

WF12G, WF08G, WF06G, WF04G

±1%, ±5%, 11MΩ~100MΩ

High ohm chip resistors

Size 1206, 0805, 0603, 0402

*Contents in this sheet are subject to change without prior notice

FEATURE

- 1. Small size and light weight
- 2. High reliability and stability
- 3. Reduced size of final equipment
- 4. Higher component and equipment reliability
- 5. RoHS compliant and lead free products.

APPLICATION

- Power supply
- PDA
- Digital meter
- Computer
- Palmtop computers

DESCRIPTION

The resistors are constructed in a high grade ceramic body (aluminum oxide). Internal metal electrodes are added at each end and connected by a resistive paste that is applied to the top surface of the substrate. The composition of the paste is adjusted to give the approximate resistance required and the value is trimmed to nominated value within tolerance which controlled by laser trimming of this resistive layer.

The resistive layer is covered with a protective coat. Finally, the two external end terminations are added. For ease of soldering the outer layer of these end terminations is Tin (lead free) alloy.

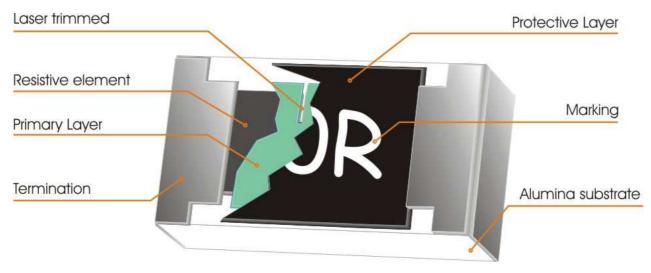
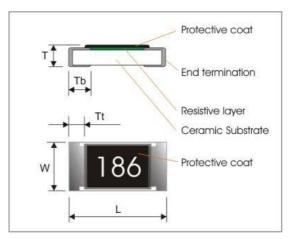


Fig 1. Construction of Chip-R

QUICK REFERENCE DATA


Item	General Specification			
Series No.	WF12G	WF08G	WF06G	WF04G
Size code	1206 (3216)	0805 (2125)	0603(1608)	0402(1005)
Resistance Tolerance	±1%, ±5%			
Resistance Range	$10M\Omega < R \le 100M\Omega$			$10M\Omega < R \le 30M\Omega$ (E24 series)
TCR (ppm/°C)	≤ ± 200 ppm/°C			≤ ± 300 ppm/°C
Max. dissipation at T _{amb} =70°C	1/4 W	1/8 W	1/10 W	1/16W
Max. Operation Voltage (DC or RMS)	200V	150V	50V	50V
Climatic category (IEC 60068)	55/155/56			

Note :

- 1. This is the maximum voltage that may be continuously supplied to the resistor element, see "IEC publication 60115-8"
- 2. Max. Operation Voltage : So called RCWV (Rated Continuous Working Voltage) is determined by

 $RCWV = \sqrt{Rated Power \times Resistance Value}$ or Max. RCWV listed above, whichever is lower.

DIMENSIONS(unit : mm) WF12G WF08G WF06G WF04G series 3.10 ± 0.15 2.00 ± 0.10 1.60 ± 0.10 1.00 ± 0.05 L W 1.60 ± 0.15 1.25 ± 0.10 0.80 ± 0.10 0.50 ± 0.05 0.50 ±0.25 0.40 ± 0.20 0.30 ± 0.10 0.20 ± 0.10 Tt Tb 0.50 ± 0.25 0.40 ± 0.20 0.30 ± 0.15 0.25 ± 0.10 0.55 ± 0.10 0.45 ± 0.15 Т 0.50 ± 0.15 0.35 ± 0.05

MARKING

3-digits marking

Each resistor is marked with a three digits code on the protective coating to designate the nominal resistance value.

