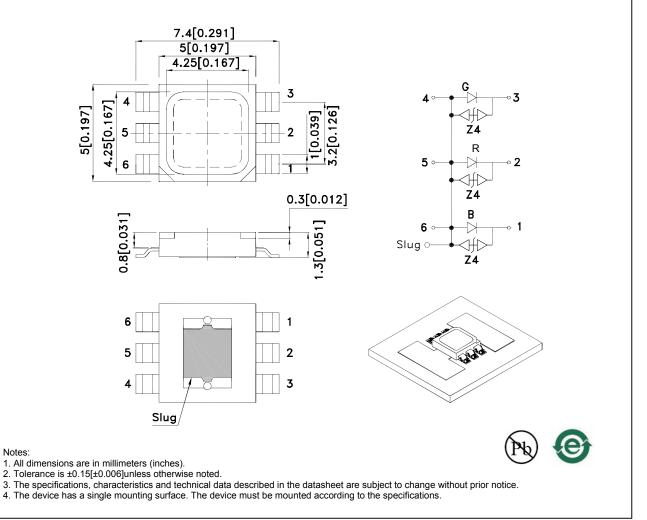


ATTENTION OBSERVE PRECAUTIONS FOR HANDLING ELECTROSTATIC DISCHARGE SENSITIVE DEVICES

Features

- Chips can be controlled separately.
- Suitable for all SMT assembly and solder process.
- Available on tape and reel.
- White SMD package, silicone resin.
- Package: 500pcs / reel.
- Moisture sensitivity level : level 3.
- RoHS compliant.


5.0mm x 5.0mm FULL-COLOR SURFACE MOUNT LED LAMP

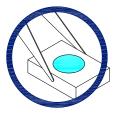
Part Number: AAAF5051-04

Blue Reddish-Orange Green

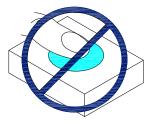
Descriptions

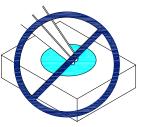
- The Blue source color devices are made with InGaN on Al₂O₃ substrate Light Emitting Diode.
- The Reddish-Orange source color devices are made with AIGaInP on AIN substrate Light Emitting Diode.
- The Green source color devices are made with InGaN on Al₂O₃ substrate Light Emitting Diode.
- Electrostatic discharge and power surge could damage the LEDs.
- It is recommended to use a wrist band or antielectrostatic glove when handling the LEDs.
- All devices, equipments and machineries must be electrically grounded.

Package Dimensions

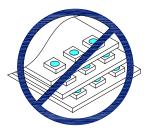

REV NO: V.4B CHECKED: Allen Liu DATE: SEP/16/2014 DRAWN: L.Q.Xie

PAGE: 1 OF 9 ERP: 1201008410

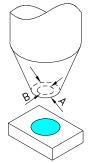

Handling Precautions


Compare to epoxy encapsulant that is hard and brittle, silicone is softer and flexible. Although its characteristic significantly reduces thermal stress, it is more susceptible to damage by external mechanical force. As a result, special handling precautions need to be observed during assembly using silicone encapsulated LED products. Failure to comply might lead to damage and premature failure of the LED.

1. Handle the component along the side surfaces by using forceps or appropriate tools.



2. Do not directly touch or handle the silicone lens surface. It may damage the internal circuitry.



3. Do not stack together assembled PCBs containing exposed LEDs. Impact may scratch the silicone lens or damage the internal circuitry.

- 4.1. The inner diameter of the SMD pickup nozzle should not exceed the size of the LED to prevent air leaks.
- 4.2. A pliable material is suggested for the nozzle tip to avoid scratching or damaging the LED surface during pickup.
- 4.3. The dimensions of the component must be accurately programmed in the pick-and-place machine to insure precise pickup and avoid damage during production.

5. As silicone encapsulation is permeable to gases, some corrosive substances such as H_2S might corrode silver plating of leadframe. Special care should be taken if an LED with silicone encapsulation is to be used near such substances.

Part No.	Dice	Lens Type	lv (mo @ 15		Φν (lm) [2] @ 150mA*		Viewing Angle [1]
			Min.	Тур.	Min.	Тур.	201/2
	Blue (InGaN)		1000	1500	4.2	6	
AAAF5051-04	Reddish-Orange (AlGaInP)	Water Clear	2700	3200	10	12	120°
	Green (InGaN)		5000	6300	17	20	

Notes:
1. θ1/2 is the angle from optical centerline where the luminous intensity is 1/2 of the optical peak value.
2. Luminous intensity/ luminous Flux: +/-15%.*LEDs are binned according to their luminous flux.
3. Luminous intensity/ luminous Flux value is traceable to the CIE127-2007 compliant national standards.

