

For eBike charger with constant current and constant voltage mode

About this document

Get exclusive information Register product

Scope and purpose

This document is an engineering report for a 170 W AC-DC converter reference design which uses Infineon's XDP[™] digital power XDPS2201 hybrid-flyback controller and a CoolSET[™] daughterboard with Infineons's ICE5AR4770AG quasi-resonant (QR) flyback controller.

The converter has an extraordinarily high peak efficiency of **95 percent** and two control inputs that define the setpoints for the constant current (CC) and constant voltage (CV) regulation loops. Thus, it is ready to be used together with a safety switch and charging controller in battery charging applications. It can nevertheless be used in standard power supply applications as well.

The hybrid-flyback topology enables an extraordinarily small transformer size, comparable to resonant halfbridge and much smaller than standard flyback. Unlike resonant topologies the transformer construction is as simple as that of a standard flyback, without the need to minimize leakage inductance. This leads to very competitive system cost of the presented solution.

This document contains design features, board specifactions, performance data and a bill of materials (BOM) including transformer specifications.

Intended audience

Design engineers, technicians, and developers of electronic systems.

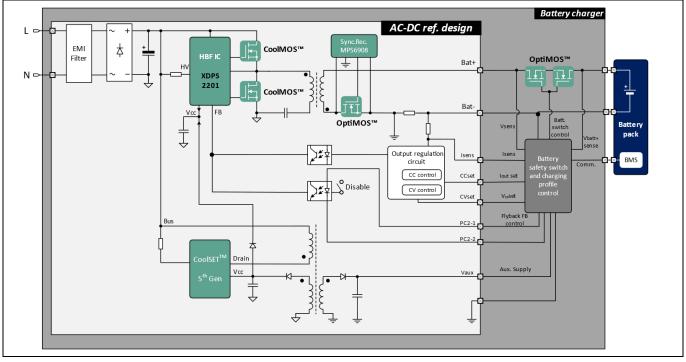
For eBike charger with constant current and constant voltage mode Table of contents

Table of contents

Abo	out this document	1
Tab	le of contents	2
1	Test setup and safety instructions	
1.1	CC test setup	4
1.2	CV test setup	4
2	Board specifications	5
3	Schematic and layout	7
4	Performance data	11
4.1	Efficiency	
4.1	Charging behavior	
4.2	Standby power	13
4.3	Thermal measurement	14
4.4	Conducted emissions	16
5	Switching waveforms	17
5.1	Start-up	
5.2	Operation mode	
5.3	Protection	19
6	Bill of materials and specifications	22
6.1	BOM of XDP [™] digital power XDPS2201 170W AC-DC	22
6.2	BOM of 170 W AC-DC CoolSET [™] -DB	
6.3	Transformer specifications	26
Refe	erences	28
Revi	vision history	29
	•	· · · · · · · · · · · · · · · · · · ·

For eBike charger with constant current and constant voltage mode Test setup and safety instructions

1 Test setup and safety instructions


This engineering report describes the board specifications, schematics and layout, BOM, and performance data.

This AC-DC reference design consists of a main board and a CoolSET[™] daughterboard. The main board includes the hybrid-flyback (HFB) stage with Infineon's XDP[™] digital power XDPS2201 hybrid-flyback controller and the output regulation circuit (CC-control and CV-control feature). The hybrid-flyback stage can be disabled via the disable button. A programming interface gives access to the XDPS2201 for parameter configuration and failure mode reporting.

The CoolSET[™] daughterboard includes a QR flyback stage with Infineon's ICE5AR4770AG flyback controller and provides an independent constant 5 V auxiliary supply for the secondary side.

To implement a battery charger with this reference design, a battery safety switch must be connected in order to guarantee safe operation.

Attention: For safety reasons, it is prohibited to connect this reference design board to any battery without adding the battery safety switch externally.

Test setup of AC-DC reference design with external battery

For eBike charger with constant current and constant voltage mode Test setup and safety instructions

All mentioned measurements in the engineering report have been performed with the two following test setups. An AC source is used to power the reference board.

1.1 CC test setup

To set the desired charging current the CC_{set} value is controlled via an external DC source, according to **Figure 4**. The constant output voltage is used as default ($CV_{set} = 3.0 \text{ V}$, $V_{CV} = 42 \text{ V DC}$). An electronic load in CV mode is used to simulate a charging battery.

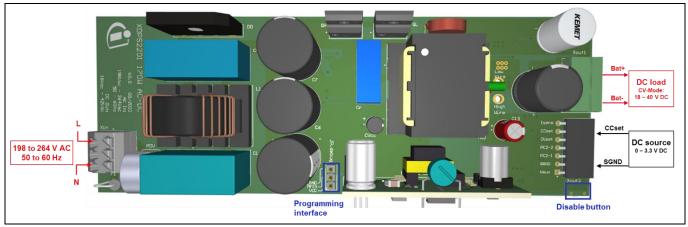


Figure 2 CC test setup with electronic load and setting CCset via DC source

1.2 CV test setup

To set the desired constant output voltage the CV_{set} value is controlled via an external DC source, according to **Figure 5**. The charging current is set to high (CC_{set} = 3.0 V) via another external DC source. An electronic load in CC mode is used to simulate a charging battery.

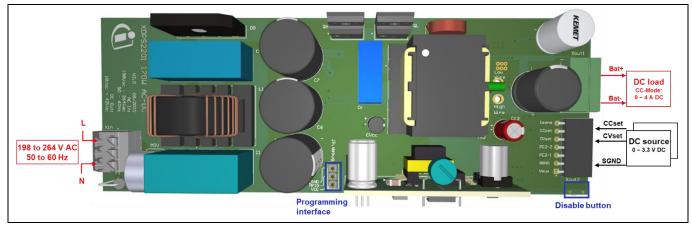


Figure 3 CV test setup with electronic load and setting CCset via DC source

Attention: Lethal voltages are present on this reference design. Do not operate the board unless you are trained to handle high-voltage circuits. Do not leave this board unattended when it is powered up.

