

APPROVAL SHEET

WR10X(W)

±1%, ±5%
Thick film Technology
General purpose chip resistors
Size 1210

FEATURE

- 1. High reliability and stability
- 2. Reduced size of final equipment
- 3. Lower assembly costs
- 4. Higher component and equipment reliability
- 5. RoHS compliant and Lead free products

APPLICATION

- Consumer electrical equipment
- Automotive application
- EDP, Computer application
- Telecom application

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is Tin (lead free) alloy.

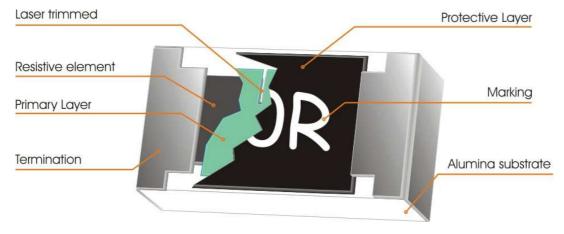


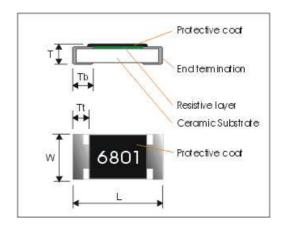
Fig 1. Construction of Chip-R

QUICK REFERENCE DATA

Item	General Specification			
Series No.	WR10X(W)			
Size code	1210 (3225)			
Resistance Tolerance	±1% (E96/E24), ±5% (E24)			
Resistance Range	Jumper, 1 Ω ~ 10M Ω (E96+E24 series)			
TCR (ppm/°C)	> 10R , ≤ ± 100 ppm/°C			
-55°C ~ +155°C	1R ~ 10R, ≤± 200 ppm/°C			
Max. dissipation at T _{amb} =70°C	1/3 W (0.33 W)			
Max. Operation Voltage (DC or RMS)	200V			
Max. Overload Voltage (DC or RMS)	400V			
Climatic category	55/155/56			

Type	WR10X		
Power Rating At 70C	1/3 W		
Resistance	Max. 50mR		
Rated Current	2.5 A		
Peak Current	6 A		
Operating Temperature	-55C ~ 155C		

Note:


- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage: So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{Rated Power \times Resistance Value}$ or Max. RCWV listed above, whichever is lower.

DIMENSIONS(unit:mm)

Part No	WR10X
L	3.10 ± 0.10
W	2.60 ± 0.10
Tt	0.50 ± 0.20
Tb	0.50 ± 0.20 *1
Т	0.55 ± 0.10

^{*1} original 0.45+/-0.20

MARKING

3-digits marking (±5%)

Each resistor is marked with a three digits code on the protective coating to designate the nominal resistance value.

4-digits marking (±1%)

Each resistor is marked with a four digits code on the protective coating to designate the nominal resistance value.

Example

RESISTANCE	90Ω	100Ω	6800Ω	47000Ω
4-digits marking	90R0	1000	6801	4702
3-digits marking	-	101	682	473

FUNCTIONAL DESCRIPTION

Product characterization

Standard values of nominal resistance are taken from the E96 & E24 series for resistors with a tolerance of $\pm 1\%$, $\pm 5\%$. The values of the E24/E96 series are in accordance with "IEC publication 60063".

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2

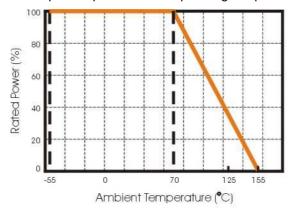


Figure 2 Maximum dissipation in percentage of rated power as a function of the ambient temperature

MOUNTING

Due to their rectangular shapes and small tolerances, Surface Mountable Resistors are suitable for handling by automatic placement systems.

Chip placement can be on ceramic substrates and printed-circuit boards (PCBs).

Electrical connection to the circuit is by individual soldering condition.

The end terminations guarantee a reliable contact.

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in Fig 3.

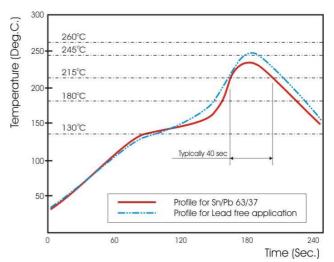


Fig 3. Infrared soldering profile for Chip Resistors

CATALOGUE NUMBERS

The resistors have a catalogue number starting with .

WR10	х	4702	F	Т	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
WR10: 1210	X: 5%: 1R ~ 10M 1%: 10R ~ 1M W: 1%: < 10R; > 1M0	5%, E24: 2 significant digits followed by no. of zeros $100\Omega = 101_$ $10KΩ = 103$ 1% E24+E96: 3 significant digits followed by no. of zeros $102Ω = 1020$ $37.4KΩ = 3742$ $220Ω = 2200$	J: ± 5% F: ± 1% P: Jumper	T: 7" Reeled taping	L = Sn base (lead free)

Reeled tape packaging: 8mm width paper taping 5000pcs per 7" reel.

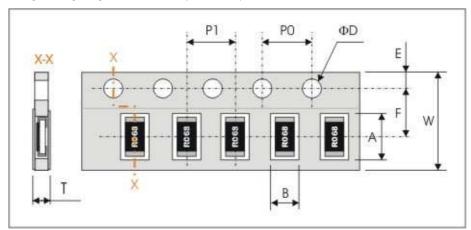
TEST AND REQUIREMENTS(JIS C 5201-1: 1998)

The tests are carried out in accordance with IEC publication 68, "Recommended basic climatic and mechanical robustness testing procedure for electronic components" and under standard atmospheric conditions according to IEC 68-1, subclause 5.3, unless otherwise specified.