Absolute Maximum Ratings at Ta=25°C

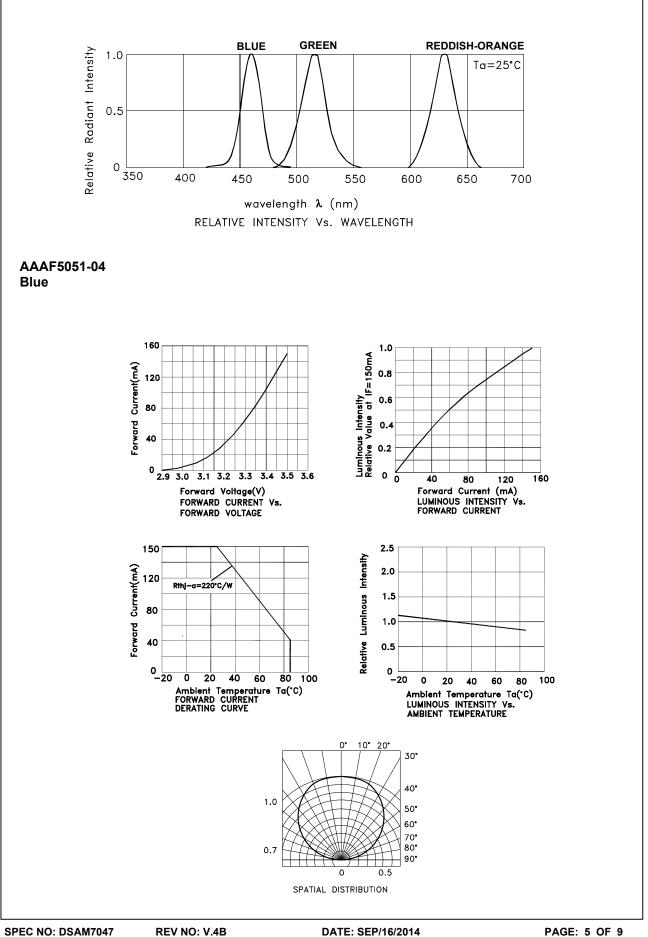
Parameter	Symbol	Device	Value	Unit	Test Conditions	
		Blue	0.6		I⊧=150mA	
Power dissipation	Po	Reddish-Orange	0.45	W	IF=150mA IF=150mA IF=150mA	
		Green	0.6			
		Blue	110		IF=150mA	
Junction temperature	TJ	Reddish-Orange	110	°C	IF=150mA	
		Green	110		I⊧=150mA	
		Blue			IF=150mA	
Operating Temperature	е Тор	Reddish-Orange	-40 To +85	°C	I⊧=150mA	
		Green			I⊧=150mA	
	Tstg	Blue		°C	IF=150mA	
Storage Temperature		Reddish-Orange	-40 To +85		IF=150mA	
		Green			IF=150mA	
	lF -	Blue	150		IF=150mA IF=150mA	
DC Forward Current [1]		Reddish-Orange	150	mA		
		Green	150		I⊧=150mA	
		Blue	300		I⊧=150mA	
Peak Forward Current [2]	IFM	Reddish-Orange	300	mA	IF=150mA	
		Green	300		IF=150mA	
		Blue	220		I⊧=150mA	
Thermal resistance	Rth j-a	Reddish-Orange	270	°C/W	IF=150mA	
		Green	200		IF=150mA	
		Blue	25		I⊧=150mA	
Thermal resistance	Rth j-s	Reddish-Orange	40	°C/W	I⊧=150mA	
		Green	33		I⊧=150mA	
		Blue	10		VR=5V	
Reverse Current	lR	Reddish-Orange	10	uA		
		Green	10			

Notes:

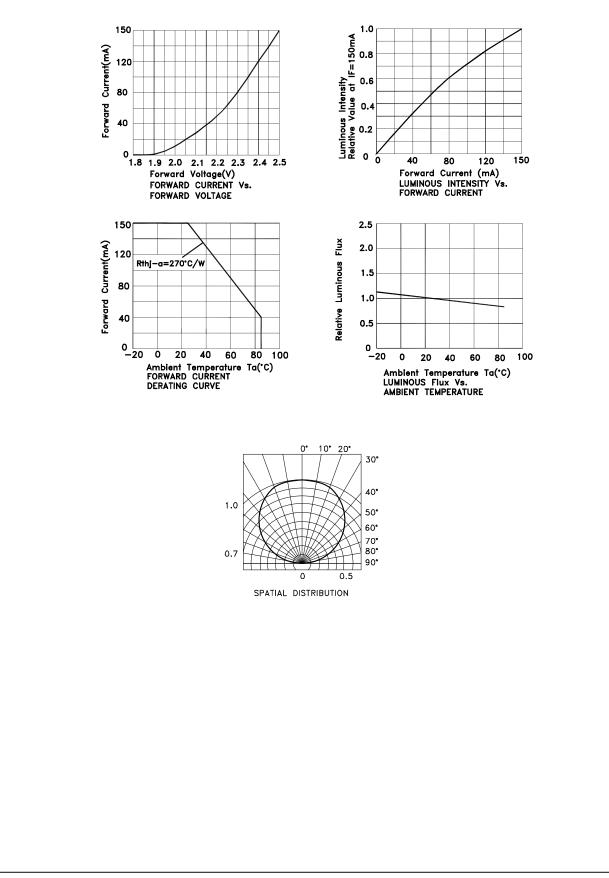
1. Results from mounting on Aluminum Board.

