

# **XMCxxxxSC**

Wireless Power Controller Series for Commercial and Industrial Applications

XMC1000 Family

ARM<sup>®</sup> Cortex<sup>®</sup>-M0 32-bit processor core

**Data Sheet** 

V1.3, 2019-05

Edition 2016-10
Published by
Infineon Technologies AG
81726 Munich, Germany
© 2016 Infineon Technologies AG
All Rights Reserved.

### Legal Disclaimer

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics. With respect to any examples or hints given herein, any typical values stated herein and/or any information regarding the application of the device, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation, warranties of non-infringement of intellectual property rights of any third party.

#### Information

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

#### Warnings

Due to technical requirements, components may contain dangerous substances. For information on the types in question, please contact the nearest Infineon Technologies Office.

Infineon Technologies components may be used in life-support devices or systems only with the express written approval of Infineon Technologies, if a failure of such components can reasonably be expected to cause the failure of that life-support device or system or to affect the safety or effectiveness of that device or system. Life support devices or systems are intended to be implanted in the human body or to support and/or maintain and sustain and/or protect human life. If they fail, it is reasonable to assume that the health of the user or other persons may be endangered.



# **XMCxxxxSC**

Wireless Power Controller Series for Commercial and Industrial Applications

XMC1000 Family

ARM<sup>®</sup> Cortex<sup>®</sup>-M0 32-bit processor core

**Data Sheet** 

V1.3, 2019-05



| XMCXXXX     | MCXXXXSC Data Sheet   |  |  |
|-------------|-----------------------|--|--|
| Revision H  | listory: V0.5 2019-03 |  |  |
| Previous Ve | ersions:              |  |  |
| Page        | Subjects              |  |  |

Data Sheet V1.3, 2019-05



#### **Trademarks**

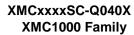
C166<sup>™</sup>, TriCore <sup>™</sup>, XMC <sup>™</sup> and DAVE <sup>™</sup> are trademarks of Infineon Technologies AG. ARM<sup>®</sup>, ARM Powered<sup>®</sup>, Cortex<sup>®</sup>, Thumb<sup>®</sup> and AMBA<sup>®</sup> are registered trademarks of ARM. Limited.

CoreSight™, ETM™, Embedded Trace Macrocell™ and Embedded Trace Buffer™ are trademarks of ARM, Limited.

### We Listen to Your Comments

Is there any information in this document that you feel is wrong, unclear or missing? Your feedback will help us to continuously improve the quality of this document. Please send your proposal (including a reference to this document) to:

mcdocu.comments@infineon.com






# **Table of Contents**

# **Table of Contents**

| 1       | Summary of Features                            | 9  |
|---------|------------------------------------------------|----|
| 1.1     | Device Overview                                | 11 |
| 1.2     | Ordering Information                           | 12 |
| 1.3     | Device Types                                   | 13 |
| 1.4     | Chip Identification Number                     | 15 |
| 2       | General Device Information                     | 18 |
| 2.1     | Logic Symbols                                  | 18 |
| 2.2     | Pin Configuration and Definition               | 22 |
| 2.2.1   | Package Pin Summary                            | 26 |
| 2.2.2   | Port Pin for Boot Modes                        | 30 |
| 2.2.3   | Port I/O Function Description                  | 31 |
| 2.2.4   | Hardware Controlled I/O Function Description   | 32 |
| 3       | Electrical Parameter                           | 41 |
| 3.1     | General Parameters                             | 41 |
| 3.1.1   | Parameter Interpretation                       | 41 |
| 3.1.2   | Absolute Maximum Ratings                       | 42 |
| 3.1.3   | Pin Reliability in Overload                    | 43 |
| 3.1.4   | Operating Conditions                           | 45 |
| 3.2     | DC Parameters                                  | 46 |
| 3.2.1   | Input/Output Characteristics                   | 46 |
| 3.2.2   | Analog to Digital Converters (ADC)             | 50 |
| 3.2.3   | Out of Range Comparator (ORC) Characteristics  | 54 |
| 3.2.4   | Analog Comparator Characteristics              | 56 |
| 3.2.5   | Temperature Sensor Characteristics             | 57 |
| 3.2.6   | Oscillator Pins                                | 58 |
| 3.2.7   | Power Supply Current                           | 62 |
| 3.2.8   | Flash Memory Parameters                        | 68 |
| 3.3     | AC Parameters                                  | 70 |
| 3.3.1   | Testing Waveforms                              | 70 |
| 3.3.2   | Power-Up and Supply Threshold Characteristics  | 71 |
| 3.3.3   | On-Chip Oscillator Characteristics             |    |
| 3.3.4   | Serial Wire Debug Port (SW-DP) Timing          | 74 |
| 3.3.5   | SPD Timing Requirements                        | 75 |
| 3.3.6   | Peripheral Timings                             | 76 |
| 3.3.6.1 | Synchronous Serial Interface (USIC SSC) Timing | 76 |
| 3.3.6.2 | Inter-IC (IIC) Interface Timing                | 79 |
| 3.3.6.3 | Inter-IC Sound (IIS) Interface Timing          |    |
| 4       | Package and Reliability                        | 83 |
| 4.1     | Package Parameters                             | 83 |





# **Table of Contents**

| 4.1.1 | Thermal Considerations | 83 |
|-------|------------------------|----|
| 4.2   | Package Outlines       | 85 |
| 5     | Quality Declaration    | 00 |
| J     | Quality Deciaration    | 00 |



### **About this Document**

## About this Document

This Data Sheet is addressed to embedded hardware and software developers. It provides the reader with detailed descriptions about the ordering designations, available features, electrical and physical characteristics of the XMCXXXXSC series devices.

The document describes the characteristics of a superset of the XMCXXXXSC series devices. For simplicity, the various device types are referred to by the collective term XMCXXXXSC throughout this document.

# XMC1000 Family User Documentation

The set of user documentation includes:

- Data Sheets
  - list the complete ordering designations, available features and electrical characteristics of derivative devices.
- API Interface Document
  - list details regarding API interface and registers.

Attention: Please consult all parts of the documentation set to attain consolidated knowledge about your device.

Application related guidance is provided by **Users Guides** and **Application Notes**.

Please refer to <a href="http://www.infineon.com/xmc1000">http://www.infineon.com/xmc1000</a> to get access to the latest versions of those documents.



### **Summary of Features**

# 1 Summary of Features

The XMCXXXXSC devices are members of the XMC1000 Family of microcontrollers based on the ARM Cortex-M0 processor core. The XMCXXXXSC series addresses the real-time control needs of wireless power systems.

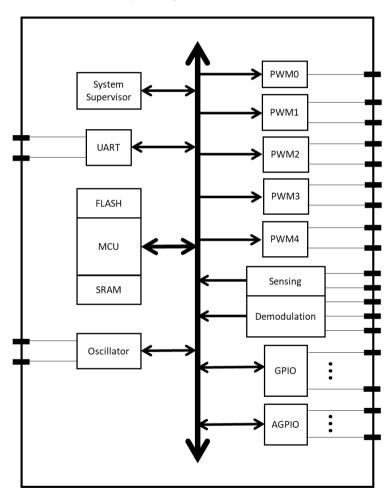



Figure 1 Block Diagram



#### **Features**

### **CPU** subsystem

- 32-bit ARM Cortex-M0 CPU Core
- MATH coprocessor

### **On-Chip Memories**

- SRAM (with parity)
- Flash (with ECC)

### Supply, Reset and Clock

- 3.3 V or 5 V supply with power on reset and brownout detector
- · On-chip clock monitor
- External crystal oscillator support (8 to 20 MHz)

