’t care

Don’t care

Don’t careDon’t care Data 1

10

Lattice Semiconductor Functional Description

IPUG18_09.2, November 2010 135 PCI IP Core User’s Guide

Table 2-57. 32-bit Target Abort for Write Transaction

CLK Description

4 The devseln signal is driven low to indicate that the PCI IP core is selected for the transaction. The lt_rdyn
signal is driven low to indicate that the back-end application is ready to receive data on the next two cycles.

5 The target asserts trdyn because lt_rdyn was asserted on previous cycle. The first data phase is completed.

6

The trdyn signal remains low because the lt_rdyn signal was driven low two clock cycles before. The
lt_data_xfern signal is asserted because the lt_rdyn signal was de-asserted in the previous cycle.

The target transfers data 1 on lt_data_out[31:0].

Because the back-end wants to abort the transaction the lt_abortn signal is driven low.

7 A target abort is requested as the devseln and the trdyn signals are de-asserted and the stopn signal is
asserted.

8 The PCI master de-asserts the framen to acknowledge the target abort.

9 The PCI master terminates the transaction by de-asserting the irdyn. The PCI IP core de-asserts the stopn.

IPUG18_09.2, November 2010 136 PCI IP Core User’s Guide

The IPexpress tool is used to create IP and architectural modules in the Diamond and ispLEVER software. Refer to
“IP Core Generation” on page 143 for a description on how to generate the IP.

Table 3-1 provides the list of user configurable parameters for the PCI IP core. The parameter settings are specified
using the PCI IP core Configuration GUI in IPexpress. The numerous PCI Express parameter options are parti-
tioned across multiple GUI tabs as shown in this chapter.

Table 3-1. Parameter Descriptions

Parameter Range Default

Bus

PCI Data Bus Size 32, 64 32

Local Master Data Bus Size1 32, 64 32

Local Target Data Bus Size1 32, 64 32

Local Data Bus Size2 32, 64 32

Local Address Bus Width 32, 64 32

Bus Speed 33MHz, 66MHz —

Identification

Vendor ID [15:0] 0x 0000-FFFF 0x 1573

Device ID [15:0] 0x 0000-FFFF 0x 0000

Subsystem Vendor ID [15:0] 0x 0000-FFFF 0x 0000

Subsystem ID [15:0] 0x 0000-FFFF 0x 0000

Revision ID [7:0] 0x 00-FF 0x 01

Class Code (Base Class, Sub
Class Interface)

0x 00-FF
0x 00-FF
0x 00-FF

0x 05
0x 00
0x 00

Options

Timing of DEVSEL slow slow

Expansion ROM Yes, No No

Address Space Size None, 2k, 4k,
8k, ... , 16M None

Capabilities Pointer [7:0] {Yes, No} 0x 00-FF Yes 0x 40

CardBus CIS Pointer [31:0] 0x 00000000 -
0x FFFFFFFF 0x 00000000

Fast Back to Back Enable, Disable Enable

Interrupt Acknowledge Yes, No Yes

Interrupt Pin None, INTAN INTAN

PCI Master1

Read Only Latency Timer1 Yes, No No

MIN_GNT1 0x 00-FF 0x 00

MAX_LAT1 0x 00-FF 0x 00

BARs

Number of BARs 0 - 6 3

BAR0 0x 00000000 -
0x FFFFFFFF 0x FFFFFFFD

BAR1 0x 00000000 -
0x FFFFFFFF 0x FFFFFFF0

Chapter 3:

Parameter Settings

Lattice Semiconductor Parameter Settings

IPUG18_09.2, November 2010 137 PCI IP Core User’s Guide

Bus Tab
Figure 3-1 shows the contents of the Bus tab. This example shows the PCI Master/Target 33.

Figure 3-1. Bus Tab

Bus Definition
PCI Data Bus Size
The address and data width on the PCI side.

Local Master Data Bus Size (Master/Target cores only)
The data width for Local Master read/write transactions, must be the same as the PCI Data Bus Size.

Local Target Data Bus Size (Master/Target cores only)
The data width for Local Target read/write transactions, must be the same as the PCI Data Bus Size.

BAR2 0x 00000000 -
0x FFFFFFFF 0x FFFFFFF0

BAR3 - BAR5 0x 00000000 -
0x FFFFFFFF 0x 00000000

BAR0 to BAR5 Configuration Options

BAR width 32, 64 32

BAR Type Memory, I/O I/O for BAR0,
Memory for BAR1, BAR2

Address Space Size None, 4 bytes, 8 bytes, ... , 8G 4 bytes for BAR0 16 bytes for BAR1, BAR2

Prefetching Enable Yes, No No

1. Only for PCI Master/Target Core.
2. Only for PCI Target Core.

Table 3-1. Parameter Descriptions (Continued)

Parameter Range Default

Lattice Semiconductor Parameter Settings

IPUG18_09.2, November 2010 138 PCI IP Core User’s Guide

Local Data Bus Size (Target cores only)
The data width for Local side Target read/write transactions, must be the same as the PCI Data Bus Size.

Local Address Bus Width
The address width for Local Master and Target read/write transactions, must be the same as the PCI Data Bus
Size.

Bus Speed
PCI bus operation frequency. A clock frequency on the PCI side. A fixed value that depends on the PCI core being
used.

Backend Configuration
Enable Backend Configuration

When this option is selected, the core works independently by configuring in the backend. The PCI core will provide
a backend interface named self_cfg. The self_cfg interface can directly configure the PCI core after power on
instead of another PCI master on PCI bus. The self_cfg interface can read/write the PCI core configuration space.,
The core takes the read/write command same as PCI config command(cben=h02/h03).

The self_cfg interface signals are listed in Table 3-2.

The backend asserst self_cfn_en to '1' and then starts configuring the PCI core. After configuration is finished,
self_cfg_en is deasserted to '0'.

Synthesis/Simulation Tools Selection
Support Synplify
If selected, IPexpress generates evaluation scripts and other associated files required to synthesize the top-level
design using the Synplify synthesis tool.

Support Precision
If selected, IPexpress generates evaluation script and other associated files required to synthesize the top-level
design using the Precision synthesis tool.

Support ModelSim
If selected, IPexpress generates evaluation script and other associated files required to synthesize the top-level
design using the Modelsim simulator.

Support ALDEC
If selected, IPexpress generates evaluation script and other associated files required to synthesize the top-level
design using the ALDEC simulator.

Table 3-2. self_cfg Interface Signals

Port Name Type Corresponding PCI signals Description

self_cfg_en In Self configuration enable signals, when it’s 1’b1,
pci bus will be blocked and replaced by self_cfg
interface.

self_cfg_addr In ad (address cycle) Address of configuration space

self_cfg_data_in In ad (data cycle of config write command) Data write to configuration space

self_cfg_data_out Out ad (data cycle of config read command) Data read from configuration space

self_cfg_rd_wrn In cben(0) Specify the Read/write command. ‘1’ define a read
command, ‘0’ define a write command.

self_cfg_rdy Out !delseln & !trdyn Only valid for read command, ‘1’ indicate that
self_cfg_data_out is valid.

Lattice Semiconductor Parameter Settings

IPUG18_09.2, November 2010 139 PCI IP Core User’s Guide

Identification Tab
Figure 3-2 shows the contents of the Identification tab. This example shows the PCI Master/Target 33.

Figure 3-2. Identification Tab

Vendor ID [15:0]
The Vendor ID is a 16-bit parameter used to identify the manufacturer of the product. The Vendor ID is assigned by
the PCI SIG to ensure uniqueness.

Device ID [15:0]
The Device ID is a 16-bit parameter defined by the manufacturer to uniquely identify a particular product or model.

Subsystem Vendor ID [15:0]
The Subsystem Vendor ID is a 16-bit parameter used to further identify the manufacturer of the expansion board or
subsystem.

Subsystem ID [15:0]
The Subsystem ID is a 16-bit parameter used to further identify the particular device. This field is defined by the
manufacturer to uniquely identify products or models.

Revision ID [15:0]
The Revision ID is an 8-bit parameter used by the manufacturer and should be viewed as an extension of the
Device ID to distinguish between different functional versions of a PCI product.

Class Code (Base Class, Bus Class, Interface)
The Class Code is broken into three byte-size fields. The base class code broadly classifies the type of function the
device performs. The sub-class code identifies more specifically the function of the device. The interface byte iden-
tifies a specific register-level programming interface.

Lattice Semiconductor Parameter Settings

IPUG18_09.2, November 2010 140 PCI IP Core User’s Guide

Options Tab
Figure 3-3 shows the contents of the Options tab. This example shows the PCI Master/Target 33.

Figure 3-3. Options Tab

Devsel Timing
Timing of Devsel
The slowest time for a device to assert the devseln signal for all accesses except the configuration accesses. The
PCI Core supports only the slow decode setting.

Expansion ROM BAR
Expansion ROM
When selected, includes support for the Expansion ROM option.

Address Space Size
Specifies the Expansion ROM address space size.

Read Only and Read Only Address
When Read Only is selected, the Expansion ROM base address is specified by the Read Only Address parameter
and can only be read by other PCI devices. When Read Only is not selected, the Expansion ROM base address
can be specified by another PCI master device via the PCI bus.

Capabilities Pointer
The Capabilities Pointer indicates the starting location of the Capabilities List.

CardBus CIS Pointer
The CardBus CIS Pointer is 32-bit register at location 28h in the Configuration Space. For more information on set-
ting this register, refer to the CardBus specification.

Fast Back-to-Back
This option determines if the master Core supports two or more complete PCI transactions without an idle state
between them.

Lattice Semiconductor Parameter Settings

IPUG18_09.2, November 2010 141 PCI IP Core User’s Guide

Interrupts
Interrupt Acknowledge
This option determines if the PCI core supports Interrupt Acknowledge.

Interrupt Pin
Indicates which Interrupt Pin will be used by the PCI Core.

PCI Master Tab (PCI Master/Target Cores Only)
Figure 3-4 shows the contents of the PCI Master tab. This example shows the PCI Master/Target 33.

Figure 3-4. PCI Master Tab

Read Only Latency Timer
A mechanism for ensuring that a bus master does not extend the access latency of other masters beyond a speci-
fied value.

MIN_GNT
An 8-bit parameter used to specify the length of time in microseconds for the Master to control the PCI bus.

MAX_LAT
An 8-bit parameter used to specify how often the PCI Core possess the bus.

BARs Tab
Figure 3-5 shows the contents of the BARs tab. This example shows the PCI Master/Target 33.

Figure 3-5. BARs Tab

Lattice Semiconductor Parameter Settings

IPUG18_09.2, November 2010 142 PCI IP Core User’s Guide

Base Address Registers
Number of BARs
The number of Base Address Registers configured by the user.

BAR0 - BAR5
The Base Address value used to map memory or I/O address space.

BAR Configuration Options
Figure 3-6 shows the BAR Configuration dialog box, which is displayed when the Configure button is pressed in
the BARs tab.

Figure 3-6. BAR Configuration Options

BAR Width
The width of the Base Address Register. When using 64-bit width, the current BAR and next BAR will combine as
the 64-bit Base Address.

BAR Type
Used to map memory or I/O space.

Address Space Size
The parameter is the size of the address range mapped to memory or I/O space.

Prefetching Enable
This option determines if the memory mapped by this BAR support prefetching operation.

IPUG18_09.2, November 2010 143 PCI IP Core User’s Guide

This chapter provides information on how to generate the PCI IP core using the Diamond or ispLEVER software
IPexpress tool, and how to include the core in a top-level design.

Licensing the IP Core
An IP core- and device-specific license is required to enable full, unrestricted use of the PCI IP core in a complete,
top-level design. Instructions on how to obtain licenses for Lattice IP cores are given at:

http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

Users may download and generate the PCI IP core and fully evaluate the core through functional simulation and
implementation (synthesis, map, place and route) without an IP license. The PCI IP core also supports Lattice’s IP
hardware evaluation capability, which makes it possible to create versions of the IP core that operate in hardware
for a limited time (approximately four hours) without requiring an IP license. See “Hardware Evaluation” on
page 148 for further details. However, a license is required to enable timing simulation, to open the design in the
Diamond or ispLEVER EPIC tool, and to generate bitstreams that do not include the hardware evaluation timeout
limitation.

Getting Started
The PCI IP core is available for download from the Lattice IP Server using the IPexpress tool. The IP files are auto-
matically installed using ispUPDATE technology in any customer-specified directory. After the IP core has been
installed, the IP core will be available in the IPexpress GUI dialog box shown in Figure 4-1.

The IPexpress tool GUI dialog box for the PCI IP core is shown in Figure 4-1. To generate a specific IP core config-
uration the user specifies:

• Project Path – Path to the directory where the generated IP files will be located.

• File Name – “username” designation given to the generated IP core and corresponding folders and files.

• (Diamond) Module Output – Verilog or VHDL.

• (ispLEVER) Design Entry Type – Verilog HDL or VHDL.

• Device Family – Device family to which IP is to be targeted (e.g. LatticeSCM, Lattice ECP2M, LatticeECP3,
etc.). Only families that support the particular IP core are listed.

• Part Name – Specific targeted part within the selected device family.

Chapter 4:

IP Core Generation

http://www.latticesemi.com/products/intellectualproperty/aboutip/isplevercoreonlinepurchas.cfm

Lattice Semiconductor IP Core Generation

IPUG18_09.2, November 2010 144 PCI IP Core User’s Guide

Figure 4-1. IPexpress Dialog Box (Diamond Version)

Note that if the IPexpress tool is called from within an existing project, Project Path, Module Output (Design Entry in
ispLEVER), Device Family and Part Name default to the specified project parameters. Refer to the IPexpress tool
online help for further information.

To create a custom configuration, the user clicks the Customize button in the IPexpress tool dialog box to display
the PCI IP core Configuration GUI, as shown in Figure 4-2. From this dialog box, the user can select the IP param-
eter options specific to their application. Refer to “Parameter Settings” on page 136 for more information on the PCI
IP core parameter settings.

Lattice Semiconductor IP Core Generation

IPUG18_09.2, November 2010 145 PCI IP Core User’s Guide

Figure 4-2. Configuration GUI (Diamond Version)

Lattice Semiconductor IP Core Generation

IPUG18_09.2, November 2010 146 PCI IP Core User’s Guide

IPexpress-Created Files and Top Level Directory Structure
When the user clicks the Generate button in the IP Configuration dialog box, the IP core and supporting files are
generated in the specified “Project Path” directory. The directory structure of the generated files is shown in
Figure 4-3. This example shows the directory structure generated with the PCI Master/Target 33 for LatticeECP3
device.

Figure 4-3. PCI IP Core Directory Structure

Table 4-1 provides a list of key files and directories created by the IPexpress tool and how they are used. The IPex-
press tool creates several files that are used throughout the design cycle. The names of most of the created files
are customized to the user’s module name specified in the IPexpress tool.

Table 4-2 provides a list of key additional files providing IP core generation status information and command line
generation capability are generated in the user's project directory.

Table 4-1. File List

File Description

<username>.lpc This file contains the IPexpress tool options used to recreate or modify the core in the IPexpress
tool.

<username>.ipx

The IPX file holds references to all of the elements of an IP or Module after it is generated from
the IPexpress tool (Diamond version only). The file is used to bring in the appropriate files during
the design implementation and analysis. It is also used to re-load parameter settings into the
IP/Module generation GUI when an IP/Module is being re-generated.

<username>.ngo This file provides the synthesized IP core.

<username>_bb.v/.vhd This file provides the synthesis black box for the user’s synthesis.

<username>_inst.v/.vhd This file provides an instance template for the PCI IP core.

<username>_beh.v/.vhd This file provides the front-end simulation library for the PCI IP core.

Table 4-2. Additional Files

File Description

<username>_generate.tcl This file is created when the GUI “Generate” button is pushed. This file may be run from com-
mand line.

<username>_generate.log This is the synthesis and map log file.

Lattice Semiconductor IP Core Generation

IPUG18_09.2, November 2010 147 PCI IP Core User’s Guide

Instantiating the Core
The generated PCI IP core package includes black-box (<username>_bb.v/vhd) and instance
(<userame>_inst.v/vhd) templates (Verilog or VHDL) that can be used to instantiate the core in a top-level design.
An example RTL top-level reference source file that can be used as an instantiation template for the IP core is pro-
vided in <project_dir>\pci_master_target_eval\<username>\src\rtl\top. Users may also use this
top-level reference as the starting template for the top-level for their complete design.

Running Functional Simulation
Simulation support for the PCI IP core is provided for Aldec Active-HDL (Verilog and VHDL) simulator and Mentor
Graphics ModelSim (Verilog only) simulator.