For eBike charger with constant current and constant voltage mode Board specifications

2 Board specifications

Table 1Input and output specifications

Description	Symbol	Value	Unit
Input voltage range	V _{in}	198 to 264	V AC
Input frequency	f _{in}	50 to 60	Hz
CC _{set} range (see Figure 4)	CC_{set}	0 to 3.3	V DC
CV_{set} range (default $CV_{set} = 0 V$, $V_{CV} = 42 V DC$, see Figure 5)	CV_{set}	0 to 3.3	V DC
Output voltage range	V _{out}	18 to 42	V DC
Nominal output current	l _{outnom}	4.0	А
Max. output current	l _{outmax}	4.22	А
Efficiency at full output power (V _{in} = 230 V AC; output load = 40 V; I _{outmax} = 4.22 A)	η	More than 95	%
Average efficiency (V _{in} = 230 V AC)	η_{avg}	94.7	%

The following table highlights the key components and board dimensions of the main board.

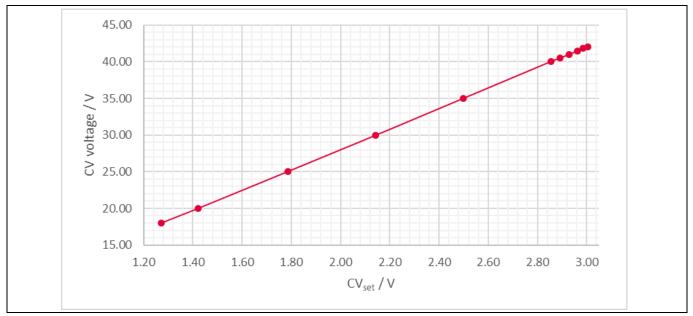
Table 2Key components and board dimensions - main board

Item	Specification
HFB controller IC	XDPS2201
MOSFETs	2x IPA60R280P7S, BSC160N15NS5, BSS169
PCB dimensions (L x W x H)	155 mm x 55.5 mm x 27 mm

The following table highlights the key components and board dimensions of the CoolSET[™] daughterboard.

Table 3 Key components and board dimensions - CoolSET[™] daughterboard

ltem	Specification
Controller IC + integrated CoolMOS™	ICE5AR4770AG
PCB dimensions (L x W x H)	50 mm x 25 mm x 14 mm


For eBike charger with constant current and constant voltage mode Board specifications

4.50 4.00 3.50 ∢ Charging current / A 3.00 2.50 1.50 1.00 1.00 0.50 0.00 1.80 0.30 0.90 1.20 1.50 2.70 0.00 0.60 2.10 2.40 3.00 3.30 CC_{set} / V

Set the CC_{set} value via control interface connector Xout2, Pin 6 according to the desired charging current, as described in **Figure 4**. By default, the CC_{set} is not set internally and needs to be set from external DC supply.

Figure 4 CCset values for desired charging current

Set the CV_{set} value via control interface connector Xout2, Pin5 according to the desired CV voltage, as described in **Figure 5**. By default, the CV_{set} value is set to 3.00 V via a resistor network, so CV voltage V_{CV} = 42 V.

CVset values for desired CV voltage

For eBike charger with constant current and constant voltage mode Schematic and layout

3at Interface Xourl 2 2 -l+Q Ъ នុទ្ធី C21 2.2aF ech ufineon -II-ā ifineon Somk as Somk 20 20 20 1^E 1.8 -l+§ ۶⊦ 182 ₩₿ XDPS2201 170W AC-DC.SchDoc li-8 -Ing ≥. HSGD HSV CC SGD -lu-ŝ NAI NA2 E IN DauxD 바용 -li-g -luŝ 3.2nF ž¥ چالية Sul--li-8 њŝ

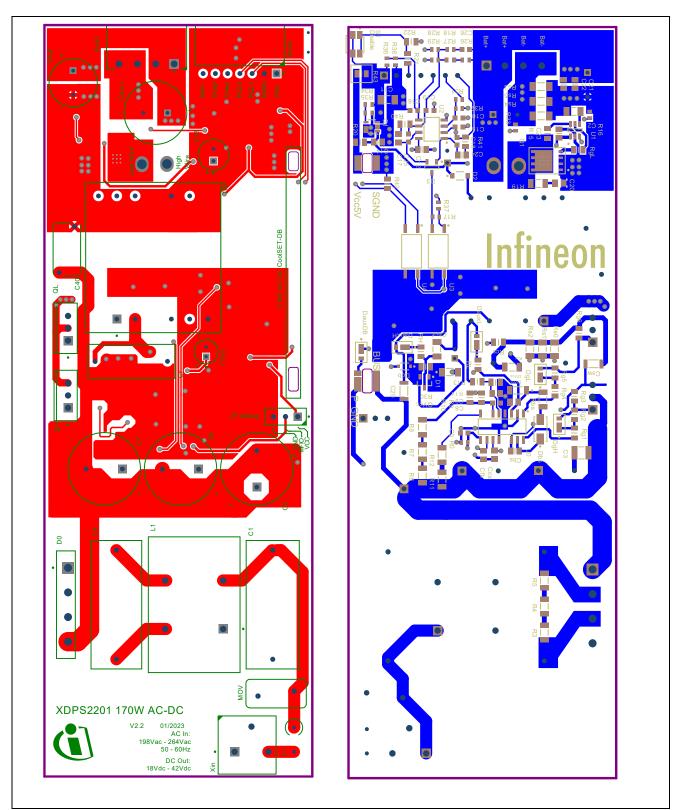

3 Schematic and layout

Figure 6

Main board schematic

For eBike charger with constant current and constant voltage mode Schematic and layout

Main board PCB top (left) and bottom (right)