### System Control

- · Window watchdog
- · Real time clock module
- Pseudo random number generator

### **Communication Peripherals**

- Four USIC channels, usable as
  - UART (115.2 kb/s)
  - IIC (up to 400 kb/s)

### **Analog Frontend Peripherals**

- A/D converters for voltage and current sensing
- Temperature Sensor

#### **Industrial Control Peripherals**

- 2 PWM channels for full bridge coil driver
- 1 PWM channel for step-up or step-down bridge supply control

### **Up to 13 Input/Output Ports**

• 3.3 V or 5 V capable

### **Programming Support**

· Secure bootloader

# **Packages**

VQFN-40 (5×5 mm²)

#### Tools

 Easy to use GUI for programming and debugging



### 1.1 Device Overview

The following table lists the available features per device type for the XMCXXXXSC series.

Table 1 Features of XMCXXXXSC Device Types

| Features                        |                |
|---------------------------------|----------------|
| Operating temperature (ambient) | -40 to 105 °C  |
| Operating voltage               | 3.3 V or 5.5 V |
| GPIOs                           | 27             |
| GPIs                            | 8              |
| Packages                        | VQFN-40        |

# 1.2 Ordering Information

The ordering code for an Infineon microcontroller provides an exact reference to a specific product. The code "XMC<DDDD>SC-<Z><PPP><T>" identifies:

- <DDDD> the derivatives function set
- <Z> the package variant
  - Q: VQFN
- <PPP> package pin count
- <T> the temperature range:
  - X: -40°C to 105°C

For ordering codes for the XMCXXXXSC please contact your sales representative or local distributor.

This document describes several derivatives of the XMCXXXXSC series, some descriptions may not apply to a specific product. Please see **Table 2**.

For simplicity the term XMCXXXXSC is used for all derivatives throughout this document.



# 1.3 Device Types

These device types are available and can be ordered through Infineon's direct and/or distribution channels.

Table 2 Synopsis of XMCXXXXSC Device Types

| Derivative      | Description                                               |
|-----------------|-----------------------------------------------------------|
| XMC0001SC-Q040X | Evaluation device to be programmed by the customer        |
| XMC6521SC-Q040X | Qi single coil 15W inductive MP-A11 desktop transmitter   |
| XMC6511SC-Q040X | Qi single coil 10W sub-surface infrastructure transmitter |
| XMC7501SC-Q040X | Single coil low power inductive transmitter               |
| XMC7531SC-Q040X | Single coil 30W Telecom and Security transmitter          |
| XMC7541SC-Q040X | Single coil 80W high power inductive transmitter          |
| XMC8511SC-Q040X | Low power resonant multi-device transmitter               |
| XMC8531SC-Q040X | 30W resonant transmitter                                  |

Subject to Agreement on the Use of Product Information



# 2 General Device Information

This section summarizes the package pin configurations with a detailed list of the functional I/O mapping.

# 2.1 Pin Configuration and Definition

The following figures summarize all pins, showing their locations.

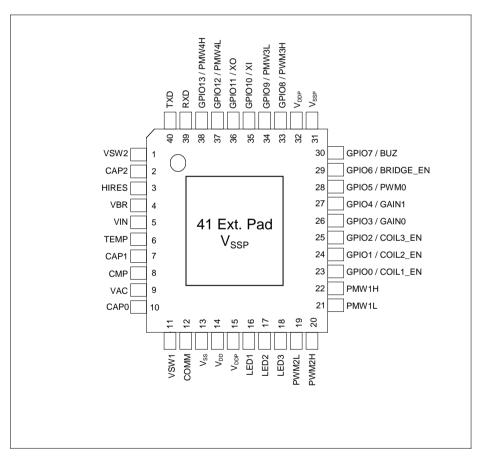



Figure 7 XMCXXXXSC PG-VQFN-40-17 Pin Configuration (top view)



# 2.1.1 Package Pin Summary

The following columns list the package pin number to which the respective function is mapped in that package.