The functional simulation includes a PCI bus stimulus module (pci_stim_tb) and a local module (lt_stim_tb), which
is instantiated in a top level (pci_testbench_top). Module pci_stim_tb simulates a master PCI to configure PCI core
and test the core's basic read/write command.

The generated IP core package includes behavior model (<username>_beh.v) for functional simulation in the “Proj-
ect Path” root directory, which <username>_beh.v is instantiated in PCI top model
(\<project_dir>\pci_master_target_eval\<username>\src\rtl\top).

The simulation script supporting ModelSim evaluation simulation is provided in
\<project_dir>\pci_master_target_eval\<username>\sim\modelsim.

The simulation script supporting Aldec evaluation simulation is provided in
\<project_dir>\pci_master_target_eval\<username>\sim\aldec.

The Test Application Design is instantiated in a test-bench provided in
\<project_dir>\pci_master_target_eval\testbench.

Both ModelSim and Aldec simulation is supported via test bench files provided in
\<project_dir>\pci_master_target_eval\testbench. Models required for simulation are provided in
the corresponding \models folder.

Users may run the Aldec evaluation simulation by doing the following:

1. Open Active-HDL.

2. Under the Tools tab, select Execute Macro.

3. Browse to folder \<project_dir>\pci_master_target_eval\<username>\sim\aldec and execute
one of the “do” scripts shown.

Users may run the ModelSim evaluation simulation by doing the following:

1. Open ModelSim.

2. Under the File tab, select Change Directory and choose the folder
<project_dir>\pci_master_target_eval\<username>\sim\modelsim.

3. Under the Tools tab, select Execute Macro and execute the ModelSim “do” script shown.

Note: When the simulation completes, displayed on the console are:

 << Simulation complete... >>

<username>_gen.log This is the IPexpress IP generation log file

Table 4-2. Additional Files (Continued)

Lattice Semiconductor IP Core Generation

IPUG18_09.2, November 2010 148 PCI IP Core User’s Guide

 << Number of errors: 0 >>

Synthesizing and Implementing the Core in a Top-Level Design
Synthesis support for the PCI IP core is provided for Mentor Graphics Precision or Synopsys Synplify. The PCI IP
core itself is synthesized and is provided in NGO format when the core is generated in IPexpress. Users may syn-
thesize the core in their own top-level design by instantiating the core in their top-level as described previously and
then synthesizing the entire design with either Synplify or Precision RTL synthesis.

The top-level file <username>_eval_top.v provided in
\<project_dir>\pci_master_target_eval\<username>\src\top
supports the ability to implement the PCI Express core in isolation. Push-button implementation of this top-level
design with either Synplify or Precision RTL Synthesis is supported via the project files
<username>_eval.ldf (Diamond) or .syn (ispLEVER) located in the
\<project_dir>\pci_master_target_eval\<username>\impl\synplify
and the
\<project_dir>\pci_master_target_eval\<username>\impl\precision directories, respectively.

To use this project file in Diamond:

1. Choose File > Open > Project.

2. Browse to \<project_dir>\pci_master_target_eval\<username>\impl\(synplify or preci-
sion) in the Open Project dialog box.

3. Select and open <username>.ldf. At this point, all of the files needed to support top-level synthesis and imple-
mentation will be imported to the project.

4. Select the Process tab in the left-hand GUI window.

5. Implement the complete design via the standard Diamond GUI flow.

To use this project file in ispLEVER:

1. Choose File > Open Project.

2. Browse to \<project_dir>\pci_master_target_eval\<username>\impl\(synplify or preci-
sion) in the Open Project dialog box.

3. Select and open <username>.syn. At this point, all of the files needed to support top-level synthesis and imple-
mentation will be imported to the project.

4. Select the device top-level entry in the left-hand GUI window.

5. Implement the complete design via the standard ispLEVER GUI flow.

Hardware Evaluation
The PCI IP core supports Lattice’s IP hardware evaluation capability, which makes it possible to create versions of
the IP core that operate in hardware for a limited period of time (approximately four hours) without requiring the pur-
chase of an IP license. It may also be used to evaluate the core in hardware in user-defined designs.

Enabling Hardware Evaluation in Diamond
Choose Project > Active Strategy > Translate Design Settings. The hardware evaluation capability may be
enabled/disabled in the Strategy dialog box. It is enabled by default.

Lattice Semiconductor IP Core Generation

IPUG18_09.2, November 2010 149 PCI IP Core User’s Guide

Enabling Hardware Evaluation in ispLEVER
In the Processes for Current Source pane, right-click the Build Database process and choose Properties from the
dropdown menu. The hardware evaluation capability may be enabled/disabled in the Properties dialog box. It is
enabled by default.

Updating/Regenerating the IP Core
By regenerating an IP core with the IPexpress tool, you can modify any of its settings including device type, design
entry method, and any of the options specific to the IP core. Regenerating can be done to modify an existing IP
core or to create a new but similar one.

Regenerating an IP Core in Diamond
To regenerate an IP core in Diamond:

1. In IPexpress, click the Regenerate button.

2. In the Regenerate view of IPexpress, choose the IPX source file of the module or IP you wish to regenerate.

3. IPexpress shows the current settings for the module or IP in the Source box. Make your new settings in the Tar-
get box.

4. If you want to generate a new set of files in a new location, set the new location in the IPX Target File box. The
base of the file name will be the base of all the new file names. The IPX Target File must end with an .ipx exten-
sion.

5. Click Regenerate. The module’s dialog box opens showing the current option settings.

6. In the dialog box, choose the desired options. To get information about the options, click Help. Also, check the
About tab in IPexpress for links to technical notes and user guides. IP may come with additional information. As
the options change, the schematic diagram of the module changes to show the I/O and the device resources
the module will need.

7. To import the module into your project, if it’s not already there, select Import IPX to Diamond Project (not
available in stand-alone mode).

8. Click Generate.

9. Check the Generate Log tab to check for warnings and error messages.

10.Click Close.

The IPexpress package file (.ipx) supported by Diamond holds references to all of the elements of the generated IP
core required to support simulation, synthesis and implementation. The IP core may be included in a user's design
by importing the .ipx file to the associated Diamond project. To change the option settings of a module or IP that is
already in a design project, double-click the module’s .ipx file in the File List view. This opens IPexpress and the
module’s dialog box showing the current option settings. Then go to step 6 above.

Regenerating an IP Core in ispLEVER
To regenerate an IP core in ispLEVER:

1. In the IPexpress tool, choose Tools > Regenerate IP/Module.

2. In the Select a Parameter File dialog box, choose the Lattice Parameter Configuration (.lpc) file of the IP core
you wish to regenerate, and click Open.

3. The Select Target Core Version, Design Entry, and Device dialog box shows the current settings for the IP core
in the Source Value box. Make your new settings in the Target Value box.

Lattice Semiconductor IP Core Generation

IPUG18_09.2, November 2010 150 PCI IP Core User’s Guide

4. If you want to generate a new set of files in a new location, set the location in the LPC Target File box. The base
of the .lpc file name will be the base of all the new file names. The LPC Target File must end with an .lpc exten-
sion.

5. Click Next. The IP core’s dialog box opens showing the current option settings.

6. In the dialog box, choose desired options. To get information about the options, click Help. Also, check the
About tab in the IPexpress tool for links to technical notes and user guides. The IP core might come with addi-
tional information. As the options change, the schematic diagram of the IP core changes to show the I/O and
the device resources the IP core will need.

7. Click Generate.

8. Click the Generate Log tab to check for warnings and error messages.

IPUG18_09.2, November 2010 151 PCI IP Core User’s Guide

This chapter contains information about Lattice Technical Support, additional references, and document revision
history.

Lattice Technical Support
There are a number of ways to receive technical support.

Online Forums
The first place to look is Lattice Forums (http://www.latticesemi.com/support/forums.cfm). Lattice Forums contain a
wealth of knowledge and are actively monitored by Lattice Applications Engineers.

Telephone Support Hotline
Receive direct technical support for all Lattice products by calling Lattice Applications from 5:30 a.m. to 6 p.m.
Pacific Time.

• For USA & Canada: 1-800-LATTICE (528-8423)

• For other locations: +1 503 268 8001

In Asia, call Lattice Applications from 8:30 a.m. to 5:30 p.m. Beijing Time (CST), +0800 UTC. Chinese and English
language only.

• For Asia: +86 21 52989090

E-mail Support

• techsupport@latticesemi.com

• techsupport-asia@latticesemi.com

Local Support
Contact your nearest Lattice Sales Office.

Internet
www.latticesemi.com

PCI-SIG Website
The Peripheral Component Interconnect Special Interest Group (PCI-SIG) website contains specifications and doc-
uments referred to in this user's guide. The PCi-SIG URL is:

http://www.pcisig.com.

References
LatticeEC/ECP

• HB1000, LatticeEC/ECP Family Handbook

LatticeECP2M

• HB1003, LatticeECP2M Family Handbook

Chapter 5:

Support Resources

www.latticesemi.com/dynamic/view_document.cfm?document_id=21733
http://www.latticesemi.com/support/forums.cfm
www.latticesemi.com
http://www.latticesemi.com/lit/docs/handbooks/HB1000.pdf

Lattice Semiconductor Support Resources

IPUG18_09.2, November 2010 152 PCI IP Core User’s Guide

LatticeECP3

• HB1009, LatticeECP3 Family Handbook

LatticeSC/M

• DS1004, LatticeSC/M Family Data Sheet

LatticeXP

• HB1001, LatticeXP Family Handbook

LatticeXP2

• DS1009, Lattice XP2 Datasheet

MachXO

• DS1002, MachXO Family Datasheet

MachXO2

• DS1035, MachXO2 Family Datasheet

Revision History

Date
Document

Version
IP

Version Change Summary

— — 5.2 Previous Lattice releases.

August 2006 08.3
5.2 Core version 5.2 - IPexpress User-Configurable flow supported for

LatticeECP/EC, LatticeECP2, LatticeSC, LatticeXP, and MachXO
only.

September 2006 08.4 5.2 Added Parameter Descriptions section.

December 2006 08.5 5.2 Updated appendices. Added LatticeECP2M appendix.

April 2007 08.6 5.2 Updated references to PCI Local Bus Specification from revision
2.2 to revision 3.0.

Updated Command Register figure and table. Replaced “stepping
control” with “reserved bit”.

May 2007 08.7 5.2 Updated BAR Mapped to Memory Space section.

Updated command9:0 signal description in the Local Interface
Signals table.

Added support for LatticeXP2 FPGA family.

November 2007 08.8 5.2 Updated appendices.

July 2008 08.9 6.1 Updated appendices.

July 2009 09.0 6.1 Added support for LatticeECP3 FPGA family.

July 2010 09.1 6.2 Divided document into chapters. Added table of contents.

Added Quick Facts table in Chapter 1, “Introduction.”

Added new content in Chapter 4, “IP Core Generation.”

November 2010 09.2 6.4 Added support for Diamond software throughout.

Added support for MachXO2 device family throughout.

http://www.latticesemi.com/lit/docs/datasheets/cpld/DS1002.pdf
http://www.latticesemi.com/dynamic/view_document.cfm?document_id=38834
www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
www.latticesemi.com/dynamic/view_document.cfm?document_id=32001
http://www.latticesemi.com/documents/TN1114.pdf
http://www.latticesemi.com/documents/DS1004.pdf
http://www.latticesemi.com/lit/docs/handbooks/HB1001.pdf
http://www.latticesemi.com/documents/DS1009.pdf

IPUG18_09.2, November 2010 153 PCI IP Core User’s Guide

This appendix gives resource utilization information for Lattice FPGAs using the PCI IP core.

IPexpress is the Lattice IP configuration utility, and is included as a standard feature of the Diamond and ispLEVER
design tools. Details regarding the usage of IPexpress can be found in the IPexpress and Diamond or ispLEVER
help system. For more information on the Diamond or ispLEVER design tools, visit the Lattice web site at:
www.latticesemi.com/software.

LatticeECP and LatticeEC FPGAs
Table A-1. Performance and Resource Utilization1

Ordering Part Number
Table A-2 lists the Ordering Part Number (OPNs) for each mode of operation supported by the PCI IP core for Lat-
ticeECP/EC.

Table A-2. OPN for LatticeECP/EC PCI IP Core

IPexpress
User-Configurable Mode SLICEs LUTs Registers

sysMEM™
EBRs

External Pins
(PCI Interface) fMAX

Target 33 MHz, 32-bit
PCI/Local/Address bus width 586 703 472 0 48 33

Target 33 MHz, 64-bit
PCI/Local/Address bus width 715 913 594 0 87 33

Target 66 MHz, 32-bit
PCI/Local/Address bus width 606 966 493 0 48 66

Target 66 MHz, 64-bit
PCI/Local/Address bus width 832 1344 614 0 87 66

Master/Target 33 MHz, 32-bit
PCI/Local/Address bus width 846 1060 642 0 50 33

Master/Target 33 MHz, 64-bit
PCI/Local/Address bus width 1153 1549 849 0 89 33

Master/Target 66 MHz, 32-bit
PCI/Local/Address bus width 1083 1690 663 0 50 66

Master/Target 66 MHz, 64-bit
PCI/Local/Address bus width 1599 2569 869 0 89 66

1. Performance and utilization data are generated using an LFEC33E-5F672C device with Lattice Diamond 1.0 software. Performance may
vary when using a different software version or targeting a different device density or speed grade within the LatticeECP/EC
family.

Speed PCI Bus Type OPN

33 MHz 32-bit Target PCI-T32-E2-U6

33 MHz 64-bit Target PCI-T64-E2-U6

66 MHz 32-bit Target PCI-T32-E2-U6

66 MHz 64-bit Target PCI-T64-E2-U6

33 MHz 32-bit Master/Target PCI-MT32-E2-U6

33 MHz 64-bit Master/Target PCI-MT64-E2-U6

66 MHz 32-bit Master/Target PCI-MT32-E2-U6

66 MHz 64-bit Master/Target PCI-MT64-E2-U6

Appendix A:

Resource Utilization

http://www.latticesemi.com/products/designsoftware/index.cfm

Lattice Semiconductor Resource Utilization

IPUG18_09.2, November 2010 154 PCI IP Core User’s Guide

LatticeECP2 FPGAs
Table A-3. Performance and Resource Utilization1

Ordering Part Number
Table A-4 lists the Ordering Part Number (OPNs) for each mode of operation supported by the PCI IP core for
LatticeECP2.

Table A-4. OPN for LatticeECP2 PCI IP Core

IPexpress
User-Configurable Mode SLICEs LUTs Registers

sysMEM
EBRs

External Pins
(PCI Interface) fMAX

Target 33 MHz, 32-bit PCI/
Local/Address bus width 593 717 472 0 48 33

Target 33 MHz, 64-bit PCI/
Local/Address bus width 722 927 594 0 87 33

Target 66 MHz, 32-bit PCI/
Local/Address bus width 606 972 493 0 48 66

Target 66 MHz, 64-bit PCI/
Local/Address bus width 832 1350 614 0 87 66

Master/Target 33 MHz, 32-bit PCI/
Local/Address bus width 856 1068 642 0 50 33

Master/Target 33 MHz, 64-bit PCI/
Local/Address bus width 1168 1561 849 0 89 33

Master/Target 66 MHz, 32-bit PCI/
Local/Address bus width 1086 1700 663 0 50 66

Master/Target 66 MHz, 64-bit PCI/
Local/Address bus width 1598 2580 869 0 89 66

1. Performance and utilization data are generated using an LFE2-20E-6F672C device with Lattice Diamond 1.0 software. Performance may
vary when using a different software version or targeting a different device density or speed grade within the LatticeECP2 family.

Speed PCI Bus Type OPN

33 MHz 32-bit Target PCI-T32-P2-U6

33 MHz 64-bit Target PCI-T64-P2-U6

66 MHz 32-bit Target PCI-T32-P2-U6

66 MHz 64-bit Target PCI-T64-P2-U6

33 MHz 32-bit Master/Target PCI-MT32-P2-U6

33 MHz 64-bit Master/Target PCI-MT64-P2-U6

66 MHz 32-bit Master/Target PCI-MT32-P2-U6

66 MHz 64-bit Master/Target PCI-MT64-P2-U6

Lattice Semiconductor Resource Utilization

IPUG18_09.2, November 2010 155 PCI IP Core User’s Guide

LatticeECP2M FPGAs
Table A-5. Performance and Resource Utilization1

Ordering Part Number
Table A-6 lists the Ordering Part Number (OPNs) for each mode of operation supported by the PCI IP core for
LatticeECP2M.