For eBike charger with constant current and constant voltage mode Schematic and layout

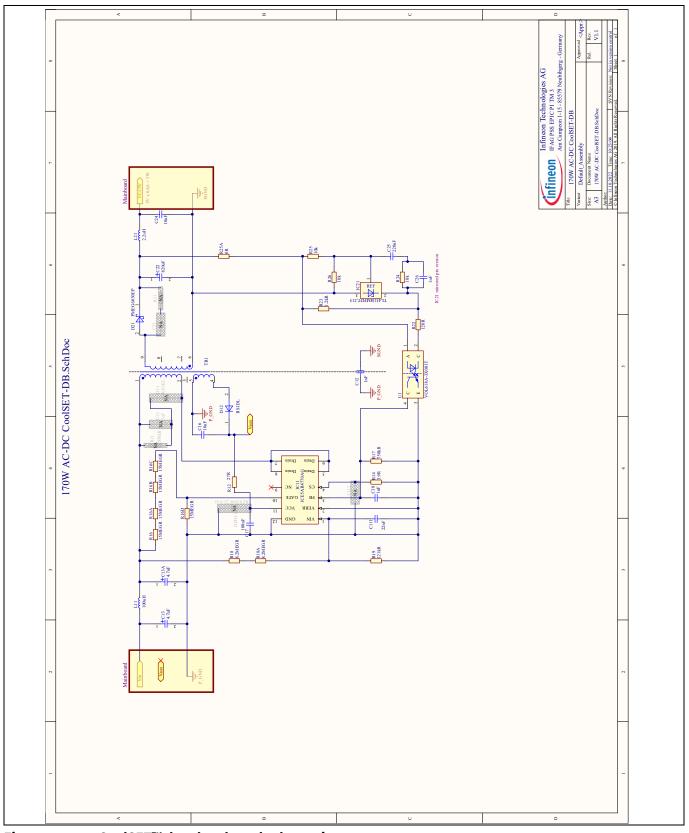


Figure 8

CoolSET™ daughterboard schematic

For eBike charger with constant current and constant voltage mode Schematic and layout

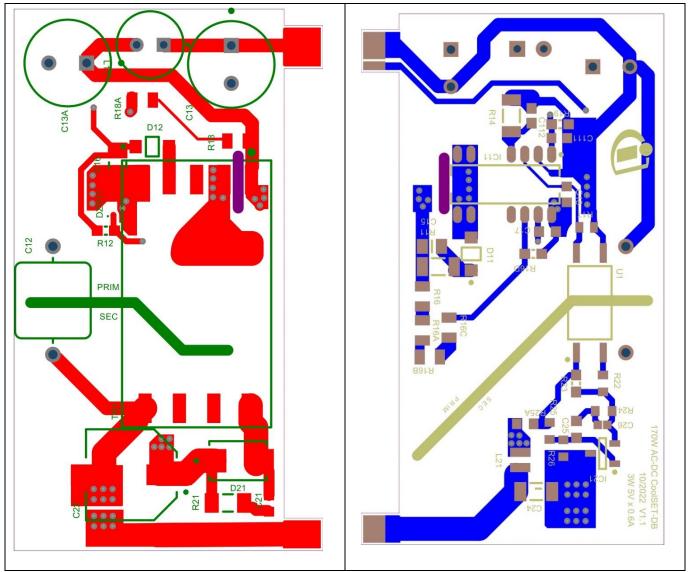
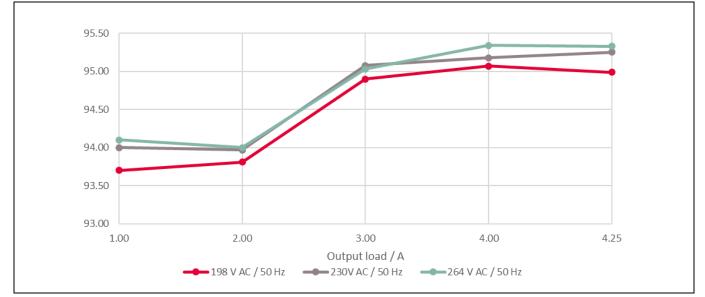


Figure 9 CoolSET[™] daughterboard PCB top (left) and bottom (right)


For eBike charger with constant current and constant voltage mode Performance data

4 Performance data

The performance data have been measured with the CC test setup described in Figure 2.

4.1 Efficiency

The efficiency was measured with different input voltage V_{in}. The battery load was simulated via an electronic load in CV mode. The board was lying on a laboratory desk under free air convection.

Figure 10 Efficiency at different input voltages

The average efficiency was measured at different input voltages at full output power – refer to **Table 4**.

i able 4	Average efficier	icy			
V AC (V _{RMS})	Output load (V)	I _{out} (A)	I _{outnom} (%)	Efficiency	Average efficiency
		1.00	25	93.7	
		2.00	50	93.8	
198	40	3.00	75	94.9	94.5
		4.00	100	95.1	
		4.25	125	95.0	
		1.00	25	94.0	
		2.00	50	94.0	
230	40	3.00	75	95.1	94.7
		4.00	100	95.2	
		4.25	125	95.3	
		1.00	25	94.1	
		2.00	50	94.0	
264	40	3.00	75	95.0	94.8
		4.00	100	95.3	
		4.25	125	95.3	

Table 4 Average efficiency

For eBike charger with constant current and constant voltage mode Performance data

4.1 Charging behavior

Figure 11 shows the implemented CC-CV charging method with default CV setting ($CV_{set} = 3.0 V$) and external CC setting to 0.5 A ($CC_{set} = 0.42 V$) for pre-charging current in the range of 18 V to 27 V battery voltage and to 4 A for nominal charging current ($CC_{set} = 3.05 V$) up to 42 V battery voltage. At 42 V battery voltage, CV control takes over and limits the battery voltage accordingly. Accuracy will depend on the tolerance of the resistor network of voltage sensing and the accuracy of the reference voltage.