The "Pad Type" indicates the employed pad type:

- STD INOUT (standard bi-directional pads)
- STD\_INOUT/AN (standard bi-directional pads with analog input)
- STD\_INOUT/clock (standard bi-directional pads with oscillator function)
- High Current (high current bi-directional pads)
- STD IN/AN (standard input pads with analog input)
- Power (power supply)

Details about the pad properties are defined in the Electrical Parameter chapter.

Table 5 Package Pin Mapping

| Function | VQFN<br>40 | Pad Type               | Notes                                     |
|----------|------------|------------------------|-------------------------------------------|
| GPIO0    | 23         | STD_INOUT              | GPIO0 or COIL1_EN (coil #1 enable)        |
| GPIO1    | 24         | STD_INOUT              | GPIO1 or COIL2_EN (coil #2 enable)        |
| GPIO2    | 25         | STD_INOUT              | GPIO2 or COIL3_EN (coil #3 enable)        |
| GPIO3    | 26         | STD_INOUT              | GPIO3 or GAIN0 (measurement gain control) |
| GPIO4    | 27         | STD_INOUT              | GPIO4 or GAIN1 (measurement gain control) |
| GPIO5    | 28         | STD_INOUT              | GPIO5 or PWM0 (bridge supply PWM)         |
| GPIO6    | 29         | STD_INOUT              | GPIO6 or BRIDGE_EN (bridge enable)        |
| GPIO7    | 30         | STD_INOUT              | GPIO7 or BUZ (buzzer)                     |
| GPIO8    | 33         | STD_INOUT              | GPIO8 or PWM3H (PWM channel #3)           |
| GPIO9    | 34         | STD_INOUT              | GPIO9 or PWM3L (PWM channel #3)           |
| GPIO10   | 35         | STD_INOUT<br>/clock_IN | GPIO10 or XI (crystal input)              |
| GPIO11   | 36         | STD_INOUT<br>/clock_O  | GPIO11 or XO (crystal output)             |
| GPIO12   | 37         | STD_INOUT              | GPIO12 or PWM4L (PWM channel #4)          |
| GPIO13   | 38         | STD_INOUT              | GPIO13 or PWM4H (PWM channel #4)          |



Table 5 Package Pin Mapping (cont'd)

| Function | VQFN<br>40 | Pad Type         | Notes                              |
|----------|------------|------------------|------------------------------------|
| RXD      | 39         | STD_INOUT        | UART receive                       |
| TXD      | 40         | STD_INOUT        | UART transmit                      |
| PWM1H    | 22         | High Current     | PWM channel #1                     |
| PWM1L    | 21         | High Current     | PWM channel #1                     |
| PWM2H    | 20         | High Current     | PWM channel #2                     |
| PWM2L    | 19         | High Current     | PWM channel #2                     |
| LED3     | 18         | High Current     | LED control                        |
| LED2     | 17         | High Current     | LED control                        |
| LED1     | 16         | High Current     | LED control                        |
| VSW2     | 1          | STD_INOUT<br>/AN | PWM channel #2 switch node voltage |
| CAP2     | 2          | STD_INOUT<br>/AN | High Resolution PWM capacitor      |
| HIRES    | 3          | STD_IN/AN        | High Resolution PWM input          |
| VBR      | 4          | STD_IN/AN        | Bridge voltage measurement         |
| VIN      | 5          | STD_IN/AN        | Input voltage measurement          |
| TEMP     | 6          | STD_IN/AN        | Coil thermistor (optional)         |
| CAP1     | 7          | STD_IN/AN        | BIAS/Peak Capacitor                |
| CMP      | 8          | STD_IN/AN        | Current sense/Peak detector        |