Table A-6. OPN for LatticeECP2M PCI IP Core

IPexpress
User-Configurable Mode SLICEs LUTs Registers

sysMEM
EBRs

External Pins
(PCI Interface) fMAX

Target 33 MHz, 32-bit PCI/
Local/Address bus width 593 717 472 0 48 33

Target 33 MHz, 64-bit PCI/
Local/Address bus width 722 927 594 0 87 33

Target 66 MHz, 32-bit PCI/
Local/Address bus width 606 972 493 0 48 66

Target 66 MHz, 64-bit PCI/
Local/Address bus width 832 1350 614 0 87 66

Master/Target 33 MHz, 32-bit PCI/
Local/Address bus width 856 1068 642 0 50 33

Master/Target 33 MHz, 64-bit PCI/
Local/Address bus width 1168 1561 849 0 89 33

Master/Target 66 MHz, 32-bit PCI/
Local/Address bus width 1086 1700 663 0 50 66

Master/Target 66 MHz, 64-bit PCI/
Local/Address bus width 1598 2580 869 0 89 66

1. Performance and utilization data are generated using an LFE2M-35E-6F672C device with Lattice Diamond 1.0 software. Performance may
vary when using a different software version or targeting a different device density or speed grade within the LatticeECP2M family.

Speed PCI Bus Type OPN

33 MHz 32-bit Target PCI-T32-PM-U6

33 MHz 64-bit Target PCI-T64-PM-U6

66 MHz 32-bit Target PCI-T32-PM-U6

66 MHz 64-bit Target PCI-T64-PM-U6

33 MHz 32-bit Master/Target PCI-MT32-PM-U6

33 MHz 64-bit Master/Target PCI-MT64-PM-U6

66 MHz 32-bit Master/Target PCI-MT32-PM-U6

66 MHz 64-bit Master/Target PCI-MT64-PM-U6

Lattice Semiconductor Resource Utilization

IPUG18_09.2, November 2010 156 PCI IP Core User’s Guide

LatticeECP3 FPGAs
Table A-7. Performance and Resource Utilization1

Ordering Part Number
Table A-8 lists the Ordering Part Number (OPNs) for each mode of operation supported by the PCI IP core for
LatticeECP3.

Table A-8. OPN for LatticeECP3 PCI IP Core

IPexpress User-Configurable
Mode SLICEs LUTs Registers

sysMEM
EBRs

External Pins
(PCI Interface) fMAX

Target 33 MHz, 32-bit
PCI/Local/Address bus width 483 706 470 0 48 33

Target 33 MHz, 64-bit
PCI/Local/Address bus width 612 918 592 0 87 33

Target 66 MHz, 32-bit
PCI/Local/Address bus width 589 963 491 0 48 66

Target 66 MHz, 64-bit
PCI/Local/Address bus width 809 1341 612 0 87 66

Master/Target 33 MHz, 32-bit
PCI/Local/Address bus width 683 1059 640 0 50 33

Master/Target 33 MHz, 64-bit
PCI/Local/Address bus width 1005 1552 847 0 89 33

Master/Target 66 MHz, 32-bit
PCI/Local/Address bus width 1076 1691 661 0 50 66

Master/Target 66 MHz, 64-bit
PCI/Local/Address bus width 1550 2570 867 0 89 66

1. Performance and utilization data are generated using an LFE3-95EA-7FN1156CES device with Lattice Diamond 1.0 software. Performance
may vary when using a different software version or targeting a different device density or speed grade within the LatticeECP3 family.

Speed PCI Bus Type OPN

33 MHz 32-bit Target PCI-T32-E3-U6

33 MHz 64-bit Target PCI-T64-E3-U6

66 MHz 32-bit Target PCI-T32-E3-U6

66 MHz 64-bit Target PCI-T64-E3-U6

33 MHz 32-bit Master/Target PCI-MT32-E3-U6

33 MHz 64-bit Master/Target PCI-MT64-E3-U6

66 MHz 32-bit Master/Target PCI-MT32-E3-U6

66 MHz 64-bit Master/Target PCI-MT64-E3-U6

Lattice Semiconductor Resource Utilization

IPUG18_09.2, November 2010 157 PCI IP Core User’s Guide

LatticeXP FPGAs
Table A-9. Performance and Resource Utilization1

Ordering Part Number
Table A-10 lists the Ordering Part Number (OPNs) for each mode of operation supported by the PCI IP core for Lat-
ticeXP.

Table A-10. OPN for LatticeXP PCI IP Core

IPexpress
User-Configurable Mode SLICEs LUTs Registers

sysMEM
EBRs

External Pins
(PCI Interface) fMAX

Target 33 MHz, 32-bit PCI/
Local/Address bus width 586 703 472 0 48 33

Target 33 MHz, 64-bit PCI/
Local/Address bus width 715 913 594 0 87 33

Target 66 MHz, 32-bit PCI/
Local/Address bus width 606 966 493 0 48 66

Target 66 MHz, 64-bit PCI/
Local/Address bus width 832 1344 614 0 87 66

Master/Target 33 MHz, 32-bit PCI/
Local/Address bus width 846 1060 642 0 50 33

Master/Target 33 MHz, 64-bit PCI/
Local/Address bus width 1090 1549 849 0 89 33

Master/Target 66 MHz, 32-bit PCI/
Local/Address bus width 1083 1690 663 0 50 66

1. Performance and utilization data are generated using an LFXP20C-5F484C device with Lattice Diamond 1.0 software. Performance may
vary when using a different software version or targeting a different device density or speed grade within the LatticeXP family.

Speed PCI Bus Type OPN

33 MHz 32-bit Target PCI-T32-XM-U6

33 MHz 64-bit Target PCI-T64-XM-U6

66 MHz 32-bit Target PCI-T32-XM-U6

66 MHz 64-bit Target PCI-T64-XM-U6

33 MHz 32-bit Master/Target PCI-MT32-XM-U6

33 MHz 64-bit Master/Target PCI-MT64-XM-U6

66 MHz 32-bit Master/Target PCI-MT32-XM-U6

66 MHz 64-bit Master/Target PCI-MT64-XM-U6

Lattice Semiconductor Resource Utilization

IPUG18_09.2, November 2010 158 PCI IP Core User’s Guide

LatticeXP2 FPGAs
Table A-11. Performance and Resource Utilization1

Ordering Part Number
Table A-12 lists the Ordering Part Number (OPNs) for each mode of operation supported by the PCI IP core for
LatticeXP2.

Table A-12. OPN for LatticeXP2 PCI IP Core

IPexpress
User-Configurable Mode SLICEs LUTs Registers

sysMEM
EBRs

External Pins
(PCI Interface) fMAX

Target 33 MHz, 32-bit PCI/
Local/Address bus width 588 709 470 0 48 33

Target 33 MHz, 64-bit PCI/
Local/Address bus width 707 919 592 0 87 33

Target 66 MHz, 32-bit PCI/
Local/Address bus width 601 964 491 0 48 66

Target 66 MHz, 64-bit PCI/
Local/Address bus width 827 1342 612 0 87 66

Master/Target 33 MHz, 32-bit PCI/
Local/Address bus width 851 1060 640 0 50 33

Master/Target 33 MHz, 64-bit PCI/
Local/Address bus width 1100 1553 847 0 89 33

Master/Target 66 MHz, 32-bit PCI/
Local/Address bus width 1081 1692 661 0 50 66

Master/Target 66 MHz, 64-bit PCI/
Local/Address bus width 1530 2572 867 0 89 66

1. Performance and utilization data are generated using an LFXP2-17E-6F484C device with Lattice Diamond 1.0 software. Performance may
vary when using a different software version or targeting a different device density or speed grade within the LatticeXP2 family.

Speed PCI Bus Type OPN

33 MHz 32-bit Target PCI-T32-X2-U6

33 MHz 64-bit Target PCI-T64-X2-U6

66 MHz 32-bit Target PCI-T32-X2-U6

66 MHz 64-bit Target PCI-T64-X2-U6

33 MHz 32-bit Master/Target PCI-MT32-X2-U6

33 MHz 64-bit Master/Target PCI-MT64-X2-U6

66 MHz 32-bit Master/Target PCI-MT32-X2-U6

66 MHz 64-bit Master/Target PCI-MT64-X2-U6

Lattice Semiconductor Resource Utilization

IPUG18_09.2, November 2010 159 PCI IP Core User’s Guide

MachXO FPGAs
Table A-13. Performance and Resource Utilization1

Ordering Part Number
Table A-14 lists the Ordering Part Number (OPNs) for each mode of operation supported by the PCI IP core for
MachXO.

Table A-14. MachXO OPN for PCI IP Core

MachXO2 FPGAs
Table A-15. Performance and Resource Utilization1

Ordering Part Number
Table A-16 lists the Ordering Part Number (OPNs) for each mode of operation supported by the PCI IP core for
MachXO2.

Table A-16. OPN for MachXO2 PCI IP Core

IPexpress
User-Configurable Mode SLICEs LUTs Registers

sysMEM
EBRs

External Pins
(PCI Interface) fMAX

Target 33 MHz, 32-bit PCI/
Local/Address bus width 359 703 472 0 48 33

Target 66 MHz, 32-bit PCI/
Local/Address bus width 517 966 493 0 48 66

Master/Target 33 MHz, 32-bit PCI/
Local/Address bus width 542 1060 642 0 50 33

1. Performance and utilization data are generated using an LCMXO2280C-5FT324C device with Lattice Diamond 1.0 software. Performance
may vary when using a different software version or targeting a different device density or speed grade within the MachXO family.

Speed PCI Bus Type OPN

33 MHz 32-bit Target PCI-T32-XO-U6

66 MHz 32-bit Target PCI-T32-XO-U6

33 MHz 32-bit Master/Target PCI-MT32-XO-U6

IPexpress
User-Configurable Mode SLICEs LUTs Registers

sysMEM
EBRs

External Pins
(PCI Interface) fMAX

Target 33 MHz, 32-bit PCI/
Local/Address bus width 304 601 422 0 48 33

Master/Target 33 MHz, 32-bit PCI/
Local/Address bus width 406 803 582 0 50 33

1. Performance and utilization data are generated using an LCMXO2-1200HC-6TG144CES device with Lattice Diamond 1.0 software. Perfor-
mance may vary when using a different software version or targeting a different device density or speed grade within the MachXO2 family.

Speed PCI Bus Type OPN

33 MHz 32-bit Target PCI-T32-M2-U1

33 MHz 32-bit Master/Target PCI-MT32-M2-U1

Lattice Semiconductor Resource Utilization

IPUG18_09.2, November 2010 160 PCI IP Core User’s Guide

LatticeSC FPGAs
Table A-17. Performance and Resource Utilization1

Ordering Part Number
Table A-18 lists the Ordering Part Number (OPNs) for each mode of operation supported by the PCI IP core for Lat-
ticeSC.

Table A-18. OPN for LatticeSC PCI IP Core

IPexpress
User-Configurable Mode SLICEs LUTs Registers

sysMEM
EBRs

External Pins
(PCI Interface) fMAX

Target 33 MHz, 32-bit PCI/
Local/Address bus width 488 679 470 0 48 33

Target 33 MHz, 64-bit PCI/
Local/Address bus width 621 893 594 0 87 33

Target 66 MHz, 32-bit PCI/
Local/Address bus width 618 990 493 0 48 66

Target 66 MHz, 64-bit PCI/
Local/Address bus width 845 1391 622 0 87 66

Master/Target 33 MHz, 32-bit PCI/
Local/Address bus width 724 1050 640 0 50 33

Master/Target 33 MHz, 64-bit PCI/
Local/Address bus width 986 1529 850 0 89 33

Master/Target 66 MHz, 32-bit PCI/
Local/Address bus width 1085 1722 663 0 50 66

Master/Target 66 MHz, 64-bit PCI/
Local/Address bus width 1513 2631 871 0 89 66

1. Performance and utilization data are generated using an LFSC3GA25E-6F900C device with Lattice Diamond 1.0 software. Performance
may vary when using a different software version or targeting a different device density or speed grade within the LatticeSC family.

Speed PCI Bus Type OPN

33 MHz 32-bit Target PCI-T32-SC-U6

33 MHz 64-bit Target PCI-T64-SC-U6

66 MHz 32-bit Target PCI-T32-SC-U6

66 MHz 64-bit Target PCI-T64-SC-U6

33 MHz 32-bit Master/Target PCI-MT32-SC-U6

33 MHz 64-bit Master/Target PCI-MT64-SC-U6

66 MHz 32-bit Master/Target PCI-MT32-SC-U6

66 MHz 64-bit Master/Target PCI-MT64-SC-U6

IPUG18_09.2, November 2010 161 PCI IP Core User’s Guide

Pin Assignment Considerations for LatticeECP and LatticeEC Devices
PCI Pin Assignments for Master/Target 33MHz 64-Bit Bus
The PCI Master/Target 33MHz 64-bit core is optimized for LFEC33E-5F672C. An example assignment, optimized
for best performance, is given in Table B-1. In the IPexpress user-configurable design flow, actual pin assignment is
contained with the .lpf preference file. Refer to the readme file included with the core package for further informa-
tion.

Table B-1. PCI Pins Assignments

Signal Name Pin/Bank Buffer Type

PCI System Pins

clk W1/6 LVCMOS33_IN

rstn Y8/5 PCI33_IN

PCI Address and Data

ad[0] AB13/5 PCI33_BIDI

ad[1] AC10/5 PCI33_BIDI

ad[2] AD10/5 PCI33_BIDI

ad[3] AA9/5 PCI33_BIDI

ad[4] AB9/5 PCI33_BIDI

ad[5] AC9/5 PCI33_BIDI

ad[6] AD9/5 PCI33_BIDI

ad[7] AA8/5 PCI33_BIDI

ad[8] AB8/5 PCI33_BIDI

ad[9] AC8/5 PCI33_BIDI

ad[10] AD8/5 PCI33_BIDI

ad[11] AE8/5 PCI33_BIDI

ad[12] AF8/5 PCI33_BIDI

ad[13] AA7/5 PCI33_BIDI

ad[14] AB7/5 PCI33_BIDI

ad[15] AC7/5 PCI33_BIDI

ad[16] AD7/5 PCI33_BIDI

ad[17] AE7/5 PCI33_BIDI

ad[18] AF7/5 PCI33_BIDI

ad[19] AC6/5 PCI33_BIDI

ad[20] AD6/5 PCI33_BIDI

ad[21] AE6/5 PCI33_BIDI

ad[22] AF6/5 PCI33_BIDI

ad[23] AC5/5 PCI33_BIDI

ad[24] AD5/5 PCI33_BIDI

ad[25] AE5/5 PCI33_BIDI

ad[26] AF5/5 PCI33_BIDI

ad[27] AE4/5 PCI33_BIDI

ad[28] AF4/5 PCI33_BIDI

ad[29] AE3/5 PCI33_BIDI

Appendix B:

Pin Assignments For Lattice FPGAs

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 162 PCI IP Core User’s Guide

ad[30] AF3/5 PCI33_BIDI

ad[31] AE2/5 PCI33_BIDI

ad[32] AF24/4 PCI33_BIDI

ad[33] AF23/4 PCI33_BIDI

ad[34] AE23/4 PCI33_BIDI

ad[35] AF22/4 PCI33_BIDI

ad[36] AE22/4 PCI33_BIDI

ad[37] AF21/4 PCI33_BIDI

ad[38] AE21/4 PCI33_BIDI

ad[39] AF20/4 PCI33_BIDI

ad[40] AE20/4 PCI33_BIDI

ad[41] AF19/4 PCI33_BIDI

ad[42] AE19/4 PCI33_BIDI

ad[43] AF18/4 PCI33_BIDI

ad[44] AE18/4 PCI33_BIDI

ad[45] AD18/4 PCI33_BIDI

ad[46] AC18/4 PCI33_BIDI

ad[47] AB18/4 PCI33_BIDI

ad[48] AA18/4 PCI33_BIDI

ad[49] AF17/4 PCI33_BIDI

ad[50] AD17/4 PCI33_BIDI

ad[51] AC17/4 PCI33_BIDI

ad[52] AB17/4 PCI33_BIDI

ad[53] AA17/4 PCI33_BIDI

ad[54] AF16/4 PCI33_BIDI

ad[55] AE16/4 PCI33_BIDI

ad[56] AD16/4 PCI33_BIDI

ad[57] AC16/4 PCI33_BIDI

ad[58] AB16/4 PCI33_BIDI

ad[59] AA16/4 PCI33_BIDI

ad[60] Y16/4 PCI33_BIDI

ad[61] AD15/4 PCI33_BIDI

ad[62] AA15/4 PCI33_BIDI

ad[63] Y15/4 PCI33_BIDI

cben[0] AA10/5 PCI33_BIDI

cben[1] AC11/5 PCI33_BIDI

cben[2] AD11/5 PCI33_BIDI

cben[3] AF9/5 PCI33_BIDI

cben[4] AF12/5 PCI33_BIDI

cben[5] AF11/5 PCI33_BIDI

cben[6] AE11/5 PCI33_BIDI

cben[7] AA11/5 PCI33_BIDI

par AF10/5 PCI33_BIDI

par64 AB11/5 PCI33_BIDI

Table B-1. PCI Pins Assignments (Continued)

Signal Name Pin/Bank Buffer Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 163 PCI IP Core User’s Guide

PCI Pin Assignments for Target 66MHz 64-Bit Bus
The PCI Target 33MHz 64-bit core is optimized for LFEC33E-5F672C. An example pin assignment, optimized for
best performance, is given in Table B-2. Refer to the readme file included with the core package for further informa-
tion.