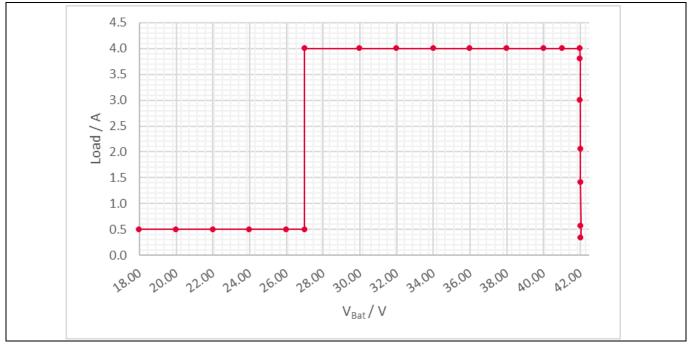


Figure 11 CC-CV charging behavior, Iload = 0.5 A and 4 A, CCset = 0.42 V and 3.05 V, CVset = 3.0 V

For eBike charger with constant current and constant voltage mode Performance data

4.2 Standby power

The HFB under no output load is operating in CV mode, while the XDP[™] digital power XDPS2201 controller is powered via the CoolSET[™] daughterboard. **Figure 12** shows the input power consumption under no-load condition.

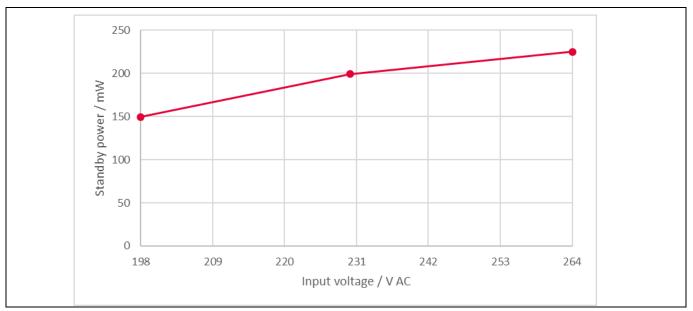


Figure 12 Standby power consumption

For eBike charger with constant current and constant voltage mode Performance data

4.3 Thermal measurement

The open-frame thermal measurement was done after one hour of operation at nominal output load, using an infrared thermography camera. The ambient temperature was approximately 20°C.

V _{in} = 230 V AC, P _{out} = 170 W	Parameters	
	Emissivity 0.95	
spot 64.5 °C	78.2 Reflected temp. 22.0°	2
box	Atmospheric temp. 20.0%	2
max 82.4 Sp1 Bx3 Bx2	Relative humidity 50.0%	ò
bx2 max 80.6	Camera information	
bx3	Camera model FLIR T60	0
	Lens FOL13	
max 78.4	Camera serial 5590568	Э
	Field of view 45.01	
¢FLIR	23.1	

Figure 13 Infrared thermal image of PCB top side

Table J	able 5 reliperature spots of r cb top side					
No.	Designator	Function	Component	Temperature		
Bx1 max	Q1	SR MOSFET OptiMOS™	BSC160N15NS5	82.4°C		
Bx2 max	TR0	Transformer	NP2022-15647-B	80.6°C		
Bx3 max	QH, QL	Half-bridge CoolMOS™	IPA60R280P7S	78.4°C		
Sp1	D0	Bridge rectifier	GBU8K	64.5°C		

Table 5Temperature spots of PCB top side

For eBike charger with constant current and constant voltage mode Performance data

V _{in} = 230 V AC, P _{out} = 170 W	Parameters	
	Emissivity	0.95
spot 65.7 °C 83.8	Reflected temp.	22.0°C
box	Atmospheric temp.	20.0°C
max 86.4 Bx1 7	Relative humidity	50.0%
bx2 max 85.9 Sp1 Bx2	Camera information	I FLIR T600
	Lens I	OL13
	Camera serial 5	55905689
	Field of view	45.01
\$FLIR 23.2		

Figure 14 Infrared thermal image of PCB bottom side

Table 6	Temperature spots of PCB bottom side	•

No.	Designator	Function	Component	Temperature
Bx1 max	QV _{cc}	Linear regulator transistor	BSS169	86.4°C
Bx2 max	Q1	SR MOSFET OptiMOS™	BSC160N15NS5	85.9°C
Sp1	UO	Hybrid-flyback controller	XDPS2201	65.7°C

For eBike charger with constant current and constant voltage mode Performance data

4.4 Conducted emissions

The conducted emissions test was performed at full output power according to EN 55014 for battery chargers. The measurement was performed in phase and neutral configuration with a rated voltage of 230 V AC/50 Hz and with a sufficient margin to the limit of 6 dB, except spot #1.

The measurement equipment used for this emissions test was Rohde & Schwarz HM6050-2 and Tektronix RSA503A. The setup was based on EN 55022 standard class B limits. A variable wire resistor adjusted to 9.5 Ω was used as a dummy load.

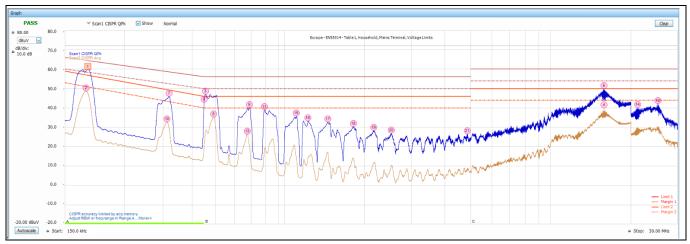


Figure 15 Conducted emissions – phase line

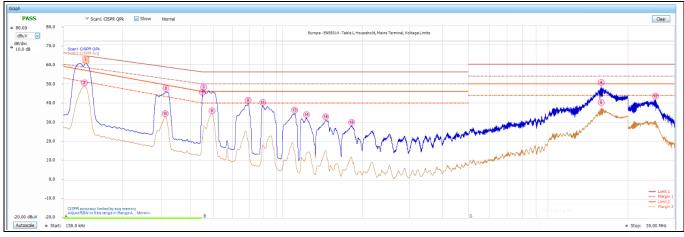


Figure 16

Conducted emissions – neutral line

For eBike charger with constant current and constant voltage mode Switching waveforms

5 Switching waveforms

This chapter contains switching waveforms for start-up, operation mode, and protection features.