Subject to Agreement on the Use of Product Information



Table 5 Package Pin Mapping (cont'd)

| Function | VQFN<br>40  | Pad Type         | Notes                                                                                                                                                                                                                                |
|----------|-------------|------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| VAC      | 9           | STD_IN/AN        | Coil AC measurement                                                                                                                                                                                                                  |
| CAP0     | 10          | STD_IN/AN        | Communication demodulator input B                                                                                                                                                                                                    |
| VSW1     | 11          | STD_INOUT<br>/AN | PWM channel #1 switch node voltage                                                                                                                                                                                                   |
| COMM     | 12          | STD_INOUT<br>/AN | Communication demodulator input                                                                                                                                                                                                      |
| VSS      | 13          | Power            | Supply GND, ADC reference GND                                                                                                                                                                                                        |
| VDD      | 14          | Power            | Supply VDD, ADC reference voltage/ ORC reference voltage                                                                                                                                                                             |
| VDDP     | 15          | Power            | When VDD is supplied, VDDP has to be supplied with the same voltage.                                                                                                                                                                 |
| VDDP     | 32          | Power            | I/O port supply                                                                                                                                                                                                                      |
| VSSP     | 31          | Power            | I/O port ground                                                                                                                                                                                                                      |
| VSSP     | Exp.<br>Pad | Power            | Exposed Die Pad The exposed die pad is connected internally to VSSP. For proper operation, it is mandatory to connect the exposed pad to the board ground. For thermal aspects, please refer to the Package and Reliability chapter. |

Subject to Agreement on the Use of Product Information



# 3 Electrical Parameter

This section provides the electrical parameter which are implementation-specific for the XMCXXXXSC.

### 3.1 General Parameters

# 3.1.1 Parameter Interpretation

The parameters listed in this section represent partly the characteristics of the XMCXXXXSC and partly its requirements on the system. To aid interpreting the parameters easily when evaluating them for a design, they are indicated by the abbreviations in the "Symbol" column:

- · cc
  - Such parameters indicate **C**ontroller **C**haracteristics, which are distinctive feature of the XMCXXXXSC and must be regarded for a system design.
- SR
  - Such parameters indicate **S**ystem **R**equirements, which must be provided by the application system in which the XMCXXXXSC is designed in.



# 3.1.2 Absolute Maximum Ratings

Stresses above the values listed under "Absolute Maximum Ratings" may cause permanent damage to the device. This is a stress rating only and functional operation of the device at these or any other conditions above those indicated in the operational sections of this specification is not implied. Exposure to absolute maximum rating conditions may affect device reliability.

**Table 11 Absolute Maximum Rating Parameters** 

| Parameter                                                               | Symbol                                            |    |      | Va   | lues                          | Unit | Note /             |
|-------------------------------------------------------------------------|---------------------------------------------------|----|------|------|-------------------------------|------|--------------------|
|                                                                         |                                                   |    | Min  | Тур. | Max.                          |      | Test<br>Condition  |
| Junction temperature                                                    | $T_{J}$                                           | SR | -40  | _    | 115                           | °C   | _                  |
| Storage temperature                                                     | $T_{\mathrm{ST}}$                                 | SR | -40  | _    | 125                           | °C   | _                  |
| Voltage on power supply pin with respect to $V_{\rm SSP}$               | $V_{DDP}$                                         | SR | -0.3 | _    | 6                             | V    | _                  |
| Voltage on digital pins with respect to $V_{\rm SSP}^{-1)}$             | $V_{IN}$                                          | SR | -0.5 | -    | $V_{\rm DDP}$ + 0.5 or max. 6 | V    | whichever is lower |
| Voltage on analog input pins with respect to $V$ $_{\mathrm{SSP}}^{2)}$ | $V_{INP2}$                                        | SR | -0.3 | _    | $V_{\text{DDP}} + 0.3$        | V    | -                  |
| Voltage on analog input pins with respect to $V_{\rm SSP}$              | $\begin{matrix} V_{AIN} \\ V_{AREF} \end{matrix}$ | SR | -0.5 | -    | $V_{\rm DDP}$ + 0.5 or max. 6 | V    | whichever is lower |
| Input current on any pin during overload condition                      | $I_{IN}$                                          | SR | -10  | -    | 10                            | mA   | _                  |
| Absolute maximum sum of all input currents during overload condition    | $\Sigma I_{IN}$                                   | SR | -50  | _    | +50                           | mA   | _                  |

<sup>1)</sup> Excluding pins CAP2, HIRES, CAP1, CMP, VAC, CAP0, COMM.