PCI Interface Controls

Framen AA12/5 PCI33_BIDI

irdyn AB12/5 PCI33_BIDI

trdyn AC12/5 PCI33_BIDI

stopn AE12/5 PCI33_BIDI

Idsel AB6/5 PCI33_IN

devseln AD12/5 PCI33_BIDI

perrn AE9/5 PCI33_BIDI

serrn AE10/5 PCI33_BIDI

ack64n AE13/5 PCI33_BIDI

req64n AF13/5 PCI33_BIDI

PCI Interrupts

intan AA6/5 PCI33_OUT

PCI Bus Arbitration

gntn AF2/5 PCI33_IN

reqn AD4/5 PCI33_OUT

Table B-2. PCI Pins Assignments

Signal Name Pin/Bank I/O Type

PCI System Pins

clk W1/6 LVCMOS33_IN

rstn Y8/5 PCI33_IN

PCI Address and Data

ad[0] AB10/5 PCI33_BIDI

ad[1] AC10/5 PCI33_BIDI

ad[2] AD10/5 PCI33_BIDI

ad[3] AA9/5 PCI33_BIDI

ad[4] AB9/5 PCI33_BIDI

ad[5] AC9/5 PCI33_BIDI

ad[6] AD9/5 PCI33_BIDI

ad[7] AA8/5 PCI33_BIDI

ad[8] AB8/5 PCI33_BIDI

ad[9] AC8/5 PCI33_BIDI

ad[10] AD8/5 PCI33_BIDI

ad[11] AE8/5 PCI33_BIDI

ad[12] AF8/5 PCI33_BIDI

ad[13] AA7/5 PCI33_BIDI

ad[14] AB7/5 PCI33_BIDI

ad[15] AC7/5 PCI33_BIDI

ad[16] AD7/5 PCI33_BIDI

Table B-1. PCI Pins Assignments (Continued)

Signal Name Pin/Bank Buffer Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 164 PCI IP Core User’s Guide

ad[17] AE7/5 PCI33_BIDI

ad[18] AF7/5 PCI33_BIDI

ad[19] AC6/5 PCI33_BIDI

ad[20] AD6/5 PCI33_BIDI

ad[21] AE6/5 PCI33_BIDI

ad[22] AF6/5 PCI33_BIDI

ad[23] AC5/5 PCI33_BIDI

ad[24] AD5/5 PCI33_BIDI

ad[25] AE5/5 PCI33_BIDI

ad[26] AF5/5 PCI33_BIDI

ad[27] AE4/5 PCI33_BIDI

ad[28] AF4/5 PCI33_BIDI

ad[29] AE3/5 PCI33_BIDI

ad[30] AF3/5 PCI33_BIDI

ad[31] AE2/5 PCI33_BIDI

ad[32] AF24/4 PCI33_BIDI

ad[33] AF23/4 PCI33_BIDI

ad[34] AE23/4 PCI33_BIDI

ad[35] AF22/4 PCI33_BIDI

ad[36] AE22/4 PCI33_BIDI

ad[37] AF21/4 PCI33_BIDI

ad[38] AE21/4 PCI33_BIDI

ad[39] AF20/4 PCI33_BIDI

ad[40] AE20/4 PCI33_BIDI

ad[41] AF19/4 PCI33_BIDI

ad[42] AE19/4 PCI33_BIDI

ad[43] AF18/4 PCI33_BIDI

ad[44] AE18/4 PCI33_BIDI

ad[45] AD18/4 PCI33_BIDI

ad[46] AC18/4 PCI33_BIDI

ad[47] AB18/4 PCI33_BIDI

ad[48] AA18/4 PCI33_BIDI

ad[49] AF17/4 PCI33_BIDI

ad[50] AD17/4 PCI33_BIDI

ad[51] AC17/4 PCI33_BIDI

ad[52] AB17/4 PCI33_BIDI

ad[53] AA17/4 PCI33_BIDI

ad[54] AF16/4 PCI33_BIDI

ad[55] AE16/4 PCI33_BIDI

ad[56] AD16/4 PCI33_BIDI

ad[57] AC16/4 PCI33_BIDI

ad[58] AB16/4 PCI33_BIDI

ad[59] AA16/4 PCI33_BIDI

ad[60] Y16/4 PCI33_BIDI

Table B-2. PCI Pins Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 165 PCI IP Core User’s Guide

PCI Pin Assignments for Master/Target 33MHz 32-Bit Bus
The PCI Master/Target 33MHz 32-bit core is optimized for LFEC33E-5F672C. An example pin assignment, opti-
mized for best performance, is given in Table B-3. Refer to the readme file included with the core package for fur-
ther information.

ad[61] AD15/4 PCI33_BIDI

ad[62] AA15/4 PCI33_BIDI

ad[63] Y15/4 PCI33_BIDI

cben[0] AA10/5 PCI33_IN

cben[1] AC11/5 PCI33_IN

cben[2] AD11/5 PCI33_IN

cben[3] AF9/5 PCI33_IN

cben[4] AF12/5 PCI33_IN

cben[5] AF11/5 PCI33_IN

cben[6] AE11/5 PCI33_IN

cben[7] AA11/5 PCI33_IN

par64 AB11/5 PCI33_BIDI

par AF10/5 PCI33_BIDI

PCI Interface Controls

Framen AA12/5 PCI33_IN

irdyn AB12/5 PCI33_IN

trdyn AC12/5 PCI33_OUT

Stopn AE12/5 PCI33_OUT

Idsel AB6/5 PCI33_IN

devseln AD12/5 PCI33_OUT

perrn AE9/5 PCI33_OUT

serrn AE10/5 PCI33_OUT

ack64n AE13/5 PCI33_OUT

req64n AF13/5 PCI33_IN

PCI Interrupts

intan AA6/5 PCI33_OUT

Table B-3. PCI Pins Assignments

Signal Name Pin/Bank Buffer Type

PCI System Pins

clk W1/6 LVCMOS33_IN

rstn Y8/5 PCI33_IN

PCI Address and Data

ad[0] AB10/5 PCI33_BIDI

ad[1] AC10/5 PCI33_BIDI

ad[2] AD10/5 PCI33_BIDI

ad[3] AA9/5 PCI33_BIDI

ad[4] AB9/5 PCI33_BIDI

ad[5] AC9/5 PCI33_BIDI

ad[6] AD9/5 PCI33_BIDI

Table B-2. PCI Pins Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 166 PCI IP Core User’s Guide

ad[7] AA8/5 PCI33_BIDI

ad[8] AB8/5 PCI33_BIDI

ad[9] AC8/5 PCI33_BIDI

ad[10] AD8/5 PCI33_BIDI

ad[11] AE8/5 PCI33_BIDI

ad[12] AF8/5 PCI33_BIDI

ad[13] AA7/5 PCI33_BIDI

ad[14] AB7/5 PCI33_BIDI

ad[15] AC7/5 PCI33_BIDI

ad[16] AD7/5 PCI33_BIDI

ad[17] AE7/5 PCI33_BIDI

ad[18] AF7/5 PCI33_BIDI

ad[19] AC6/5 PCI33_BIDI

ad[20] AD6/5 PCI33_BIDI

ad[21] AE6/5 PCI33_BIDI

ad[22] AF6/5 PCI33_BIDI

ad[23] AC5/5 PCI33_BIDI

ad[24] AD5/5 PCI33_BIDI

ad[25] AE5/5 PCI33_BIDI

ad[26] AF5/5 PCI33_BIDI

ad[27] AE4/5 PCI33_BIDI

ad[28] AF4/5 PCI33_BIDI

ad[29] AE3/5 PCI33_BIDI

ad[30] AF3/5 PCI33_BIDI

ad[31] AE2/5 PCI33_BIDI

cben[0] AA10/5 PCI33_BIDI

cben[1] AC11/5 PCI33_BIDI

cben[2] AD11/5 PCI33_BIDI

cben[3] AF9/5 PCI33_BIDI

Par AF10/5 PCI33_BIDI

PCI Interface Controls

Framen AA12/5 PCI33_BIDI

irdyn AB12/5 PCI33_BIDI

trdyn AC12/5 PCI33_BIDI

stopn AE12/5 PCI33_BIDI

Idsel AB6/5 PCI33_IN

devseln AD12/5 PCI33_BIDI

perrn AE9/5 PCI33_BIDI

serrn AE10/5 PCI33_BIDI

PCI Interrupts

intan AA6/5 PCI33_OUT

PCI Bus Arbitration

gntn AF2/5 PCI33_IN

reqn AD4/5 PCI33_OUT

Table B-3. PCI Pins Assignments (Continued)

Signal Name Pin/Bank Buffer Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 167 PCI IP Core User’s Guide

PCI Pin Assignments for Target 33MHz 32-Bit Bus
The PCI Target 33MHz 32-bit core is optimized for LFEC33E-5F672C. An example pin assignment, optimized for
best performance, is given in Table B-4. Refer to the readme file included with the core package for further informa-
tion.

Table B-4. PCI Pins Assignments

Signal Name Pin/ Bank Buffer Type

PCI System Pins

clk W1/6 LVCMOS33_IN

rstn Y8/5 PCI33_IN

PCI Address and Data

ad[0] AB10/5 PCI33_BIDI

ad[1] AC10/5 PCI33_BIDI

ad[2] AD10/5 PCI33_BIDI

ad[3] AA9/5 PCI33_BIDI

ad[4] AB9/5 PCI33_BIDI

ad[5] AC9/5 PCI33_BIDI

ad[6] AD9/5 PCI33_BIDI

ad[7] AA8/5 PCI33_BIDI

ad[8] AB8/5 PCI33_BIDI

ad[9] AC8/5 PCI33_BIDI

ad[10] AD8/5 PCI33_BIDI

ad[11] AE8/5 PCI33_BIDI

ad[12] AF8/5 PCI33_BIDI

ad[13] AA7/5 PCI33_BIDI

ad[14] AB7/5 PCI33_BIDI

ad[15] AC7/5 PCI33_BIDI

ad[16] AD7/5 PCI33_BIDI

ad[17] AE7/5 PCI33_BIDI

ad[18] AF7/5 PCI33_BIDI

ad[19] AC6/5 PCI33_BIDI

ad[20] AD6/5 PCI33_BIDI

ad[21] AE6/5 PCI33_BIDI

ad[22] AF6/5 PCI33_BIDI

ad[23] AC5/5 PCI33_BIDI

ad[24] AD5/5 PCI33_BIDI

ad[25] AE5/5 PCI33_BIDI

ad[26] AF5/5 PCI33_BIDI

ad[27] AE4/5 PCI33_BIDI

ad[28] AF4/5 PCI33_BIDI

ad[29] AE3/5 PCI33_BIDI

ad[30] AF3/5 PCI33_BIDI

ad[31] AE2/5 PCI33_BIDI

cben[0] AA10/5 PCI33_BIDI

cben[1] AC11/5 PCI33_BIDI

cben[2] AD11/5 PCI33_BIDI

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 168 PCI IP Core User’s Guide

Pin Assignment Considerations for LatticeXP Devices
PCI Pin Assignments for Master/Target 33MHz 32-Bit Bus
The PCI Master/Target 33MHz 32-bit core is optimized for LFXP10-4F388C. An example pin assignment, opti-
mized for best performance, is given in Table B-5. Refer to the readme file included with the core package for fur-
ther information.

cben[3] AF9/5 PCI33_BIDI

Par AF10/5 PCI33_BIDI

PCI Interface Controls

Framen AA12/5 PCI33_BIDI

irdyn AB12/5 PCI33_BIDI

trdyn AC12/5 PCI33_BIDI

stopn AE12/5 PCI33_BIDI

Idsel AB6/5 PCI33_IN

devseln AD12/5 PCI33_BIDI

perrn AE9/5 PCI33_BIDI

serrn AE10/5 PCI33_BIDI

PCI Interrupts

intan AA6/5 PCI33_OUT

Table B-5. PCI Pins Assignments

Signal Name Pin/Bank BufferType

PCI System Pins

clk U1/6 LVCMOS33_IN

rstn AA4/5 PCI33_IN

PCI Address and Data

ad[0] AB18/4 PCI33_BIDI

ad[1] AA18/4 PCI33_BIDI

ad[2] Y18/4 PCI33_BIDI

ad[3] AB17/4 PCI33_BIDI

ad[4] Y14/4 PCI33_BIDI

ad[5] Y13/4 PCI33_BIDI

ad[6] AA17/4 PCI33_BIDI

ad[7] Y17/4 PCI33_BIDI

ad[8] AB16/4 PCI33_BIDI

ad[9] AA16/4 PCI33_BIDI

ad[10] AB15/4 PCI33_BIDI

ad[11] AA15/4 PCI33_BIDI

ad[12] W13/4 PCI33_BIDI

ad[13] W12/4 PCI33_BIDI

ad[14] AB14/4 PCI33_BIDI

ad[15] AA14/4 PCI33_BIDI

ad[16] AA13/4 PCI33_BIDI

ad[17] AA10/5 PCI33_BIDI

Table B-4. PCI Pins Assignments (Continued)

Signal Name Pin/ Bank Buffer Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 169 PCI IP Core User’s Guide

PCI Pin Assignments for Target 33MHz 32-Bit Bus
The PCI Target 33MHz 32-bit core is optimized for LFXP10-4F388C. An example pin assignment, optimized for
best performance, is given in Table 63. Refer to the readme file included with the core package for further informa-
tion.

ad[18] Y8/5 PCI33_BIDI

ad[19] AB8/5 PCI33_BIDI

ad[20] AA8/5 PCI33_BIDI

ad[21] Y7/5 PCI33_BIDI

ad[22] AB7/5 PCI33_BIDI

ad[23] AA7/5 PCI33_BIDI

ad[24] Y10/5 PCI33_BIDI

ad[25] Y9/5 PCI33_BIDI

ad[26] AB6/5 PCI33_BIDI

ad[27] AA6/5 PCI33_BIDI

ad[28] AB5/5 PCI33_BIDI

ad[29] AA5/5 PCI33_BIDI

ad[30] AB4/5 PCI33_BIDI

ad[31] W9/5 PCI33_BIDI

cben[0] AA19/4 PCI33_BIDI

cben[1] Y20/4 PCI33_BIDI

cben[2] W14/4 PCI33_BIDI

cben[3] W15/4 PCI33_BIDI

PCI Interface Controls

par W11/5 PCI33_BIDI

serrn AB9/5 PCI33_BIDI

perrn W10/5 PCI33_BIDI

devseln AB10/5 PCI33_BIDI

framen AB11/5 PCI33_BIDI

irdyn Y11/5 PCI33_BIDI

stopn AA11/5 PCI33_BIDI

trdyn Y12/5 PCI33_BIDI

gntn AA12/4 PCI33_BIDI

reqn AB12/4 PCI33_BIDI

PCI Interrupts

idsel AB19/4 PCI33_IN

intan W6/5 PCI33_OUT

Table B-6. PCI Pins Assignments

Signal Name Pin/Bank Buffer Type

PCI System Pins

clk U1/6 LVCMOS33_IN

rstn AA4/5 PCI33_IN

PCI Address and Data

ad[0] AB18/4 PCI33_BIDI

Table B-5. PCI Pins Assignments (Continued)