Example

$$\begin{array}{rl} 306 &= 30 \ M_{\Omega} \\ 186 &= 18 \ M_{\Omega} \end{array}$$

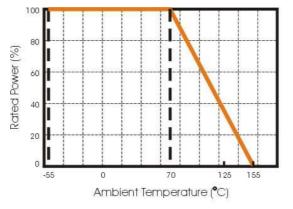
FUNCTIONAL DESCRIPTION

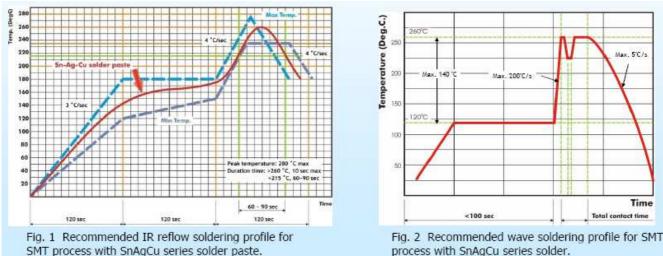
Product characterization

Standard values of nominal resistance are taken from the E96 & E24 series for resistors with a tolerance of \pm 1%, \pm 5%. The values of the E24/E96 series are in accordance with "IEC publication 60063".

Derating

The power that the resistor can dissipate depends on the operating temperature; see Fig.2




Figure 2. Maximum dissipation in percentage of rated power

As a function of the ambient temperature

SOLDERING CONDITION

The robust construction of chip resistors allows them to be completely immersed in a solder bath of 260°C for 10 seconds. Therefore, it is possible to mount Surface Mount Resistors on one side of a PCB and other discrete components on the reverse (mixed PCBs).

Surface Mount Resistors are tested for solderability at 235°C during 2 seconds. The test condition for no leaching is 260°C for 30 seconds. Typical examples of soldering processes that provide reliable joints without any damage are given in below. WF04G is not guaranteed with wave soldering process due to its 0402 size.

CATALOGUE NUMBERS

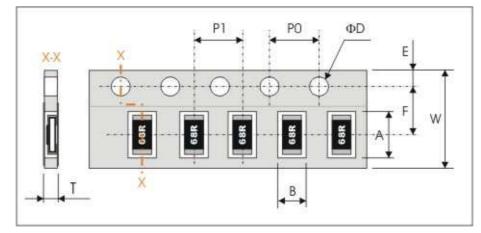
WF06	G	226_	J	Т	L
Size code	Type code	Resistance code	Tolerance	Packaging code	Termination code
WF12 : 1206 WF08 : 0805 WF06 : 0603 WF04 : 0402	G : High ohmic >10MΩ 1206 size=0.25W 0805 size=0.125W 0603 size=0.10W	5% E24: 2 significant digits followed by no. of zeros and a blank $11M\Omega = 116_$ $22M\Omega = 226_$ $30M\Omega = 306_$ ("_" means a blank) 1%, E24+E96: 3 significant digits followed by no. of zeros	J : ±5% F : ±1%	T : 7" Reeled taping B : Bulk	L = Sn base (lead free)
		100Ω =1000 37.4KΩ =3742			

The resistors have a catalogue number starting with :

- 1. Reeled tape packaging : 8mm width paper taping 5000pcs per 7" reel for 1206, 0805, 0603 (10,000pcs for 0402)
- 2. Bulk packaging : 5000pcs per polybag

TEST AND REQUIREMENTS(JIS C 5201-1 : 1998)

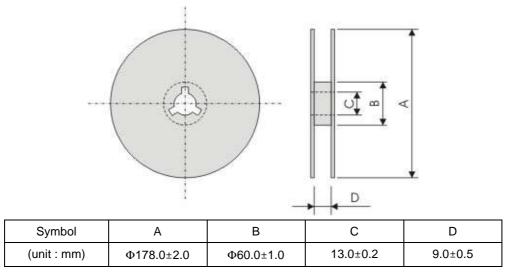
TEST	PROCEDURE	REQUIREMENT
Temperature Coefficient of Resistance (T.C.R)	Natural resistance change per change in degree centigrade. $\frac{R_2 - R_1}{R_1(t_2 - t_1)} \times 10^6 \text{ (ppm/°C)}$	Refer to quick reference data for T.C.R specification.
Clause 4.8	$R_1(t_2 - t_1)$	
	R1 : Resistance at reference temperature	
	R ₂ : Resistance at test temperature	
	t₁ : 20℃+5℃-1℃	
	t ₂ : Test temperature.	
Short time overload	Permanent resistance change after a 5 second application of a	No visible damage.
(S.T.O.L)	voltage $2.5xU_R$ or max. Overload voltage, whichever is less.	Δ R/R max. J: $\leq \pm$ (2%+0.1 Ω)
Clause 4.13		F:≦ ±(1%+0.05Ω)
Solderability	Un-mounted chips completely immersed for 2±0.5 second in a SAC	good tinning (>95% covered)
Clause 4.17	solder bath at 235℃±5℃.	no visible damage
Resistance to	Un-mounted chips completely immersed for 10±1second in a SAC	No visible damage.
soldering heat(R.S.H)	solder bath at 260℃±5°C	Δ R/R max. J: \leq ±(1%+0.1 Ω)
Clause 4.18		F:≦ ±(0.5%+0.05Ω)