5.1 Start-up

Start-up behavior was measured at full-load condition. The HFB operates in continuous resonant mode (CRM) – see **Figure 17**. At no-load condition, the HFB remains in burst mode (BM) mode, as shown in **Figure 18**.

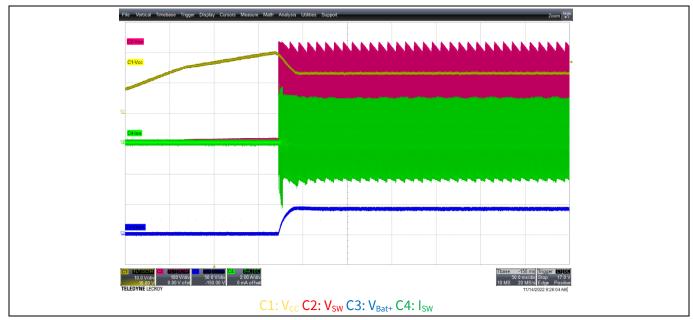


Figure 17 Start-up at full load, 230 V AC input

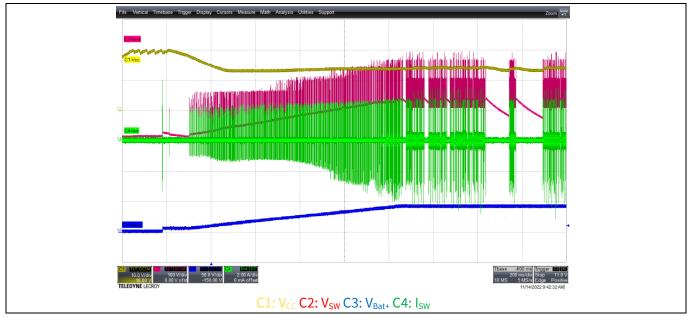


Figure 18 Start-up at no load, 230 V AC input

For eBike charger with constant current and constant voltage mode Switching waveforms

5.2 Operation mode

Modes during steady-state operation

The HFB has multiple operation modes to optimize efficiency over the line, load current, and output voltage ranges. **Figure 19** shows CRM operation at full-load condition in steady-state. For medium-load condition, the HFB operates in the zero-voltage resonant valley switching (ZV-RVS) mode (see **Figure 20**) while BM mode covers the light-load and no-load range, as shown in **Figure 21**. For a more detailed description of multiple operation mode please refer to the design guide **[1**].

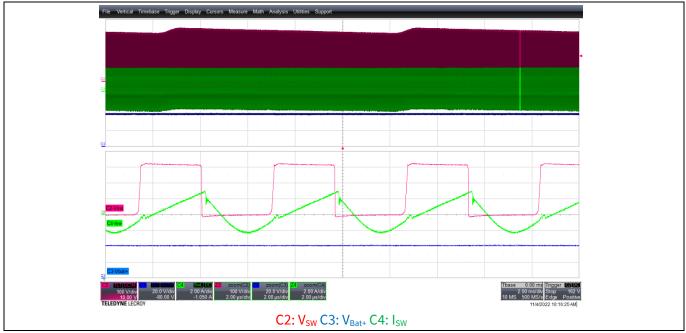


Figure 19 CRM mode at VBat+ = 40 V, load = 4 A, CCset: 3.07 V

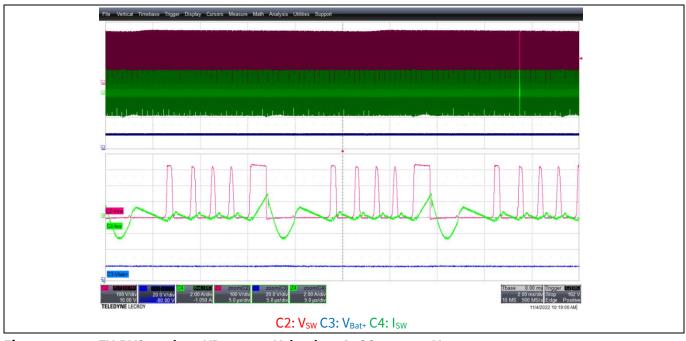


Figure 20 ZV-RVS mode at VBat+ = 18 V, load = 2 A, CCset: 1.54 V

For eBike charger with constant current and constant voltage mode Switching waveforms

Figure 21 Burst mode at VBat+ = 40 V, load = 0 A, CCset: 0 V

5.3 Protection

The XDP^M digital power XDPS2201 has various protection features during normal operation. This chapter shows the overcurrent protection (OCP) with different levels, input overvoltage protection (V_{in_OVP}), and output undervoltage protection V_{in_UVP}). Once protection is triggered, the correspondending error code is sent out from the MFIO pin, see [1]. For a detailed description of all protection features, refer to the datasheet [2].

For eBike charger with constant current and constant voltage mode Switching waveforms

Overcurrent protection

The following figures show overcurrent protection level 1 (OCP1lev1) and level 2 (OCP1lev2) at different output loads.