Signal Name Pin/Bank BufferType

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 170 PCI IP Core User’s Guide

ad[1] AA18/4 PCI33_BIDI

ad[2] Y18/4 PCI33_BIDI

ad[3] AB17/4 PCI33_BIDI

ad[4] Y14/4 PCI33_BIDI

ad[5] Y13/4 PCI33_BIDI

ad[6] AA17/4 PCI33_BIDI

ad[7] Y17/4 PCI33_BIDI

ad[8] AB16/4 PCI33_BIDI

ad[9] AA16/4 PCI33_BIDI

ad[10] AB15/4 PCI33_BIDI

ad[11] AA15/4 PCI33_BIDI

ad[12] W13/4 PCI33_BIDI

ad[13] W12/4 PCI33_BIDI

ad[14] AB14/4 PCI33_BIDI

ad[15] AA14/4 PCI33_BIDI

ad[16] AA13/4 PCI33_BIDI

ad[17] AA10/5 PCI33_BIDI

ad[18] Y8/5 PCI33_BIDI

ad[19] AB8/5 PCI33_BIDI

ad[20] AA8/5 PCI33_BIDI

ad[21] Y7/5 PCI33_BIDI

ad[22] AB7/5 PCI33_BIDI

ad[23] AA7/5 PCI33_BIDI

ad[24] Y10/5 PCI33_BIDI

ad[25] Y9/5 PCI33_BIDI

ad[26] AB6/5 PCI33_BIDI

ad[27] AA6/5 PCI33_BIDI

ad[28] AB5/5 PCI33_BIDI

ad[29] AA5/5 PCI33_BIDI

ad[30] AB4/5 PCI33_BIDI

ad[31] W9/5 PCI33_BIDI

cben[0] AA19/4 PCI33_BIDI

cben[1] Y20/4 PCI33_BIDI

cben[2] W14/4 PCI33_BIDI

cben[3] W15/4 PCI33_BIDI

par W11/5 PCI33_BIDI

PCI Interface Controls

serrn AB9/5 PCI33_BIDI

perrn W10/5 PCI33_BIDI

devseln AB10/5 PCI33_BIDI

framen AB11/5 PCI33_BIDI

irdyn Y11/5 PCI33_BIDI

stopn AA11/5 PCI33_BIDI

trdyn Y12/5 PCI33_BIDI

Table B-6. PCI Pins Assignments (Continued)

Signal Name Pin/Bank Buffer Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 171 PCI IP Core User’s Guide

PCI Pin Assignments for Master/Target 33MHz 64-Bit Bus
The PCI Master/Target 33MHz 64-bit core is optimized for LFXP20C-4F484C. An example pin assignment, opti-
mized for best performance, is given in Table B-7. Refer to the readme file included with the core package for fur-
ther information.

idsel AB19/4 PCI33_IN

PCI Interrupts

intan W6/5 PCI33_OUT

Table B-7. PCI Pin Assignments

Signal Name Pin/Bank Buffer Type

PCI System Pins

clk U2 / 6 LVCMOS33_IN

rstn Y5 / 5 PCI33_IN

PCI Address and Data

ad(0) W13 / 4 PCI33_BIDI

ad(1) Y13 / 4 PCI33_BIDI

ad(2) AA13 / 4 PCI33_BIDI

ad(3) AB13 / 4 PCI33_BIDI

ad(4) V12 / 4 PCI33_BIDI

ad(5) W12 / 4 PCI33_BIDI

ad(6) Y12 / 4 PCI33_BIDI

ad(7) AA12 / 4 PCI33_BIDI

ad(8) V11 / 5 PCI33_BIDI

ad(9) W11 / 5 PCI33_BIDI

ad(10) Y11 / 5 PCI33_BIDI

ad(11) AA11 / 5 PCI33_BIDI

ad(12) AB11 / 5 PCI33_BIDI

ad(13) V10 / 5 PCI33_BIDI

ad(14) W10 / 5 PCI33_BIDI

ad(15) Y10 / 5 PCI33_BIDI

ad(16) W8 / 5 PCI33_BIDI

ad(17) Y8 / 5 PCI33_BIDI

ad(18) AA8 / 5 PCI33_BIDI

ad(19) AB8 / 5 PCI33_BIDI

ad(20) U7 / 5 PCI33_BIDI

ad(21) V7 / 5 PCI33_BIDI

ad(22) W7 / 5 PCI33_BIDI

ad(23) Y7 / 5 PCI33_BIDI

ad(24) Y6 / 5 PCI33_BIDI

ad(25) AA6 / 5 PCI33_BIDI

ad(26) AB6 / 5 PCI33_BIDI

ad(27) AA5 / 5 PCI33_BIDI

Table B-6. PCI Pins Assignments (Continued)

Signal Name Pin/Bank Buffer Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 172 PCI IP Core User’s Guide

ad(28) AB5 / 5 PCI33_BIDI

ad(29) AA4 / 5 PCI33_BIDI

ad(30) AB4 / 5 PCI33_BIDI

ad(31) AA3 / 5 PCI33_BIDI

ad(32) AA21 / 4 PCI33_BIDI

ad(33) AB20 / 4 PCI33_BIDI

ad(34) AA20 / 4 PCI33_BIDI

ad(35) Y20 / 4 PCI33_BIDI

ad(36) AB19 / 4 PCI33_BIDI

ad(37) AA19 / 4 PCI33_BIDI

ad(38) Y19 / 4 PCI33_BIDI

ad(39) W19 / 4 PCI33_BIDI

ad(40) AB18 / 4 PCI33_BIDI

ad(41) AA18 / 4 PCI33_BIDI

ad(42) Y18 / 4 PCI33_BIDI

ad(43) W18 / 4 PCI33_BIDI

ad(44) V18 / 4 PCI33_BIDI

ad(45) U18 / 4 PCI33_BIDI

ad(46) AB17 / 4 PCI33_BIDI

ad(47) AA17 / 4 PCI33_BIDI

ad(48) Y17 / 4 PCI33_BIDI

ad(49) W17 / 4 PCI33_BIDI

ad(50) V17 / 4 PCI33_BIDI

ad(51) U17 / 4 PCI33_BIDI

ad(52) AB16 / 4 PCI33_BIDI

ad(53) AA16 / 4 PCI33_BIDI

ad(54) Y16 / 4 PCI33_BIDI

ad(55) W16 / 4 PCI33_BIDI

ad(56) V16 / 4 PCI33_BIDI

ad(57) U16 / 4 PCI33_BIDI

ad(58) AB15 / 4 PCI33_BIDI

ad(59) AA15 / 4 PCI33_BIDI

ad(60) Y15 / 4 PCI33_BIDI

ad(61) W15 / 4 PCI33_BIDI

ad(62) V15 / 4 PCI33_BIDI

ad(63) U15 / 4 PCI33_BIDI

cben(0) AB12 / 5 PCI33_BIDI

cben(1) AA10 / 5 PCI33_BIDI

cben(2) V8 / 5 PCI33_BIDI

cben(3) AB7 / 5 PCI33_BIDI

cben(4) AA14 / 4 PCI33_BIDI

Table B-7. PCI Pin Assignments (Continued)

Signal Name Pin/Bank Buffer Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 173 PCI IP Core User’s Guide

Pin Assignment Considerations for MachXO Devices
PCI Pin Assignments for Target 33MHz 32-Bit Bus
The PCI Target 33MHz 32-bit core is optimized for LCMXO1200C-4FT256C. An example pin assignment, opti-
mized for best performance, is given in Table B-8. Refer to the readme file included with the core package for fur-
ther information.

cben(5) Y14 / 4 PCI33_BIDI

cben(6) W14 / 4 PCI33_BIDI

cben(7) V14 / 4 PCI33_BIDI

par AB10 / 5 PCI33_BIDI

par64 AB14 / 4 PCI33_BIDI

PCI Interface Controls

Framen U8 / 5 PCI33_BIDI

irdyn AB9 / 5 PCI33_BIDI

trdyn AA9 / 5 PCI33_BIDI

stopn W9 / 5 PCI33_BIDI

idsel AA7 / 5 PCI33_IN

devseln Y9 / 5 PCI33_BIDI

perrn V9 / 5 PCI33_BIDI

serrn U9 / 5 PCI33_BIDI

ack64n V13 / 4 PCI33_BIDI

req64n U14 / 4 PCI33_BIDI

PCI Interrupts

intan W6 / 5 PCI33_OUT

Table B-8. PCI Pin Assignments

Signal Name Pin/Bank Buffer Type

PCI System Pins

clk M5 / 6 LVCMOS33_IN

rstn G2 / 7 LVCMOS33_IN

PCI Address and Data

ad(0) B9 / 1 PCI33_BIDI

ad(1) D10 / 1 PCI33_BIDI

ad(2) D9 / 1 PCI33_BIDI

ad(3) C10 / 1 PCI33_BIDI

ad(4) C9 / 1 PCI33_BIDI

ad(5) A9 / 1 PCI33_BIDI

ad(6) A10 / 1 PCI33_BIDI

ad(7) E9 / 1 PCI33_BIDI

ad(8) D7 / 0 PCI33_BIDI

ad(9) D8 / 0 PCI33_BIDI

ad(10) C8 / 0 PCI33_BIDI

ad(11) B8 / 0 PCI33_BIDI

Table B-7. PCI Pin Assignments (Continued)

Signal Name Pin/Bank Buffer Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 174 PCI IP Core User’s Guide

ad(12) A7 / 0 PCI33_BIDI

ad(13) A6 / 0 PCI33_BIDI

ad(14) B7 / 0 PCI33_BIDI

ad(15) B6 / 0 PCI33_BIDI

ad(16) C6 / 0 PCI33_BIDI

ad(17) A4 / 0 PCI33_BIDI

ad(18) A5 / 0 PCI33_BIDI

ad(19) E6 / 0 PCI33_BIDI

ad(20) E7 / 0 PCI33_BIDI

ad(21) C5 / 0 PCI33_BIDI

ad(22) C4 / 0 PCI33_BIDI

ad(23) B5 / 0 PCI33_BIDI

ad(24) D5 / 0 PCI33_BIDI

ad(25) D6 / 0 PCI33_BIDI

ad(26) A3 / 0 PCI33_BIDI

ad(27) A2 / 0 PCI33_BIDI

ad(28) D4 / 0 PCI33_BIDI

ad(29) D3 / 0 PCI33_BIDI

ad(30) B3 / 0 PCI33_BIDI

ad(31) B2 / 0 PCI33_BIDI

cben(0) A11 / 1 PCI33_BIDI

cben(1) E8 / 1 PCI33_BIDI

cben(2) C7 / 0 PCI33_BIDI

cben(3) B4 / 0 PCI33_BIDI

par D11 / 1 PCI33_BIDI

PCI Interface Controls

Framen B11 / 1 PCI33_BIDI

irdyn B12 / 1 PCI33_BIDI

trdyn C12 / 1 PCI33_BIDI

stopn C11 / 1 PCI33_BIDI

idsel A13 / 1 PCI33_IN

devseln A12 / 1 PCI33_BIDI

perrn E10 / 1 PCI33_BIDI

serrn D12 / 1 PCI33_BIDI

PCI Interrupts

intan A14 / 1 PCI33_OUT

Table B-8. PCI Pin Assignments (Continued)

Signal Name Pin/Bank Buffer Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 175 PCI IP Core User’s Guide

PCI Pin Assignments for Target 66MHz 32-Bit Bus
The PCI Target 66MHz 32-bit core is optimized for LCMXO1200C-4FT256C. An example pin assignment, opti-
mized for best performance, is given in Table B-9. Refer to the readme file included with the core package for fur-
ther information.

Table B-9. PCI Pin Assignments

Signal Name Pin/Bank Buffer Type

PCI System Pins

clk M5 / 6 LVCMOS33_IN

rstn G2 / 7 LVCMOS33_IN

PCI Address and Data

ad(0) A3 / 0 PCI33_BIDI

ad(1) D6 / 0 PCI33_BIDI

ad(2) D5 / 0 PCI33_BIDI

ad(3) B4 / 0 PCI33_BIDI

ad(4) B5 / 0 PCI33_BIDI

ad(5) C4 / 0 PCI33_BIDI

ad(6) C5 / 0 PCI33_BIDI

ad(7) E7 / 0 PCI33_BIDI

ad(8) E6 / 0 PCI33_BIDI

ad(9) A5 / 0 PCI33_BIDI

ad(10) A4 / 0 PCI33_BIDI

ad(11) C6 / 0 PCI33_BIDI

ad(12) C7 / 0 PCI33_BIDI

ad(13) B6 / 0 PCI33_BIDI

ad(14) B7 / 0 PCI33_BIDI

ad(15) A6 / 0 PCI33_BIDI

ad(16) E9 / 1 PCI33_BIDI

ad(17) E8 / 1 PCI33_BIDI

ad(18) A9 / 1 PCI33_BIDI

ad(19) A10 / 1 PCI33_BIDI

ad(20) C10 / 1 PCI33_BIDI

ad(21) C9 / 1 PCI33_BIDI

ad(22) D10 / 1 PCI33_BIDI

ad(23) D9 / 1 PCI33_BIDI

ad(24) B10 / 1 PCI33_BIDI

ad(25) B9 / 1 PCI33_BIDI

ad(26) A12 / 1 PCI33_BIDI

ad(27) A11 / 1 PCI33_BIDI

ad(28) B12 / 1 PCI33_BIDI

ad(29) B11 / 1 PCI33_BIDI

ad(30) C12 / 1 PCI33_BIDI

ad(31) C11 / 1 PCI33_BIDI

cben(0) A14 / 1 PCI33_BIDI

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 176 PCI IP Core User’s Guide

PCI Pin Assignments for Master/Target 33MHz 32-Bit Bus
The PCI Master/Target 33MHz 32-bit core is optimized for LCMXO2280C-5FT324C. An example pin assignment,
optimized for best performance, is given in Table B-10. Refer to the readme file included with the core package for
further information.

cben(1) E10 / 1 PCI33_BIDI

cben(2) D12 / 1 PCI33_BIDI

cben(3) B13 / 1 PCI33_BIDI

par D11 / 1 PCI33_BIDI

PCI Interface Controls

Framen D7 / 0 PCI33_BIDI

irdyn C8 / 0 PCI33_BIDI

trdyn A7 / 0 PCI33_BIDI

stopn B8 / 0 PCI33_BIDI

idsel C14 / 1 PCI33_IN

devseln D8 / 0 PCI33_BIDI

perrn B14 / 1 PCI33_BIDI

serrn E11 / 1 PCI33_BIDI

PCI Interrupts

intan A15 / 1 PCI33_OUT

Table B-10. PCI Pin Assignments

Signal Name Pin/Bank Buffer Type

PCI System Pins

clk R3 / 6 LVCMOS33_IN

PCI Address and Data

ad(0) B5 / 0 PCI33_BIDI

ad(1) C6 / 0 PCI33_BIDI

ad(2) A5 / 0 PCI33_BIDI

ad(3) E7 / 0 PCI33_BIDI

ad(4) D7 / 0 PCI33_BIDI

ad(5) E8 / 0 PCI33_BIDI

ad(6) C7 / 0 PCI33_BIDI

ad(7) F8 / 0 PCI33_BIDI

ad(8) D8 / 0 PCI33_BIDI

ad(9) B6 / 0 PCI33_BIDI

ad(10) A6 / 0 PCI33_BIDI

ad(11) B7 / 0 PCI33_BIDI

ad(12) A7 / 0 PCI33_BIDI

ad(13) C8 / 0 PCI33_BIDI

ad(14) B8 / 0 PCI33_BIDI

ad(15) A8 / 0 PCI33_BIDI

ad(16) D9 / 1 PCI33_BIDI

Table B-9. PCI Pin Assignments (Continued)

Signal Name Pin/Bank Buffer Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 177 PCI IP Core User’s Guide

ad(17) E9 / 1 PCI33_BIDI

ad(18) E10 / 1 PCI33_BIDI

ad(19) C10 / 1 PCI33_BIDI

ad(20) B11 / 1 PCI33_BIDI

ad(21) A11 / 1 PCI33_BIDI

ad(22) F10 / 1 PCI33_BIDI

ad(23) D10 / 1 PCI33_BIDI

ad(24) C11 / 1 PCI33_BIDI

ad(25) A12 / 1 PCI33_BIDI

ad(26) E11 / 1 PCI33_BIDI

ad(27) D11 / 1 PCI33_BIDI

ad(28) C12 / 1 PCI33_BIDI

ad(29) B12 / 1 PCI33_BIDI

ad(30) B13 / 1 PCI33_BIDI

ad(31) A13 / 1 PCI33_BIDI

cben(0) D12 / 1 PCI33_BIDI

cben(1) A15 / 1 PCI33_BIDI

cben(2) B14 / 1 PCI33_BIDI

cben(3) B16 / 1 PCI33_BIDI

par A14 / 1 PCI33_BIDI

PCI Interface Controls

Framen B10 / 0 PCI33_BIDI

irdyn A9 / 0 PCI33_BIDI

trdyn B9 / 0 PCI33_BIDI

stopn C9 / 0 PCI33_BIDI

idsel C14 / 1 PCI33_IN

devseln A10 / 0 PCI33_BIDI

perrn E12 / 1 PCI33_BIDI

serrn B15 / 1 PCI33_BIDI

PCI Interrupts

intan F12 / 1 PCI33_OUT

PCI Bus Arbitration

gntn F11 / 1 PCI33_IN

reqn C13 / 1 PCI33_OUT

Table B-10. PCI Pin Assignments (Continued)

Signal Name Pin/Bank Buffer Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 178 PCI IP Core User’s Guide

PCI Assignment Considerations for LatticeSC Devices
PCI Pin Assignments for Master/Target 33 MHz 32-bit Bus
The PCI Master/Target 33 MHz 32-bit core is optimized for LFSC3GA25E-5F900C. An example pin assignment,
optimized for best performance, is given in Table B-11. Refer to the readme file included with the core package for
further information.