2. 1/10 Duty Cycle, 0.1ms Pulse Width.

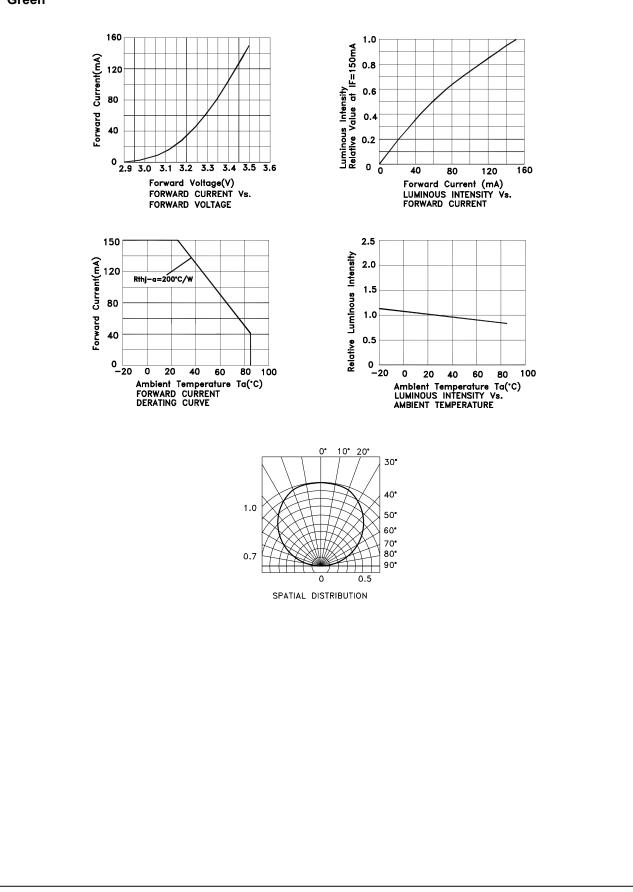
Electrical / Optical Characteristics at Ta=25°C


- ,	.	- ·	Value				
Parameter	Symbol	Device	Min.	Тур.	Max.	Unit	
Wavelength at peak emission I⊧=150mA		Blue		452			
Wavelength at peak emission IF=150mA	λ peak	Reddish-Orange		635		nm	
Wavelength at peak emission IF=150mA		Green		515			
Dominant Wavelength IF=150mA		Blue		460			
Dominant Wavelength IF=150mA	λ dom [1]	Reddish-Orange		624		nm	
Dominant Wavelength IF=150mA		Green		525			
Spectral Line Half-width IF=150mA		Blue		25			
Spectral Line Half-width IF=150mA	Δλ1/2	Reddish-Orange		20		nm	
Spectral Line Half-width IF=150mA		Green		30			
Forward Voltage IF=150mA		Blue	3.0	3.5	4.0		
Forward Voltage IF=150mA	VF [2]	Reddish-Orange	2.0	2.5	3.0	V	
Forward Voltage IF=150mA		Green	3.0	3.5	4.0		
	Vr	Blue		5		V	
Reverse Voltage		Reddish-Orange		5			
		Green		5			
Temperature coefficient of λ peak IF=150mA, -10 ° C \leq T \leq 100 ° C		Blue		0.12			
Temperature coefficient of λ peak IF=150mA, -10 ° C \leq T \leq 100 ° C	TC λ peak	Reddish-Orange		0.09		nm/° C	
Temperature coefficient of λ peak IF=150mA, -10 ° C \leq T \leq 100 ° C		Green		0.13			
Temperature coefficient of λ dom IF=150mA, -10 ° C \leq T \leq 100 ° C		Blue		0.1			
Temperature coefficient of λ dom IF=150mA, -10 ° C≤T≤100 ° C	$TC \lambda$ dom	Reddish-Orange		0.03		nm/° C	
Temperature coefficient of λ dom IF=150mA, -10 ° C \leq T \leq 100 ° C		Green		0.11			
Temperature coefficient of VF IF=150mA, -10 $^\circ$ C \leq T \leq 100 $^\circ$ C		Blue		-2.3			
Temperature coefficient of VF IF=150mA, -10 $^\circ$ C \leq T \leq 100 $^\circ$ C	TCv	Reddish-Orange		-2.7		mV/° C	
Temperature coefficient of VF IF=150mA, -10 $^{\circ}$ C \leq T \leq 100 $^{\circ}$ C		Green		-3.9			