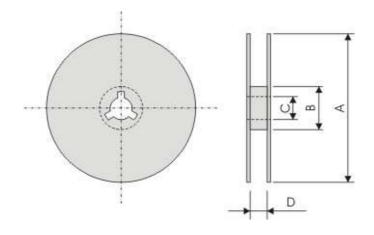
Temperature: 15°C to 35°C. Relative humidity: 45% to 75%.

Air pressure: 86kPa to 106 kPa (860 mbar to 1060 mbar).

TEST	DROCEDURE / TEST METUOD	REQUIREMENT			
TEST	PROCEDURE / TEST METHOD	Resistor	0Ω		
DC resistance Clause 4.5	DC resistance values measured at the test voltages specified below : $<10\Omega@0.1V, <100\Omega@0.3V, <1K\Omega@1.0V, \\ <10K\Omega@3V, <100K\Omega@10V, <1M\Omega@25V, <10M\Omega@30V$	Within the specified tolerance	<50mΩ		
Temperature Coefficient of Resistance(T.C.R) Clause 4.8	Natural resistance change per change in degree centigrade. $\frac{R_2-R_1}{R_1(t_2-t_1)}\!\!\times\!10^6\;\text{(ppm/°C)} t_1:20\text{C+}5\text{C-}1\text{C}$ $\text{R}_1:\text{Resistance at reference temperature}$ $\text{R}_2:\text{Resistance at test temperature}$	Refer to "QUICK REFERENCE DATA"	N/a		
Short time overload (S.T.O.L) Clause 4.13	Permanent resistance change after a 5second application of a voltage 2.5 times RCWV or the maximum overload voltage specified in the above list, whichever is less.	Δ R/R max. \pm (2%+0.10 Ω)	<50mΩ		
Resistance to soldering heat(R.S.H) Clause 4.18	Un-mounted chips completely immersed for 10±1second in a SAC solder bath at 260°C ±5°C	$ \begin{array}{c c} \Delta \text{R/R max.} \pm (1\% + 0.05 \Omega) \\ \text{no visible damage} \end{array} < 50 \text{m} \Omega $			
Solderability Clause 4.17	Un-mounted chips completely immersed for 2±0.5 second in a SAC solder bath at 235 $^{\circ}\!$	95% coverage min., good tinning and no visible damage			
Temperature cycling Clause 4.19	30 minutes at -55°C±3°C, 2~3 minutes at 20°C+5°C-1°C, 30 minutes at +155°C±3°C, 2~3 minutes at 20°C+5°C-1°C, total 5 continuous cycles	Δ R/R max. ±(1%+0.05 Ω)	< 50mΩ		
Damp Heat (Load life in humidity) Clause 4.24	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber controller at 40°C±2°C and 90~95% relative humidity, 1.5hours on and 0.5 hours off	10Ω≤R<1MΩ: Δ R/R max. ±(3%+0.10Ω) R<10Ω, R≥1MΩ: Δ R/R max. ±(5%+0.10Ω)	< 50mΩ		
Load Life (Endurance) Clause 4.25	1000+48/-0 hours; loaded with RCWV or V_{max} in chamber controller $70\pm2^{\circ}C$, 1.5 hours on and 0.5 hours off	Ditto.			
Bending strength Clause 4.33	Resistors mounted on a 90mm glass epoxy resin PCB(FR4), bending once 3mm for 10sec.	No visual damaged, $\Delta R/R \text{ max. } \pm (1\% + 0.05\Omega)$	< 50mΩ		
Adhesion Clause 4.32	Pressurizing force: 5N, Test time: 10±1sec.	No remarkable damage or r the terminations	emoval of		



TEST	PROCEDURE / TEST METHOD	REQUIREMENT				
	PROCEDURE / 1E31 METHOD	Resistor	Ω 0			
Insulation Resistance	Apply the maximum overload voltage (DC) for 1minutes	R≧10GΩ				
Clause 4.6						
Dielectric Withstand	Apply the maximum overload voltage (AC) for 1 minutes	No breakdown or flashover				
Voltage						
Clause 4.7						


PACKAGING

Paper Tape specifications (unit :mm)

Component Size / Series	W		F E			P0		ΦD
WR10X	8.00±0.30	3.	3.50±0.20 1.75±		.75±0.10 4.00±0.1		0	Φ1.50 ^{+0.1} _{-0.0}
Component Size / Series	A B				P1		Т	
WR10X	3.60±0.20	3.00±0.		.20	4.0	0±0.10		Max. 1.0

Reel dimensions

Symbol	Α	В	С	D
(unit : mm)	Φ178.0±2.0	Φ60.0±1.0	13.0±0.2	9.0±0.5

Taping quantity

- Chip resistors 5,000 pcs/reel

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Walsin:

<u>WR10X103 JTL WR10X182 JTL WR10X151 JTL WR10X2R0 JTL WR10X201 JTL WR10X1R2 JTL WR10X100 JTL WR10X332 JTL WR10X820 JTL WR10X1503FTL WR10X242 JTL</u>