Table B-11. PCI Pin Assignments

Signal Name Pin/Bank I/O Type

PCI System Pins

 clk AH1/5 PCI33_IN

 rstn AJ11/4 PCI33_IN

PCI Address and Data

 ad[0] AJ8/5 PCI33_BIDI

 ad[1] AJ7/5 PCI33_BIDI

 ad[2] AJ6/5 PCI33_BIDI

 ad[3] AJ5/5 PCI33_BIDI

 ad[4] AK5/5 PCI33_BIDI

 ad[5] AK4/5 PCI33_BIDI

 ad[6] AE13/5 PCI33_BIDI

 ad[7] AE12/5 PCI33_BIDI

 ad[8] AH8/5 PCI33_BIDI

 ad[9] AH7/5 PCI33_BIDI

 ad[10] AF10/5 PCI33_BIDI

 ad[11] AE11/5 PCI33_BIDI

 ad[12] AJ4/5 PCI33_BIDI

 ad[13] AK3/5 PCI33_BIDI

 ad[14] AE10/5 PCI33_BIDI

 ad[15] AF9/5 PCI33_BIDI

 ad[16] AJ3/5 PCI33_BIDI

 ad[17] AH3/5 PCI33_BIDI

 ad[18] AG8/5 PCI33_BIDI

 ad[19] AF8/5 PCI33_BIDI

 ad[20] AG5/5 PCI33_BIDI

 ad[21] AH4/5 PCI33_BIDI

 ad[22] AF6/5 PCI33_BIDI

 ad[23] AF7/5 PCI33_BIDI

 ad[24] AD8/5 PCI33_BIDI

 ad[25] AD7/5 PCI33_BIDI

 ad[26] AK2/5 PCI33_BIDI

 ad[27] AJ2/5 PCI33_BIDI

 ad[28] AD6/5 PCI33_BIDI

 ad[29] AH2/5 PCI33_BIDI

 ad[30] AG3/5 PCI33_BIDI

 ad[31] AE5/5 PCI33_BIDI

 cben[0] AH10/5 PCI33_BIDI

 cben[1] AH11/5 PCI33_BIDI

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 179 PCI IP Core User’s Guide

PCI Pin Assignments for Master/Target 33 MHz 64-bit Bus
The PCI Master/Target 33 MHz 64-bit core is optimized for LFSC3GA25E-5F900C. An example pin assignment,
optimized for best performance, is given in Table B-12. Refer to the readme file included with the core package for
further information.

 cben[2] AF13/5 PCI33_BIDI

 cben[3] AE14/5 PCI33_BIDI

 par AG14/5 PCI33_BIDI

PCI Interface Controls

 framen AF15/5 PCI33_BIDI

 irdyn AK7/5 PCI33_BIDI

 trdyn AK6/5 PCI33_BIDI

 stopn AH13/5 PCI33_BIDI

 idsel AG13/5 PCI33_IN

 devseln AK8/5 PCI33_BIDI

 perrn AK9/5 PCI33_BIDI

 serrn AH14/5 PCI33_BIDI

PCI Interrupts

 intan AJ12/5 PCI33_OUT

PCI Bus Arbitration

 gntn AF4/5 PCI33_IN

 reqn AJ1/5 PCI33_OUT

Table B-12. PCI Pin Assignments

Signal Name Pin/Bank I/O Type

PCI System Pins

 clk AH1/5 PCI33_IN

 rstn AJ11/5 PCI33_IN

PCI Address and Data

 ad[0] AJ8/5 PCI33_BIDI

 ad[1] AJ7/5 PCI33_BIDI

 ad[2] AJ6/5 PCI33_BIDI

 ad[3] AJ5/5 PCI33_BIDI

 ad[4] AK5/5 PCI33_BIDI

 ad[5] AK4/5 PCI33_BIDI

 ad[6] AE13/5 PCI33_BIDI

 ad[7] AE12/5 PCI33_BIDI

 ad[8] AH8/5 PCI33_BIDI

 ad[9] AH7/5 PCI33_BIDI

 ad[10] AF10/5 PCI33_BIDI

 ad[11] AE11/5 PCI33_BIDI

 ad[12] AJ4/5 PCI33_BIDI

 ad[13] AK3/5 PCI33_BIDI

Table B-11. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 180 PCI IP Core User’s Guide

 ad[14] AE10/5 PCI33_BIDI

 ad[15] AF9/5 PCI33_BIDI

 ad[16] AJ3/5 PCI33_BIDI

 ad[17] AH3/5 PCI33_BIDI

 ad[18] AG8/5 PCI33_BIDI

 ad[19] AF8/5 PCI33_BIDI

 ad[20] AG5/5 PCI33_BIDI

 ad[21] AH4/5 PCI33_BIDI

 ad[22] AF6/5 PCI33_BIDI

 ad[23] AF7/5 PCI33_BIDI

 ad[24] AD8/5 PCI33_BIDI

 ad[25] AD7/5 PCI33_BIDI

 ad[26] AK2/5 PCI33_BIDI

 ad[27] AJ2/5 PCI33_BIDI

 ad[28] AD6/5 PCI33_BIDI

 ad[29] AH2/5 PCI33_BIDI

 ad[30] AG3/5 PCI33_BIDI

 ad[31] AE5/5 PCI33_BIDI

 ad[32] AK23/4 PCI33_BIDI

 ad[33] AK22/4 PCI33_BIDI

 ad[34] AF19/4 PCI33_BIDI

 ad[35] AG19/4 PCI33_BIDI

 ad[36] AJ21/4 PCI33_BIDI

 ad[37] AJ20/4 PCI33_BIDI

 ad[38] AG18/4 PCI33_BIDI

 ad[39] AF18/4 PCI33_BIDI

 ad[40] AK20/4 PCI33_BIDI

 ad[41] AJ19/4 PCI33_BIDI

 ad[42] AJ18/4 PCI33_BIDI

 ad[43] AG17/4 PCI33_BIDI

 ad[44] AF17/4 PCI33_BIDI

 ad[45] AH18/4 PCI33_BIDI

 ad[46] AH17/4 PCI33_BIDI

 ad[47] AK19/4 PCI33_BIDI

 ad[48] AK18/4 PCI33_BIDI

 ad[49] AG16/4 PCI33_BIDI

 ad[50] AH16/4 PCI33_BIDI

 ad[51] AF16/4 PCI33_BIDI

 ad[52] AE16/4 PCI33_BIDI

 ad[53] AJ17/4 PCI33_BIDI

 ad[54] AJ16/4 PCI33_BIDI

Table B-12. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 181 PCI IP Core User’s Guide

 ad[55] AK17/4 PCI33_BIDI

 ad[56] AK16/4 PCI33_BIDI

 ad[57] AK15/5 PCI33_BIDI

 ad[58] AK14/5 PCI33_BIDI

 ad[59] AJ15/5 PCI33_BIDI

 ad[60] AJ14/5 PCI33_BIDI

 ad[61] AK13/5 PCI33_BIDI

 ad[62] AK12/5 PCI33_BIDI

 ad[63] AE15/5 PCI33_BIDI

 cben[0] AH10/5 PCI33_BIDI

 cben[1] AH11/5 PCI33_BIDI

 cben[2] AF13/5 PCI33_BIDI

 cben[3] AE14/5 PCI33_BIDI

 cben[4] AG15/5 PCI33_BIDI

 cben[5] AH12/5 PCI33_BIDI

 cben[6] AJ13/5 PCI33_BIDI

 cben[7] AD15/5 PCI33_BIDI

 par AG14/5 PCI33_BIDI

 par64 AK10/5 PCI33_BIDI

PCI Interface Controls

 framen AF15/5 PCI33_BIDI

 irdyn AK7/5 PCI33_BIDI

 trdyn AK6/5 PCI33_BIDI

 stopn AH13/5 PCI33_BIDI

 idsel AG13/5 PCI33_IN

 devseln AK8/5 PCI33_BIDI

 perrn AK9/5 PCI33_BIDI

 serrn AH14/5 PCI33_BIDI

 ack64n AH15/5 PCI33_BIDI

 req64n K11/5 PCI33_BIDI

PCI Interrupts

 intan AJ12/5 PCI33_OUT

PCI Bus Arbitration

 gntn AF4/5 PCI33_IN

 reqn AJ1/5 PCI33_OUT

Table B-12. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 182 PCI IP Core User’s Guide

PCI Pin Assignments for Target 33 MHz 32-bit Bus
The PCI Target 33 MHz 32-bit core is optimized for LFSC3GA25E-5F900C. An example pin assignment, optimized
for best performance, is given in Table B-13. Refer to the readme file included with the core package for further
information.

Table B-13. PCI Pin Assignments

Signal Name Pin/Bank I/O Type

PCI System Pins

clk AH1/5 PCI33_IN

rstn AJ11/4 PCI33_IN

PCI Address and Data

 ad[0] AJ8/5 PCI33_BIDI

 ad[1] AJ7/5 PCI33_BIDI

 ad[2] AJ6/5 PCI33_BIDI

 ad[3] AJ5/5 PCI33_BIDI

 ad[4] AK5/5 PCI33_BIDI

 ad[5] AK4/5 PCI33_BIDI

 ad[6] AE13/5 PCI33_BIDI

 ad[7] AE12/5 PCI33_BIDI

 ad[8] AH8/5 PCI33_BIDI

 ad[9] AH7/5 PCI33_BIDI

 ad[10] AF10/5 PCI33_BIDI

 ad[11] AE11/5 PCI33_BIDI

 ad[12] AJ4/5 PCI33_BIDI

 ad[13] AK3/5 PCI33_BIDI

 ad[14] AE10/5 PCI33_BIDI

 ad[15] AF9/5 PCI33_BIDI

 ad[16] AJ3/5 PCI33_BIDI

 ad[17] AH3/5 PCI33_BIDI

 ad[18] AG8/5 PCI33_BIDI

 ad[19] AF8/5 PCI33_BIDI

 ad[20] AG5/5 PCI33_BIDI

 ad[21] AH4/5 PCI33_BIDI

 ad[22] AF6/5 PCI33_BIDI

 ad[23] AF7/5 PCI33_BIDI

 ad[24] AD8/5 PCI33_BIDI

 ad[25] AD7/5 PCI33_BIDI

 ad[26] AK2/5 PCI33_BIDI

 ad[27] AJ2/5 PCI33_BIDI

 ad[28] AD6/5 PCI33_BIDI

 ad[29] AH2/5 PCI33_BIDI

 ad[30] AG3/5 PCI33_BIDI

 ad[31] AE5/5 PCI33_BIDI

 cben[0] AH10/5 PCI33_IN

 cben[1] AH11/5 PCI33_IN

 cben[2] AF13/5 PCI33_IN

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 183 PCI IP Core User’s Guide

PCI Pin Assignments for Target 33 MHz 64-bit Bus
The PCI Target 33 MHz 64-bit core is optimized for LFSC3GA25E-5F900C. An example pin assignment, optimized
for best performance, is given in Table B-14. Refer to the readme file included with the core package for further
information.

 cben[3] AE14/5 PCI33_IN

par AG14/5 PCI33_BIDI

PCI Interface Controls

framen AF15/5 PCI33_IN

irdyn AK7/5 PCI33_IN

trdyn AK6/5 PCI33_OUT

stopn AH13/5 PCI33_OUT

idsel AG13/5 PCI33_IN

devseln AK8/5 PCI33_OUT

perrn AK9/5 PCI33_OUT

serrn AH14/5 PCI33_OUT

PCI Interrupts

intan AJ12/5 PCI33_OUT

Table B-14. PCI Pin Assignments

Signal Name Pin/Bank I/O Type

PCI System Pins

clk AH1/5 PCI33_IN

rstn AJ11/5 PCI33_IN

PCI Address and Data

ad[0] AJ8/5 PCI33_BIDI

ad[1] AJ7/5 PCI33_BIDI

ad[2] AJ6/5 PCI33_BIDI

ad[3] AJ5/5 PCI33_BIDI

ad[4] AK5/5 PCI33_BIDI

ad[5] AK4/5 PCI33_BIDI

ad[6] AE13/5 PCI33_BIDI

ad[7] AE12/5 PCI33_BIDI

ad[8] AH8/5 PCI33_BIDI

ad[9] AH7/5 PCI33_BIDI

ad[10] AF10/5 PCI33_BIDI

ad[11] AE11/5 PCI33_BIDI

ad[12] AJ4/5 PCI33_BIDI

ad[13] AK3/5 PCI33_BIDI

ad[14] AE10/5 PCI33_BIDI

ad[15] AF9/5 PCI33_BIDI

ad[16] AJ3/5 PCI33_BIDI

ad[17] AH3/5 PCI33_BIDI

ad[18] AG8/5 PCI33_BIDI

ad[19] AF8/5 PCI33_BIDI

Table B-13. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 184 PCI IP Core User’s Guide

ad[20] AG5/5 PCI33_BIDI

ad[21] AH4/5 PCI33_BIDI

ad[22] AF6/5 PCI33_BIDI

ad[23] AF7/5 PCI33_BIDI

ad[24] AD8/5 PCI33_BIDI

ad[25] AD7/5 PCI33_BIDI

ad[26] AK2/5 PCI33_BIDI

ad[27] AJ2/5 PCI33_BIDI

ad[28] AD6/5 PCI33_BIDI

ad[29] AH2/5 PCI33_BIDI

ad[30] AG3/5 PCI33_BIDI

ad[31] AE5/5 PCI33_BIDI

ad[32] AK23/4 PCI33_BIDI

ad[33] AK22/4 PCI33_BIDI

ad[34] AF19/4 PCI33_BIDI

ad[35] AG19/4 PCI33_BIDI

ad[36] AJ21/4 PCI33_BIDI

ad[37] AJ20/4 PCI33_BIDI

ad[38] AG18/4 PCI33_BIDI

ad[39] AF18/4 PCI33_BIDI

ad[40] AK20/4 PCI33_BIDI

ad[41] AJ19/4 PCI33_BIDI

ad[42] AJ18/4 PCI33_BIDI

ad[43] AG17/4 PCI33_BIDI

ad[44] AF17/4 PCI33_BIDI

ad[45] AH18/4 PCI33_BIDI

ad[46] AH17/4 PCI33_BIDI

ad[47] AK19/4 PCI33_BIDI

ad[48] AK18/4 PCI33_BIDI

ad[49] AG16/4 PCI33_BIDI

ad[50] AH16/4 PCI33_BIDI

ad[51] AF16/4 PCI33_BIDI

ad[52] AE16/4 PCI33_BIDI

ad[53] AJ17/4 PCI33_BIDI

ad[54] AJ16/4 PCI33_BIDI

ad[55] AK17/4 PCI33_BIDI

ad[56] AK16/4 PCI33_BIDI

ad[57] AK15/5 PCI33_BIDI

ad[58] AK14/5 PCI33_BIDI

ad[59] AJ15/5 PCI33_BIDI

ad[60] AJ14/5 PCI33_BIDI

ad[61] AK13/5 PCI33_BIDI

ad[62] AK12/5 PCI33_BIDI

ad[63] AE15/5 PCI33_BIDI

Table B-14. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 185 PCI IP Core User’s Guide

PCI Pin Assignments for Master/Target 66 MHz 32-bit Bus
The PCI Master/Target 66 MHz 32-bit core is optimized for LFSC3GA25E-5F900C. An example pin assignment,
optimized for best performance, is given in Table B-15. Refer to the readme file included with the core package for
further information.