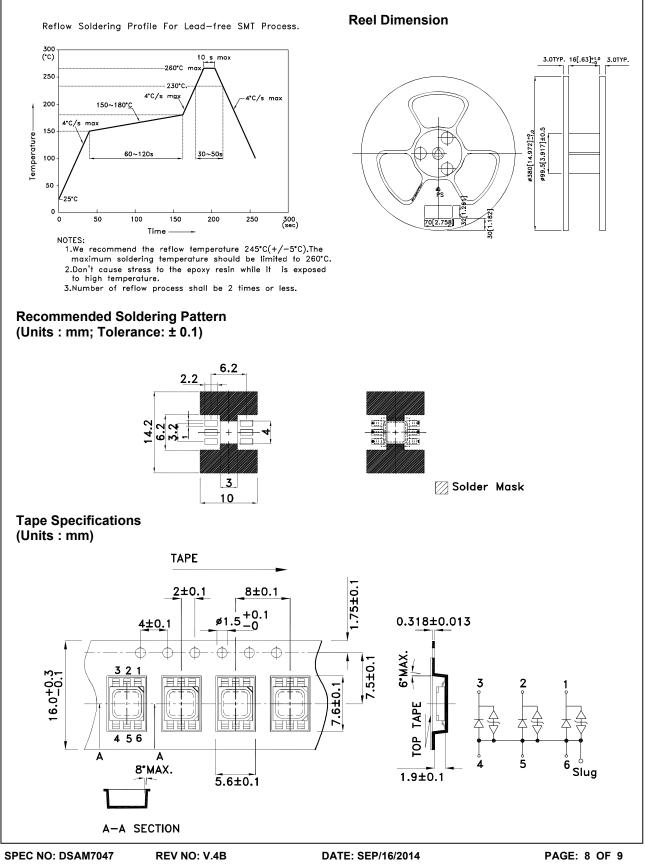
1.Wavelength: +/-1nm.


2.Forward Voltage: +/-0.2V.

3.Wavelength value is traceable to the CIE127-2007 compliant national standards.

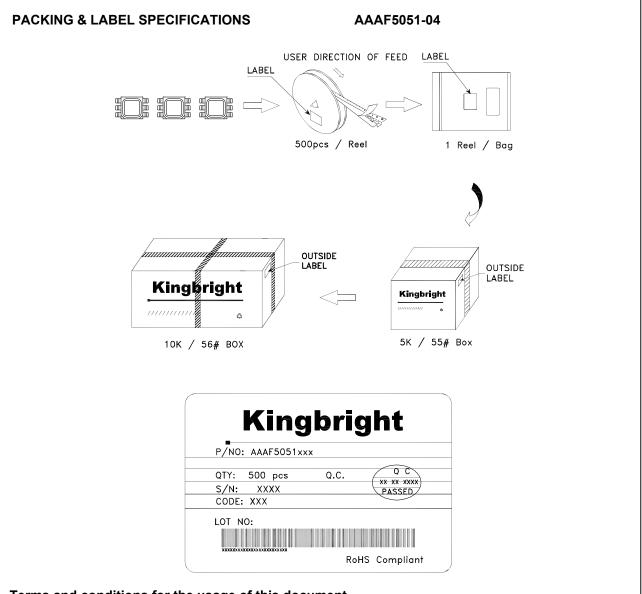

4. Excess driving current and/or operating temperature higher than recommended conditions may result in severe light degradation or premature failure.

Reddish-orange



Green

AAAF5051-04


Reflow soldering is recommended and the soldering profile is shown below. Other soldering methods are not recommended as they might cause damage to the product.

CHECKED: Allen Liu

DRAWN: L.Q.Xie

ERP: 1201008410

Terms and conditions for the usage of this document

- 1. The information included in this document reflects representative usage scenarios and is intended for technical reference only.
- 2. The part number, type, and specifications mentioned in this document are subject to future change and improvement without notice. Before production usage customer should refer to the latest datasheet for the updated specifications.
- 3. When using the products referenced in this document, please make sure the product is being operated within the environmental and electrical limits specified in the datasheet. If customer usage exceeds the specified limits, Kingbright will not be responsible for any subsequent issues.
- 4. The information in this document applies to typical usage in consumer electronics applications. If customer's application has special reliability requirements or have life-threatening liabilities, such as automotive or medical usage, please consult with Kingbright representative for further assistance.
- 5. The contents and information of this document may not be reproduced or re-transmitted without permission by Kingbright.
- 6.All design applications should refer to Kingbright application notes available at http://www.KingbrightUSA.com/ApplicationNotes

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Kingbright: AAAF5051-04