TEST	PROCEDURE	REQUIREMENT	
Temperature cycling	1. 30 minutes at -55°C±3°C,	No visible damage.	
Clause 4.19	2. 2~3 minutes at 20℃+5℃-1℃,	$\Delta R/R \text{ max. } J \leq \pm (1\%+0.1\Omega)$	
	3. 30 minutes at +155°±3°C,	$F \leq \pm (0.5\% {+} 0.05 \Omega)$	
	4. 2~3 minutes at 20℃+5℃-1℃,		
	Total 5 continuous cycles.		
Load life	1000 +48/-0 hours, loaded with RCWV or Vmax in chamber	No visible damage.	
(endurance)	controller 70±2°C, 1.5 hours on and 0.5 hours off	Δ R/R max. J $\leq \pm$ (3%+0.1 Ω)	
Clause 4.25		$F\!\leq\pm\!(1\%\!+\!0.05\Omega)$	
Load life in Humidity	1000 +48/-0 hours, loaded with RCWV or Vmax in humidity chamber	No visible damage.	
Clause 4.24	controller at $40^{\circ}C\pm 2^{\circ}C$ and $90\sim 95\%$ relative humidity, 1.5hours on and 0.5 hours off	Δ R/R max. J $\leq \pm$ (3%+0.1 Ω)	
		$F\!\leq\pm\!(1\%\!+\!0.05\Omega)$	
Bending strength	Resistors mounted on a 90mm glass epoxy resin PCB(FR4);	ΔR/R max. ±(1%+0.10Ω)	
Clause 4.33	bending : 3 mm, once for 10 seconds		
Adhesion	Pressurizing force: 5N, Test time: 10±1sec.	No remarkable damage or	
Clause 4.32		removal of the terminations.	
Insulation Resistance	Apply the maximum overload voltage (DC) for 1minute	$R \ge 10 G \Omega$	
Clause 4.6			
Dielectric Withstand	Apply the maximum overload voltage (AC) for 1 minute	No breakdown or flashover	
Voltage			
Clause 4.7			

Г

PACKAGING


Paper Tape specifications (unit :mm)

Series No.	А	В	W	F	E
WF12G	3.60±0.20	2.00±0.20	8.00±0.30	3.50±0.2	1.75±0.10
WF08G	2.40±0.20	1.65±0.20	8.00±0.30	3.50±0.2	1.75±0.10
WF06G	1.90±0.20	1.10±0.20	8.00±0.30	3.50±0.2	1.75±0.10
WF04G	1.20±0.10	0.70±0.10	8.00±0.30	3.50±0.2	1.75±0.10

Series No.	P1	P0	ΦD	Т
WF12G	4.00±0.10	4.00±0.10		Max. 1.0
WF08G	4.00±0.10	4.00±0.10	Φ1.50 ^{+0.1}	
WF06G	4.00±0.10	4.00±0.10	$\Psi 1.50_{-0.0}$	0.65±0.1
WF04G	2.00±0.10	4.00±0.10		0.40±0.05

Reel dimensions

Taping quantity

- Chip resistors 5,000 pcs/reel for 1206, 0805, 0603 (10,000 pcs/reel for 0402)

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Walsin:

 WF08G2005FTL
 WF08G1505FTL
 WF12G_FTL 11M - 30M
 WF12G_FTL 31M - 100M
 WF12G_JTL 11M - 30M

 WF12G_JTL 31M - 100M
 WF06G1305FTL
 WF06G_FTL 11M - 30M
 WF06G_FTL 31M - 100M
 WF06G_JTL 11M - 30M

 30M
 WF06G_JTL 31M - 100M
 WF08G_FTL 11M - 30M
 WF08G_FTL 31M - 100M
 WF08G_JTL 11M - 30M

 WF08G_JTL 31M - 100M
 WF08G_FTL 11M - 30M
 WF08G_FTL 31M - 100M
 WF08G_JTL 31M - 100M