cben[0] AH10/5 PCI33_IN

cben[1] AH11/5 PCI33_IN

cben[2] AF13/5 PCI33_IN

cben[3] AE14/5 PCI33_IN

cben[4] AG15/5 PCI33_IN

cben[5] AH12/5 PCI33_IN

cben[6] AJ13/5 PCI33_IN

cben[7] AD15/5 PCI33_IN

par AG14/5 PCI33_BIDI

par64 AK10/5 PCI33_BIDI

PCI Interface Controls

framen AF15/5 PCI33_IN

irdyn AK7/5 PCI33_IN

trdyn AK6/5 PCI33_OUT

stopn AH13 PCI33_OUT

idsel AG13/5 PCI33_IN

devseln AK8/5 PCI33_OUT

perrn AK9/5 PCI33_OUT

serrn AH14/5 PCI33_OUT

ack64n AH15/5 PCI33_OUT

req64n K11/5 PCI33_IN

PCI Interrupts

intan AJ12/5 PCI33_OUT

Table B-15. PCI Pin Assignments

Signal Name Pin/Bank I/O Type

PCI System Pins

clk AH1/5 PCI33_IN

rstn AJ11/5 PCI33_IN

PCI Address and Data

ad[0] AJ8/5 PCI33_BIDI

ad[1] AJ7/5 PCI33_BIDI

ad[2] AJ6/5 PCI33_BIDI

ad[3] AJ5/5 PCI33_BIDI

ad[4] AK5/5 PCI33_BIDI

ad[5] AK4/5 PCI33_BIDI

ad[6] AE13/5 PCI33_BIDI

ad[7] AE12/5 PCI33_BIDI

ad[8] AH8/5 PCI33_BIDI

ad[9] AH7/5 PCI33_BIDI

Table B-14. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 186 PCI IP Core User’s Guide

ad[10] AF10/5 PCI33_BIDI

ad[11] AE11/5 PCI33_BIDI

ad[12] AJ4/5 PCI33_BIDI

ad[13] AK3/5 PCI33_BIDI

ad[14] AE10/5 PCI33_BIDI

ad[15] AF9/5 PCI33_BIDI

ad[16] AJ3/5 PCI33_BIDI

ad[17] AH3/5 PCI33_BIDI

ad[18] AG8/5 PCI33_BIDI

ad[19] AF8/5 PCI33_BIDI

ad[20] AG5/5 PCI33_BIDI

ad[21] AH4/5 PCI33_BIDI

ad[22] AF6/5 PCI33_BIDI

ad[23] AF7/5 PCI33_BIDI

ad[24] AD8/5 PCI33_BIDI

ad[25] AD7/5 PCI33_BIDI

ad[26] AK2/5 PCI33_BIDI

ad[27] AJ2/5 PCI33_BIDI

ad[28] AD6/5 PCI33_BIDI

ad[29] AH2/5 PCI33_BIDI

ad[30] AG3/5 PCI33_BIDI

ad[31] AE5/5 PCI33_BIDI

cben[0] AH10/5 PCI33_BIDI

cben[1] AH11/5 PCI33_BIDI

cben[2] AF13/5 PCI33_BIDI

cben[3] AE14/5 PCI33_BIDI

par AG14/5 PCI33_BIDI

PCI Interface Controls

framen AF15/5 PCI33_BIDI

irdyn AK7/5 PCI33_BIDI

trdyn AK6/5 PCI33_BIDI

stopn AH13/5 PCI33_BIDI

idsel AG13/5 PCI33_IN

devseln AK8/5 PCI33_BIDI

perrn AK9/5 PCI33_BIDI

serrn AH14/5 PCI33_BIDI

PCI Interrupts

intan AJ12/5 PCI33_OUT

PCI Bus Arbitration

reqn AJ1/5 PCI33_IN

gntn AF4/5 PCI33_OUT

Table B-15. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 187 PCI IP Core User’s Guide

PCI Pin Assignments for Master/Target 66 MHz 64-bit Bus
The PCI Master/Target 66 MHz 64-bit core is optimized for LFSC3GA25E-5F900C. An example pin assignment,
optimized for best performance, is given in Table B-16. Refer to the readme file included with the core package for
further information.

Table B-16. PCI Pin Assignments

Signal Name Pin/Bank I/O Type

PCI System Pins

clk AH1/5 PCI33_IN

rstn AJ11/5 PCI33_IN

PCI Address and Data

ad[0] AJ8/5 PCI33_BIDI

ad[1] AJ7/5 PCI33_BIDI

ad[2] AJ6/5 PCI33_BIDI

ad[3] AJ5/5 PCI33_BIDI

ad[4] AK5/5 PCI33_BIDI

ad[5] AK4/5 PCI33_BIDI

ad[6] AE13/5 PCI33_BIDI

ad[7] AE12/5 PCI33_BIDI

ad[8] AH8/5 PCI33_BIDI

ad[9] AH7/5 PCI33_BIDI

ad[10] AF10/5 PCI33_BIDI

ad[11] AE11/5 PCI33_BIDI

ad[12] AJ4/5 PCI33_BIDI

ad[13] AK3/5 PCI33_BIDI

ad[14] AE10/5 PCI33_BIDI

ad[15] AF9/5 PCI33_BIDI

ad[16] AJ3/5 PCI33_BIDI

ad[17] AH3/5 PCI33_BIDI

ad[18] AG8/5 PCI33_BIDI

ad[19] AF8/5 PCI33_BIDI

ad[20] AG5/5 PCI33_BIDI

ad[21] AH4/5 PCI33_BIDI

ad[22] AF6/5 PCI33_BIDI

ad[23] AF7/5 PCI33_BIDI

ad[24] AD8/5 PCI33_BIDI

ad[25] AD7/5 PCI33_BIDI

ad[26] AK2/5 PCI33_BIDI

ad[27] AJ2/5 PCI33_BIDI

ad[28] AD6/5 PCI33_BIDI

ad[29] AH2/5 PCI33_BIDI

ad[30] AG3/5 PCI33_BIDI

ad[31] AE5/5 PCI33_BIDI

ad[32] AK23/4 PCI33_BIDI

ad[33] AK22/4 PCI33_BIDI

ad[34] AF19/4 PCI33_BIDI

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 188 PCI IP Core User’s Guide

ad[35] AG19/4 PCI33_BIDI

ad[36] AJ21/4 PCI33_BIDI

ad[37] AJ20/4 PCI33_BIDI

ad[38] AG18/4 PCI33_BIDI

ad[39] AF18/4 PCI33_BIDI

ad[40] AK20/4 PCI33_BIDI

ad[41] AJ19/4 PCI33_BIDI

ad[42] AJ18/4 PCI33_BIDI

ad[43] AG17/4 PCI33_BIDI

ad[44] AF17/4 PCI33_BIDI

ad[45] AH18/4 PCI33_BIDI

ad[46] AH17/4 PCI33_BIDI

ad[47] AK19/4 PCI33_BIDI

ad[48] AK18/4 PCI33_BIDI

ad[49] AG16/4 PCI33_BIDI

ad[50] AH16/4 PCI33_BIDI

ad[51] AF16/4 PCI33_BIDI

ad[52] AE16/4 PCI33_BIDI

ad[53] AJ17/4 PCI33_BIDI

ad[54] AJ16/4 PCI33_BIDI

ad[55] AK17/4 PCI33_BIDI

ad[56] AK16/4 PCI33_BIDI

ad[57] AK15/5 PCI33_BIDI

ad[58] AK14/5 PCI33_BIDI

ad[59] AJ15/5 PCI33_BIDI

ad[60] AJ14/5 PCI33_BIDI

ad[61] AK13/5 PCI33_BIDI

ad[62] AK12/5 PCI33_BIDI

ad[63] AE15/5 PCI33_BIDI

cben[0] AH10/5 PCI33_BIDI

cben[1] AH11/5 PCI33_BIDI

cben[2] AF13/5 PCI33_BIDI

cben[3] AE14/5 PCI33_BIDI

cben[4] AG15/5 PCI33_BIDI

cben[5] AH12/5 PCI33_BIDI

cben[6] AJ13/5 PCI33_BIDI

cben[7] AD15/5 PCI33_BIDI

par64 AK10/5 PCI33_BIDI

par AG14/5 PCI33_BIDI

PCI Interface Controls

framen AF15/5 PCI33_BIDI

irdyn AK7/5 PCI33_BIDI

trdyn AK6/5 PCI33_BIDI

stopn AH13/5 PCI33_BIDI

Table B-16. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 189 PCI IP Core User’s Guide

PCI Pin Assignments for Target 66 MHz 32-bit Bus
The PCI Target 66 MHz 32-bit core is optimized for LFSC3GA25E-5F900C. An example pin assignment, optimized
for best performance, is given in Table B-17. Refer to the readme file included with the core package for further
information.

idsel AG13/5 PCI33_IN

devseln AK8/5 PCI33_BIDI

perrn AK9/5 PCI33_BIDI

serrn AH14/5 PCI33_BIDI

ack64n AH15/5 PCI33_BIDI

req64n K11/5 PCI33_BIDI

PCI Interrupts

intan AJ12/5 PCI33_IN

PCI Bus Arbitration

gntn AF4/5 PCI33_IN

reqn AJ1/5 PCI33_OUT

Table B-17. PCI Pin Assignments

Signal Name Pin/Bank I/O Type

PCI System Pins

clk AH1/5 PCI33_IN

rstn AJ11/5 PCI33_IN

PCI Address and Data

ad[0] AJ8/5 PCI33_BIDI

ad[1] AJ7/5 PCI33_BIDI

ad[2] AJ6/5 PCI33_BIDI

ad[3] AJ5/5 PCI33_BIDI

ad[4] AK5/5 PCI33_BIDI

ad[5] AK4/5 PCI33_BIDI

ad[6] AE13/5 PCI33_BIDI

ad[7] AE12/5 PCI33_BIDI

ad[8] AH8/5 PCI33_BIDI

ad[9] AH7/5 PCI33_BIDI

ad[10] AF10/5 PCI33_BIDI

ad[11] AE11/5 PCI33_BIDI

ad[12] AJ4/5 PCI33_BIDI

ad[13] AK3/5 PCI33_BIDI

ad[14] AE10/5 PCI33_BIDI

ad[15] AF9/5 PCI33_BIDI

ad[16] AJ3/5 PCI33_BIDI

ad[17] AH3/5 PCI33_BIDI

ad[18] AG8/5 PCI33_BIDI

ad[19] AF8/5 PCI33_BIDI

ad[20] AG5/5 PCI33_BIDI

ad[21] AH4/5 PCI33_BIDI

Table B-16. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 190 PCI IP Core User’s Guide

ad[22] AF6/5 PCI33_BIDI

ad[23] AF7/5 PCI33_BIDI

ad[24] AD8/5 PCI33_BIDI

ad[25] AD7/5 PCI33_BIDI

ad[26] AK2/5 PCI33_BIDI

ad[27] AJ2/5 PCI33_BIDI

ad[28] AD6/5 PCI33_BIDI

ad[29] AH2/5 PCI33_BIDI

ad[30] AG3/5 PCI33_BIDI

ad[31] AE5/5 PCI33_BIDI

ad[32] AK23/4 PCI33_BIDI

ad[33] AK22/4 PCI33_BIDI

ad[34] AF19/4 PCI33_BIDI

ad[35] AG19/4 PCI33_BIDI

ad[36] AJ21/4 PCI33_BIDI

ad[37] AJ20/4 PCI33_BIDI

ad[38] AG18/4 PCI33_BIDI

ad[39] AF18/4 PCI33_BIDI

ad[40] AK20/4 PCI33_BIDI

ad[41] AJ19/4 PCI33_BIDI

ad[42] AJ18/4 PCI33_BIDI

ad[43] AG17/4 PCI33_BIDI

ad[44] AF17/4 PCI33_BIDI

ad[45] AH18/4 PCI33_BIDI

ad[46] AH17/4 PCI33_BIDI

ad[47] AK19/4 PCI33_BIDI

ad[48] AK18/4 PCI33_BIDI

ad[49] AG16/4 PCI33_BIDI

ad[50] AH16/4 PCI33_BIDI

ad[51] AF16/4 PCI33_BIDI

ad[52] AE16/4 PCI33_BIDI

ad[53] AJ17/4 PCI33_BIDI

ad[54] AJ16/4 PCI33_BIDI

ad[55] AK17/4 PCI33_BIDI

ad[56] AK16/4 PCI33_BIDI

ad[57] AK15/5 PCI33_BIDI

ad[58] AK14/5 PCI33_BIDI

ad[59] AJ15/5 PCI33_BIDI

ad[60] AJ14/5 PCI33_BIDI

ad[61] AK13/5 PCI33_BIDI

ad[62] AK12/5 PCI33_BIDI

ad[63] AE15/5 PCI33_BIDI

cben[0] AH10/5 PCI33_BIDI

cben[1] AH11/5 PCI33_BIDI

Table B-17. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 191 PCI IP Core User’s Guide

PCI Pin Assignments for Target 66 MHz 64-bit Bus
The PCI Target 66 MHz 64-bit core is optimized for LFSC3GA25E-5F900C. An example pin assignment, optimized
for best performance, is given in Table B-18. Refer to the readme file included with the core package for further
information.

cben[2] AF13/5 PCI33_BIDI

cben[3] AE14/5 PCI33_BIDI

cben[4] AG15/5 PCI33_BIDI

cben[5] AH12/5 PCI33_BIDI

cben[6] AJ13/5 PCI33_BIDI

cben[7] AD15/5 PCI33_BIDI

par64 AK10/5 PCI33_BIDI

par AG14/5 PCI33_BIDI

PCI Interface Controls

framen AF15/5 PCI33_BIDI

irdyn AK7/5 PCI33_BIDI

trdyn AK6/5 PCI33_BIDI

stopn AH13/5 PCI33_BIDI

idsel AG13/5 PCI33_IN

devseln AK8/5 PCI33_BIDI

perrn AK9/5 PCI33_BIDI

serrn AH14/5 PCI33_BIDI

ack64n AH15/5 PCI33_BIDI

req64n K11/5 PCI33_BIDI

PCI Interrupts

intan AJ12/5 PCI33_IN

PCI Bus Arbitration

gntn AF4/5 PCI33_IN

reqn AJ1/5 PCI33_OUT

Table B-18. PCI Pin Assignments

Signal Name Pin/Bank I/O Type

PCI System Pins

clk AH1/5 PCI33_IN

rstn AJ11/5 PCI33_IN

PCI Address and Data

ad[0] AJ8/5 PCI33_BIDI

ad[1] AJ7/5 PCI33_BIDI

ad[2] AJ6/5 PCI33_BIDI

ad[3] AJ5/5 PCI33_BIDI

ad[4] AK5/5 PCI33_BIDI

ad[5] AK4/5 PCI33_BIDI

ad[6] AE13/5 PCI33_BIDI

ad[7] AE12/5 PCI33_BIDI

ad[8] AH8/5 PCI33_BIDI

Table B-17. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 192 PCI IP Core User’s Guide

ad[9] AH7/5 PCI33_BIDI

ad[10] AF10/5 PCI33_BIDI

ad[11] AE11/5 PCI33_BIDI

ad[12] AJ4/5 PCI33_BIDI

ad[13] AK3/5 PCI33_BIDI

ad[14] AE10/5 PCI33_BIDI

ad[15] AF9/5 PCI33_BIDI

ad[16] AJ3/5 PCI33_BIDI

ad[17] AH3/5 PCI33_BIDI

ad[18] AG8/5 PCI33_BIDI

ad[19] AF8/5 PCI33_BIDI

ad[20] AG5/5 PCI33_BIDI

ad[21] AH4/5 PCI33_BIDI

ad[22] AF6/5 PCI33_BIDI

ad[23] AF7/5 PCI33_BIDI

ad[24] AD8/5 PCI33_BIDI

ad[25] AD7/5 PCI33_BIDI

ad[26] AK2/5 PCI33_BIDI

ad[27] AJ2/5 PCI33_BIDI

ad[28] AD6/5 PCI33_BIDI

ad[29] AH2/5 PCI33_BIDI

ad[30] AG3/5 PCI33_BIDI

ad[31] AE5/5 PCI33_BIDI

ad[32] AK23/4 PCI33_BIDI

ad[33] AK22/4 PCI33_BIDI

ad[34] AF19/4 PCI33_BIDI

ad[35] AG19/4 PCI33_BIDI

ad[36] AJ21/4 PCI33_BIDI

ad[37] AJ20/4 PCI33_BIDI

ad[38] AG18/4 PCI33_BIDI

ad[39] AF18/4 PCI33_BIDI

ad[40] AK20/4 PCI33_BIDI

ad[41] AJ19/4 PCI33_BIDI

ad[42] AJ18/4 PCI33_BIDI

ad[43] AG17/4 PCI33_BIDI

ad[44] AF17/4 PCI33_BIDI

ad[45] AH18/4 PCI33_BIDI

ad[46] AH17/4 PCI33_BIDI

ad[47] AK19/4 PCI33_BIDI

ad[48] AK18/4 PCI33_BIDI

ad[49] AG16/4 PCI33_BIDI

ad[50] AH16/4 PCI33_BIDI

ad[51] AF16/4 PCI33_BIDI

ad[52] AE16/4 PCI33_BIDI

Table B-18. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Lattice Semiconductor Pin Assignments For Lattice FPGAs