Figure 22 OCP1lev1 triggering at output load of 4.4 A

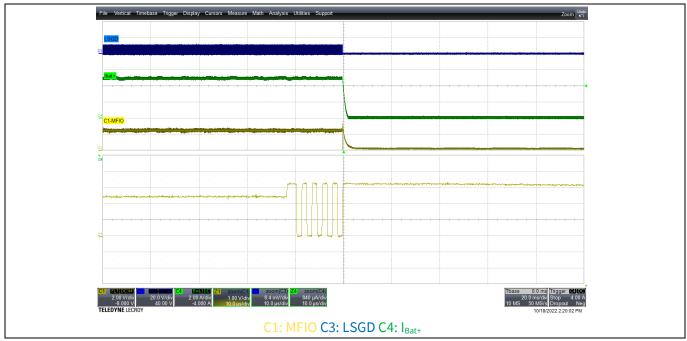


Figure 23 OCP1lev2 triggering at output load of 4.7 A

For eBike charger with constant current and constant voltage mode Switching waveforms

Input overvoltage protection

In case of overvoltage at the input, the HFB controller stops switching for certain time and enters auto-restart mode.

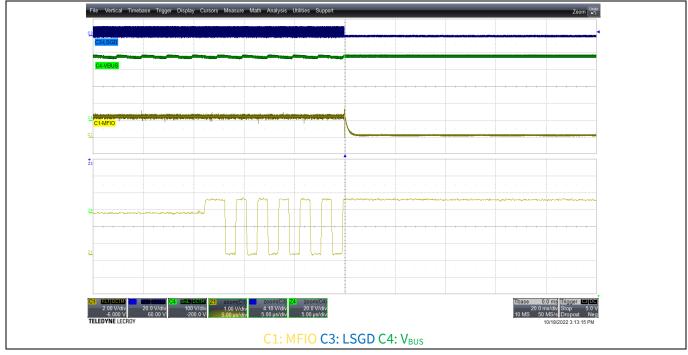


Figure 24 Vin_OVP triggering at input voltage of 268 V AC

Output undervoltage protection

In case of an overload event at the output the HFB controller stops switching and enters auto-restart mode immediately.

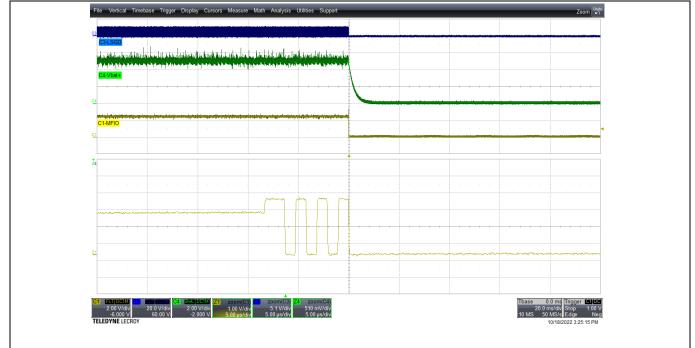


Figure 25 Vout_UVP triggering at overload of 3.3 Ω resistor at the output

For eBike charger with constant current and constant voltage mode Bill of materials and specifications

6 Bill of materials and specifications

6.1 BOM of XDP[™] digital power XDPS2201 170W AC-DC

Table 7BOM of main board

Designator	Description	Manufacturer	Part number
C0	Capacitor 100 pF/50 V/0603/C0G/5%		
C1	Capacitor 1 μF/630 V/THT 22.5//10%	TDK Corporation	B32923C3105K189
C2, Cbuf	Capacitor 1 µF/50 V/1206/X7R/10%		
C3	Capacitor 100 nF/500 V/1210/X7R/10%		
C4	Capacitor 680 nF/630 V/THT 22.5 mm//10%	Epcos	B32923C3684K189
C5, C6, C7	Capacitor 56 μF/400 V/D14.5 mm x L25 mm//20%	Rubycon	400BXW56MEFR14.5X25
C8	Capacitor 330 pF/50 V/0603/X7R/10%		
C10, C15, C16, C18, C19, C25	Capacitor 1 nF/50 V/0603/C0G/1%		
C11	Capacitor 47 µF/16 V/1206/X5R/20%		
C12, C23	Capacitor 100 nF/50 V/0805/X7R/5%		
C13	Capacitor 220 μF/25 V/THT/Radial//20%	Würth Elektronik	860010473011
C17	Capacitor 10 nF/50 V/0805/X7R/10%		
C21, C22	Capacitor 2.2 µF/50 V/0805/X5R/10%		
C24	Capacitor 15nF/ 50V/ 0805/ X7R/5%		
C26	Capacitor 6.8nF/ 50V/ 0603/ X7R/5%		
C29	Capacitor 1 nF/630 V/1206/X7R/10%	Murata	GRM31AR72J102KW01
C40	Capacitor 3.2 nF/760 V/THT/Radial//20%	Vishay	440LD32-R
Cbs	Capacitor 100 nF/50 V/0805/X7R/10%		
Ccs	Capacitor 22 pF/50 V/0805//5%		
Cfb	Capacitor 150 pF/50 V/0805/C0G/5%		
Cout	Capacitor 100 μF/50 V/D10 x L17 L/A = 5 mm//20%	Kemet	ESX107M050AH2AA
Cout1	Capacitor 680 μF/50 V/THT//20%	Rubycon	50PX680MEFC12.5X20
Cr	Capacitor 220 nF/400 V/THT 15 mm//5%	Epcos	B32652A4224J000
CVcc	Capacitor 47 µF/35 V/THT/Radial//20%	Würth Elektronik	860020572006
CVcc1	Capacitor 1uF/ 50V/ 0805/ X7R/10%		
D0	Diode GBU8K	ON Semiconductor	GBU8K
D1	Diode 12 V//SOD-80//	Vishay	TZMB12-GS08
D2	Diode PMEG6020AELRX//SOD-123//	Nexperia	PMEG6020AELRX
D3	Diode BAW156//SOT-23//	Infineon Technologies	BAW156

For eBike charger with constant current and constant voltage mode Bill of materials and specifications

DauxDB, DauxH, DauxL, DgH, DgL	Diode RF05VAM2STR//TUMD2M//	ROHM Semiconductors	RF05VAM2STR
Dbs	Diode US1M//DO-214AC (SMA)//	Vishay	US1M-E3/61T
Ddb	Diode 1N4148WX-TP//SOD-323//	Micro Commercial Components	1N4148WX-TP
DVcc	Diode 24 V//SOD-80C//	Nexperia	BZV55C24
F1	0215002.MXEP/250 V/Cylindrical leaded//	Littelfuse	0215002.MXEP
JP.debug	Connector HTSW-103-07-G-S//CON-THT- 2.54-3-1-8.38//	Samtec	HTSW-103-07-G-S
L1	15 mH//THT size L//30%	Würth Elektronik	7448040515
MOV	560 V/460 V/THT//	Bourns	MOV-10D561K
Q1	BSC160N15NS5//PG-TDSON-8-46, PG- TDSON-8-7//	Infineon Technologies	BSC160N15NS5
QH, QL	IPA60R280P7S//PG-TO220-3-312//	Infineon Technologies	IPA60R280P7S
QVcc	BSS169//PG-SOT-23//	Infineon Technologies	BSS169
R3, R4, R5	Resistor 330 k/200 V/1206//1%		
R6, R7, R8	Resistor 2.2 MEG/200 V/1206//1%		
R9	Resistor 82 k/150 V/0805//1%		
R10	Resistor 75 k/150 V/0805//1%		
R11, R12	Resistor 56 k/200 V/1206//1%		
R13, R22	Resistor 100 k/150 V/0805//1%		
R14	Resistor 20 k/150 V/0805//1%		
R15	Resistor 300 R/150 V/0805//1%		
R16	Resistor 150 k/75 V/0603//1%		
R18, R33	Resistor 2.2k/ 75V/ 0603/ /1%		
R21	Resistor 3.9 k/150 V/0805//1%		
R26, R29, R36	Resistor 24k/ 75V/ 0603/ /1%		
R27	Resistor 0 R/50 V/0603//0 R		
R28	Resistor 2k/ 75V/ 0603/ /1%		
R30	Resistor 47 k/150 V/0805//1%		
R31	Resistor 130 k/75 V/0603//1%		
R32	Resistor 3 k/75 V/0603//1%		
R37	Resistor 5.1 k/75 V/0603//1%		
R38	Resistor 36k/ 75V/ 0603/ /1%		
R40	Resistor 33k/ 150V/ 0805/ /1%		
R41	Resistor 120k/ 150V/ 0805/ /1%		

For eBike charger with constant current and constant voltage mode Bill of materials and specifications

D42 D42	Decister 0 D/150 \//0005 //			
R42, R43, RH, RL	Resistor 0 R/150 V/0805//	5//		
Rbs	Resistor 1.5R/ 200V/ 1206/ /1%			
Rcr	Resistor 1 MEG/200 V/1206//1%			
Rcs	Resistor 1 k/150 V/0805//1%			
Rg1, Rg2, Rg4, Rg5, RgL	Resistor 22 R/150 V/0805//1%			
Rg3	Resistor 22 k/150 V/0805//1%			
Rg6	Resistor 22 k/150 V/0805//1%			
Rs0	Resistor 220 mR/675 mV/1206//1%	Bourns	CRM1206-FX-R220 E LF	
Rs1, Rs2	Resistor 330 mR/675 V/1206//1%	Bourns	CRM1206-FX-R330 E LF	
Rs3, Rs4, Rs5	Resistor 50 mR//1206//1%	Vishay	WFC1206R0500FE66	
S1	EVQ9P701K//SMD four pads//	Panasonic	EVQ9P701K	
TR0	NP2022-15647-B/	ICT	NP2022-15647-B	
U0	XDPS2201//PG-DSO-14//	Infineon Technologies	XDPS2201	
U1	MP6908AGJ-P//TSOT23-6//	Monolithic Power Systems	MP6908AGJ-P	
U2	TLV9102IDR//SOIC-8//	Texas Instruments	TLV9102IDR	
U3, U4	Optocoupler VOL618A-3X001T//LSOP-4//	Vishay	VOL618A-3X001T	
Xin	Connector 691412120003B//WR-TBL//	Würth Elektronik	691412120003B	
Xout1	Connector 691322310004//WR-TBL//	Würth Elektronik	691322310004	
Xout2	Connector 613007143121/ / THT 7 PIN 2.54mm pitch/ /	Würth Elektronik	613007143121	

6.2 BOM of 170 W AC-DC CoolSET[™]-DB

 Table 8
 BOM of CoolSET[™] daughterboard

Designator	Description	Manufacturer	Part number
C12	Capacitor 1nF/500 V/THT/Radial//20%	Murata	DE1E3RA102MA4BQ01F
C13, C13A	Capacitor 4.7 μF/400 V/THT/Radial//20%	Würth Elektronik	860021374008
C16	Capacitor 10 μF/50 V/1206/X7R//10%		
C17	Capacitor 100 nF/50 V/0603/X7R//10%		
C18	Capacitor 1 nF/50 V/0603/X7R//10%		
C22	Capacitor 820 µF/6.3 V/SMD//20%	Würth Elektronik	875075155009
C24	Capacitor 10 µF/25 V/1206/C0G//10%		
C25	Capacitor 220 nF/10 V/0603/X7R//5%		

For eBike charger with constant current and constant voltage mode Bill of materials and specifications