IPUG18_09.2, November 2010 193 PCI IP Core User’s Guide

ad[53] AJ17/4 PCI33_BIDI

ad[54] AJ16/4 PCI33_BIDI

ad[55] AK17/4 PCI33_BIDI

ad[56] AK16/4 PCI33_BIDI

ad[57] AK15/5 PCI33_BIDI

ad[58] AK14/5 PCI33_BIDI

ad[59] AJ15/5 PCI33_BIDI

ad[60] AJ14/5 PCI33_BIDI

ad[61] AK13/5 PCI33_BIDI

ad[62] AK12/5 PCI33_BIDI

ad[63] AE15/5 PCI33_BIDI

cben[0] AH10/5 PCI33_IN

cben[1] AH11/5 PCI33_IN

cben[2] AF13/5 PCI33_IN

cben[3] AE14/5 PCI33_IN

cben[4] AG15/5 PCI33_IN

cben[5] AH12/5 PCI33_IN

cben[6] AJ13/5 PCI33_IN

cben[7] AD15/5 PCI33_IN

par AG14/5 PCI33_BIDI

par64 AK10/5 PCI33_BIDI

PCI Interface Controls

framen AF15/5 PCI33_IN

irdyn AK7/5 PCI33_IN

trdyn AK6/5 PCI33_OUT

stopn AH13/5 PCI33_OUT

idsel AG13/5 PCI33_IN

devseln AK8/5 PCI33_OUT

perrn AK9/5 PCI33_OUT

serrn AH14/5 PCI33_OUT

ack64n AH15/5 PCI33_OUT

req64n K11/5 PCI33_IN

PCI Interrupts

intan AJ12/5 PCI33_OUT

Table B-18. PCI Pin Assignments (Continued)

Signal Name Pin/Bank I/O Type

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

 Lattice:

 PCI-MT32-O4-N2 PCI-MT32-XP-N1 PCI-MT32-XP-N2 PCI-MT64-O4-N1 PCI-MT64-XP-N2 PCI-T64-O4-N2 PCI-

T64-XP-N2 PCI-MT32-PM-U6 PCI-T64-P2-U6 PCI-MT64-XM-U6 PCI-T64-E2-U6 PCI-T32-P2-U6 PCI-MT64-X2-U6

 PCI-MT64-P2-U6 PCI-T32-X2-U6 PCI-MT64-SC-U6 PCI-T32-XO-U6 PCI-T64-SC-U6 PCI-MT64-E2-U6 PCI-MT32-

XM-U6 PCI-MT64-PM-U6 PCI-MT32-X2-U6 PCI-MT32-SC-U6 PCI-T64-XM-U6 PCI-T64-PM-U6 PCI-MT32-E2-U6

PCI-MT32-P2-U6 PCI-MT32-XO-U6 PCI-T64-X2-U6 PCI-T32-SC-U6 PCI-T32-E2-U6 PCI-T32-PM-U6 PCI-T32-XM-

U6 PCI-MT64-E3-U6 PCI-MT32-E3-U6 PCI-T64-E3-U6 PCI-MT32-E2-UT6 PCI-MT32-P2-UT6 PCI-MT32-PM-UT6

PCI-MT32-SC-UT6 PCI-MT32-X2-UT6 PCI-MT32-XM-UT6 PCI-MT32-XO-UT6 PCI-MT64-E2-UT6 PCI-MT64-P2-

UT6 PCI-MT64-PM-UT6 PCI-MT64-SC-UT6 PCI-MT64-X2-UT6 PCI-MT64-XM-UT6 PCI-T32-E2-UT6 PCI-T32-P2-

UT6 PCI-T32-PM-UT6 PCI-T32-SC-UT6 PCI-T32-X2-UT6 PCI-T32-XM-UT6 PCI-T32-XO-UT6 PCI-T64-P2-UT6

PCI-T64-PM-UT6 PCI-T64-SC-UT6 PCI-T64-X2-UT6 PCI-T64-XM-UT6 PCI-MT32-E3-UT6 PCI-MT64-E3-UT6 PCI-

T64-E2-UT6 PCI-T64-E3-UT6 PCI-MT32-M2-U1 PCI-MT32-M2-UT1

https://www.mouser.com/lattice-semiconductor
https://www.mouser.com/access/?pn=PCI-MT32-O4-N2
https://www.mouser.com/access/?pn=PCI-MT32-XP-N1
https://www.mouser.com/access/?pn=PCI-MT32-XP-N2
https://www.mouser.com/access/?pn=PCI-MT64-O4-N1
https://www.mouser.com/access/?pn=PCI-MT64-XP-N2
https://www.mouser.com/access/?pn=PCI-T64-O4-N2
https://www.mouser.com/access/?pn=PCI-T64-XP-N2
https://www.mouser.com/access/?pn=PCI-T64-XP-N2
https://www.mouser.com/access/?pn=PCI-MT32-PM-U6
https://www.mouser.com/access/?pn=PCI-T64-P2-U6
https://www.mouser.com/access/?pn=PCI-MT64-XM-U6
https://www.mouser.com/access/?pn=PCI-T64-E2-U6
https://www.mouser.com/access/?pn=PCI-T32-P2-U6
https://www.mouser.com/access/?pn=PCI-MT64-X2-U6
https://www.mouser.com/access/?pn=PCI-MT64-P2-U6
https://www.mouser.com/access/?pn=PCI-T32-X2-U6
https://www.mouser.com/access/?pn=PCI-MT64-SC-U6
https://www.mouser.com/access/?pn=PCI-T32-XO-U6
https://www.mouser.com/access/?pn=PCI-T64-SC-U6
https://www.mouser.com/access/?pn=PCI-MT64-E2-U6
https://www.mouser.com/access/?pn=PCI-MT32-XM-U6
https://www.mouser.com/access/?pn=PCI-MT32-XM-U6
https://www.mouser.com/access/?pn=PCI-MT64-PM-U6
https://www.mouser.com/access/?pn=PCI-MT32-X2-U6
https://www.mouser.com/access/?pn=PCI-MT32-SC-U6
https://www.mouser.com/access/?pn=PCI-T64-XM-U6
https://www.mouser.com/access/?pn=PCI-T64-PM-U6
https://www.mouser.com/access/?pn=PCI-MT32-E2-U6
https://www.mouser.com/access/?pn=PCI-MT32-P2-U6
https://www.mouser.com/access/?pn=PCI-MT32-XO-U6
https://www.mouser.com/access/?pn=PCI-T64-X2-U6
https://www.mouser.com/access/?pn=PCI-T32-SC-U6
https://www.mouser.com/access/?pn=PCI-T32-E2-U6
https://www.mouser.com/access/?pn=PCI-T32-PM-U6
https://www.mouser.com/access/?pn=PCI-T32-XM-U6
https://www.mouser.com/access/?pn=PCI-T32-XM-U6
https://www.mouser.com/access/?pn=PCI-MT64-E3-U6
https://www.mouser.com/access/?pn=PCI-MT32-E3-U6
https://www.mouser.com/access/?pn=PCI-T64-E3-U6
https://www.mouser.com/access/?pn=PCI-MT32-E2-UT6
https://www.mouser.com/access/?pn=PCI-MT32-P2-UT6
https://www.mouser.com/access/?pn=PCI-MT32-PM-UT6
https://www.mouser.com/access/?pn=PCI-MT32-SC-UT6
https://www.mouser.com/access/?pn=PCI-MT32-X2-UT6
https://www.mouser.com/access/?pn=PCI-MT32-XM-UT6
https://www.mouser.com/access/?pn=PCI-MT32-XO-UT6
https://www.mouser.com/access/?pn=PCI-MT64-E2-UT6
https://www.mouser.com/access/?pn=PCI-MT64-P2-UT6
https://www.mouser.com/access/?pn=PCI-MT64-P2-UT6
https://www.mouser.com/access/?pn=PCI-MT64-PM-UT6
https://www.mouser.com/access/?pn=PCI-MT64-SC-UT6
https://www.mouser.com/access/?pn=PCI-MT64-X2-UT6
https://www.mouser.com/access/?pn=PCI-MT64-XM-UT6
https://www.mouser.com/access/?pn=PCI-T32-E2-UT6
https://www.mouser.com/access/?pn=PCI-T32-P2-UT6
https://www.mouser.com/access/?pn=PCI-T32-P2-UT6
https://www.mouser.com/access/?pn=PCI-T32-PM-UT6
https://www.mouser.com/access/?pn=PCI-T32-SC-UT6
https://www.mouser.com/access/?pn=PCI-T32-X2-UT6
https://www.mouser.com/access/?pn=PCI-T32-XM-UT6
https://www.mouser.com/access/?pn=PCI-T32-XO-UT6
https://www.mouser.com/access/?pn=PCI-T64-P2-UT6
https://www.mouser.com/access/?pn=PCI-T64-PM-UT6
https://www.mouser.com/access/?pn=PCI-T64-SC-UT6
https://www.mouser.com/access/?pn=PCI-T64-X2-UT6
https://www.mouser.com/access/?pn=PCI-T64-XM-UT6
https://www.mouser.com/access/?pn=PCI-MT32-E3-UT6
https://www.mouser.com/access/?pn=PCI-MT64-E3-UT6
https://www.mouser.com/access/?pn=PCI-T64-E2-UT6
https://www.mouser.com/access/?pn=PCI-T64-E2-UT6
https://www.mouser.com/access/?pn=PCI-T64-E3-UT6
https://www.mouser.com/access/?pn=PCI-MT32-M2-U1
https://www.mouser.com/access/?pn=PCI-MT32-M2-UT1

	PCI IP User’s Guide
	Table of Contents
	Ch1-Introduction
	Quick Facts
	Features

	Ch2-Functional Description
	Block Diagram
	PCI Master Control
	PCI Target Control
	Local Master Interface Control
	Local Target Control
	Configuration Space
	Parity Generator and Checker

	Signal Descriptions
	PCI Interface Signals
	Local Interface Signals

	PCI Configuration Space Setup
	Status Register
	Base Address Registers
	BAR Mapped to Memory Space
	Bar Mapped to I/O Space
	Cache Line Size
	Latency Timer
	CardBus CIS Pointer
	Subsystem Vendor ID
	Subsystem ID
	Capabilities Pointer
	Min_Gnt
	Max_Lat
	Interrupt Line
	Interrupt Pin
	Reserved

	Lattice PCI IP core Configuration Options
	IPexpress User-Controlled Configurations
	PCI Configuration Using Core Configuration Space Port
	Bar Configuration Details

	Local Bus Interface
	Target Operation
	Master Operation

	Basic PCI Master Read and Write Transactions
	Waveform Legend
	32-bit PCI Master with a 32-bit Local Bus
	64-Bit PCI Master with a 64-Bit Local Bus
	32-bit PCI Master with a 64-Bit Local Bus
	Configuration Read and Write Transactions
	PCI Master I/O Read and Write Transactions

	Advanced Master Transactions
	Wait States
	Burst Read and Write Master Transactions
	32-Bit PCI Master and a 32-bit Local Bus
	64-bit PCI Master with a 64-bit Local Bus
	32-bit PCI Master with a 64-Bit Local Bus

	Dual Address Cycle (DAC)
	Fast Back-to-Back Transactions

	Master and Target Termination
	Basic PCI Target Read and Write Transactions
	32-bit PCI Target with a 32-bit Local Bus Memory Transactions
	64-Bit PCI Target with a 64-Bit Local Bus
	32-Bit PCI Target with a 64-Bit Local Bus
	Configuration Read and Write Transactions
	PCI Target I/O Read and Write Transactions

	Advanced Target Transactions
	Wait States
	Burst Read and Write Target Transactions
	32-Bit PCI Bus and a 32-Bit Local Bus
	64-Bit PCI Target with a 64-Bit Local Bus
	32-Bit PCI Target with a 64-bit Local Bus

	Dual Address Cycle (DAC)
	Fast Back-to-Back Transactions
	Advanced Configuration Accesses

	Target Termination
	Disconnect With Data
	Disconnect Without Data
	Retry
	Target Abort

	Ch3-Parameter Settings
	Bus Tab
	Bus Definition
	PCI Data Bus Size
	Local Master Data Bus Size (Master/Target cores only)
	Local Target Data Bus Size (Master/Target cores only)
	Local Data Bus Size (Target cores only)
	Local Address Bus Width
	Bus Speed

	Backend Configuration
	Synthesis/Simulation Tools Selection
	Support Synplify
	Support Precision
	Support ModelSim
	Support ALDEC

	Identification Tab
	Vendor ID [15:0]
	Device ID [15:0]
	Subsystem Vendor ID [15:0]
	Subsystem ID [15:0]
	Revision ID [15:0]
	Class Code (Base Class, Bus Class, Interface)

	Options Tab
	Devsel Timing
	Timing of Devsel

	Expansion ROM BAR
	Expansion ROM
	Address Space Size
	Read Only and Read Only Address
	Capabilities Pointer
	CardBus CIS Pointer
	Fast Back-to-Back

	Interrupts
	Interrupt Acknowledge
	Interrupt Pin

	PCI Master Tab (PCI Master/Target Cores Only)
	Read Only Latency Timer
	MIN_GNT
	MAX_LAT

	BARs Tab
	Base Address Registers
	Number of BARs
	BAR0 - BAR5

	BAR Configuration Options
	BAR Width
	BAR Type
	Address Space Size
	Prefetching Enable

	Ch4-IP Core Generation
	Licensing the IP Core
	Getting Started
	IPexpress-Created Files and Top Level Directory Structure
	Instantiating the Core
	Running Functional Simulation
	Synthesizing and Implementing the Core in a Top-Level Design
	Hardware Evaluation
	Enabling Hardware Evaluation in Diamond
	Enabling Hardware Evaluation in ispLEVER

	Updating/Regenerating the IP Core
	Regenerating an IP Core in Diamond
	Regenerating an IP Core in ispLEVER

	Ch5-Support Resources
	Lattice Technical Support
	Online Forums
	Telephone Support Hotline
	E-mail Support
	Local Support
	Internet
	PCI-SIG Website

	References
	LatticeEC/ECP
	LatticeECP2M
	LatticeECP3
	LatticeSC/M
	LatticeXP
	LatticeXP2
	MachXO
	MachXO2

	Revision History

	AppA--Resource Utilization
	LatticeECP and LatticeEC FPGAs
	Ordering Part Number

	LatticeECP2 FPGAs
	Ordering Part Number

	LatticeECP2M FPGAs
	Ordering Part Number

	LatticeECP3 FPGAs
	Ordering Part Number

	LatticeXP FPGAs
	Ordering Part Number

	LatticeXP2 FPGAs
	Ordering Part Number

	MachXO FPGAs
	Ordering Part Number

	MachXO2 FPGAs
	Ordering Part Number

	LatticeSC FPGAs
	Ordering Part Number

	AppB-Pin Assignments For Lattice FPGAs
	Pin Assignment Considerations for LatticeECP and LatticeEC Devices
	PCI Pin Assignments for Master/Target 33MHz 64-Bit Bus
	PCI Pin Assignments for Target 66MHz 64-Bit Bus
	PCI Pin Assignments for Master/Target 33MHz 32-Bit Bus
	PCI Pin Assignments for Target 33MHz 32-Bit Bus

	Pin Assignment Considerations for LatticeXP Devices
	PCI Pin Assignments for Master/Target 33MHz 32-Bit Bus
	PCI Pin Assignments for Target 33MHz 32-Bit Bus
	PCI Pin Assignments for Master/Target 33MHz 64-Bit Bus

	Pin Assignment Considerations for MachXO Devices
	PCI Pin Assignments for Target 33MHz 32-Bit Bus
	PCI Pin Assignments for Target 66MHz 32-Bit Bus
	PCI Pin Assignments for Master/Target 33MHz 32-Bit Bus

	PCI Assignment Considerations for LatticeSC Devices
	PCI Pin Assignments for Master/Target 33 MHz 32-bit Bus
	PCI Pin Assignments for Master/Target 33 MHz 64-bit Bus
	PCI Pin Assignments for Target 33 MHz 32-bit Bus
	PCI Pin Assignments for Target 33 MHz 64-bit Bus
	PCI Pin Assignments for Master/Target 66 MHz 32-bit Bus
	PCI Pin Assignments for Master/Target 66 MHz 64-bit Bus
	PCI Pin Assignments for Target 66 MHz 32-bit Bus
	PCI Pin Assignments for Target 66 MHz 64-bit Bus