C26	Capacitor 1 nF/25 V/0402/C0G//2%		
C111	Capacitor 22 nF/50 V/0603//10%		
D12	RS1DL	Taiwan Semiconductor	RS1DL
D21	Diode PMEG6030EP//SOD-128//	Nexperia	PMEG6030EP
IC11	ICE5AR4770AG//PG-DSO-12//	Infineon Technologies	ICE5AR4770AG
IC21	TL431BMFDT, 215	Nexperia	TL431BMFDT,215
L11	Inductor 100 μH//WE_7447462//10%	Würth Elektronik	7447462101
L21	Inductor 2.2 μ H//SMD//20%	Würth Elektronik	74438343022
R12	Resistor 27 R/75 V/0603//1%		
R14	Resistor 3.90 R/200 V/1206//1%		
R16, R16A, R16B, R16C	Resistor 15 MEGR/150 V/0805//0R		
R16D	Resistor 15 MEGR/75 V/0603//1%		
R17	Resistor 750 kR/75 V/0603//1%		
R18, R18A	Resistor 8.2 MEGR/150 V/0805//0R		
R19	Resistor 121 kR/75 V/0603//1%		
R22	Resistor 120 R/75 V/0603//1%		
R23	Resistor 1.2 kR/75 V/0603//1%		
R24, R25, R26	Resistor 10 k/75 V/0603//1%		
R25A	Resistor 0 R/75 V/0603//1%		
TR1	750344058 (Rev. 02)/1.96 mH	Würth Elektronik	750344058
U1	Optocoupler VOL618A-3X001T//LSOP- 4//	Vishay	VOL618A-3X001T

For eBike charger with constant current and constant voltage mode Bill of materials and specifications

6.3 Transformer specifications

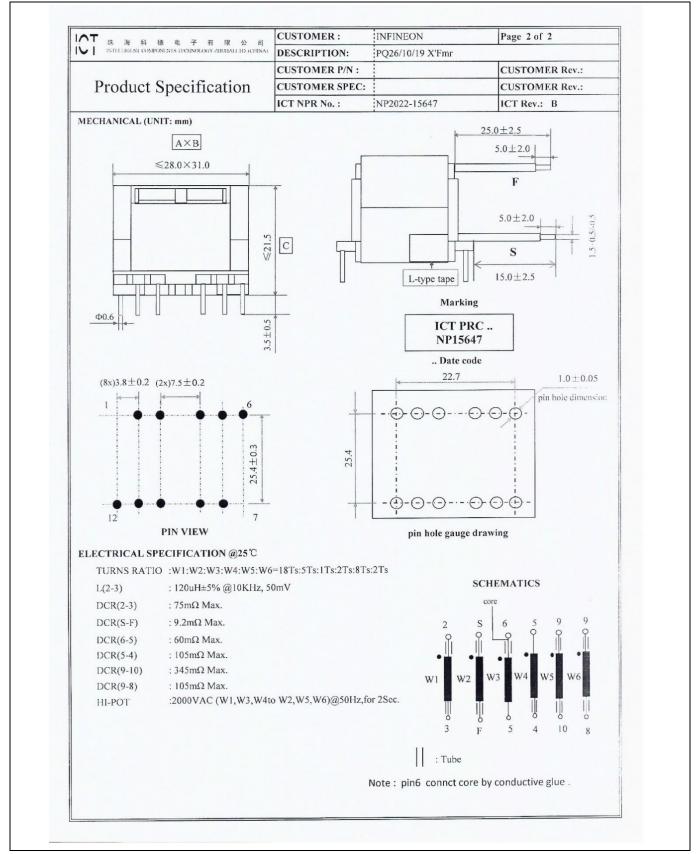


Figure 26 Transformer specifications of NP2022-15647-B

For eBike charger with constant current and constant voltage mode Bill of materials and specifications

SPECIFICATION SHEET 1 OF 1		Dimensions in ters.	This drawing is dual dimensioned. Dimensions in brackets are in millimeters.	CONVENTION PLACEMENT www.ww.antina.com/mido.com	REV. 02 DATE 2018-08-21
750344058	TRANSFORMER		Angles: ±1° Decimals: ±005 [13] Fractions: ±1/64 Footprint ± 005 [13]	pe & Reel	Method: Tape & Reel HJH PKG-1043
PART NO.	Е	DRAWING TITLE	Inless	Specifications	Packaging
Plus ^{TII} found in AM113 p	Product contains reportable levels of REACH SVHC component Dechlorane Plus ^{TII} found in AM113 plastic color may vary depending on availability.	s reportable levels of REACH ending on availability.	Product contain: . Wire insulation color may vary dep	S status not affected by wire color	Wire insulation & RoH
peak, Overvoltage Category II,	GENERAL SPECIFICATIONS: OPERATING TEMPERATURE RANGE: -40°C to +125°C including temp rise. Designed to comply with the following requirements as defined by IEC60350-1, EN60950-1, UL60950-10.5A60950-1 and AS/NL2560950.1: - Reinforced insulation for a primary circuit at a working voltage of 265/mms, 400/peek, Overvoltage Category II, Pollution Degree 2.	GENERAL SPECIFICATIONS: OPERATING TEMPERATURE RANCE: -40°C to +125°C in Designed to comply with the following requirements as defin EN60950-1, UL60650-1/CSA60950-1 and ASN/2560950-1. - Reinforced insulation for a primary circuit at a working vo Polation Degree 2.	5V-0.6A	J n em 1	
			(5)	• <u> </u>	
		â	(1,2,00) (1,2,0) (
	ti.				
				Lister A Concerts A Co	
VALUE 3.52 other max.monit 3.52 others max. 0.833 others max. 0.833 others max. 0.833 others max. 1.96mH ±10% 1.44µH max. 1 4.51, ±2% 12.6:1, ±2% 12.6:1, ±2%					

Figure 27 Transformer specifications of 75034405

For eBike charger with constant current and constant voltage mode References

References

- [1] Infineon Technologies AG: *Hybrid-flyback converter design with XDP™ digital power XDPS2201*; **Available online**
- [2] Infineon Technologies AG: XDPS2201 Datasheet; Available online

For eBike charger with constant current and constant voltage mode Revision history

Revision history

Document revision	Date	Description of changes
V 1.0	2023-01-24	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-01-24 Published by

Infineon Technologies AG 81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference ER_2210_PL21_2211_140530

Important notice

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

Warnings

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: REFXDPS2201170WBPATOBO1