<sup>1)</sup> Applicable to pins CAP2, HIRES, CAP1, CMP, VAC, CAP0, COMM.



# 3.1.3 Pin Reliability in Overload

When receiving signals from higher voltage devices, low-voltage devices experience overload currents and voltages that go beyond their own IO power supplies specification.

Table 12 defines overload conditions that will not cause any negative reliability impact if all the following conditions are met:

- · full operation life-time is not exceeded
- Operating Conditions are met for
  - pad supply levels  $(V_{DDP})$
  - temperature

If a pin current is outside of the **Operating Conditions** but within the overload conditions, then the parameters of this pin as stated in the Operating Conditions can no longer be guaranteed. Operation is still possible in most cases but with relaxed parameters.

Note: An overload condition on one or more pins does not require a reset.

Note: A series resistor at the pin to limit the current to the maximum permitted overload current is sufficient to handle failure situations like short to battery.

Table 12 Overload Parameters

| Parameter                                                            | Symbol              |      | Values | 3    | Unit | Note /         |
|----------------------------------------------------------------------|---------------------|------|--------|------|------|----------------|
|                                                                      |                     | Min. | Тур.   | Max. |      | Test Condition |
| Input current on any port pin during overload condition              | I <sub>OV</sub> SR  | -5   | _      | 5    | mA   |                |
| Absolute sum of all input circuit currents during overload condition | I <sub>OVS</sub> SR | _    | _      | 25   | mA   |                |

**Figure 11** shows the path of the input currents during overload via the ESD protection structures. The diodes against  $V_{\rm DDP}$  and ground are a simplified representation of these ESD protection structures.



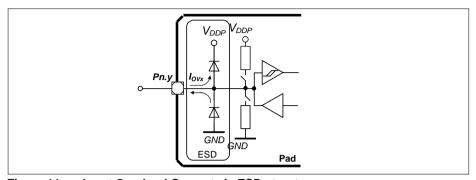



Figure 11 Input Overload Current via ESD structures

**Table 13** and **Table 14** list input voltages that can be reached under overload conditions. Note that the absolute maximum input voltages as defined in the **Absolute Maximum Ratings** must not be exceeded during overload.

**Table 13 PN-Junction Characteristics for positive Overload** 

| Pad Type                                      | $I_{\text{OV}}$ =5 mA                                                                                                                                                                |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard, High-current,<br>AN/DIG_IN          | $\begin{split} V_{\text{IN}} &= V_{\text{DDP}} + 0.5 \text{ V} \\ V_{\text{AIN}} &= V_{\text{DDP}} + 0.5 \text{ V} \\ V_{\text{AREF}} &= V_{\text{DDP}} + 0.5 \text{ V} \end{split}$ |
| CAP2, HIRES, CAP1,<br>CMP, VAC, CAP0,<br>COMM | $V_{\text{INP2}} = V_{\text{DDP}} + 0.3 \text{ V}$                                                                                                                                   |

Table 14 PN-Junction Characteristics for negative Overload

| Pad Type                                      | I <sub>OV</sub> =5 mA                                                                                                                                                          |
|-----------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Standard, High-current,<br>AN/DIG_IN          | $\begin{split} V_{\text{IN}} &= V_{\text{SS}}  0.5 \text{ V} \\ V_{\text{AIN}} &= V_{\text{SS}}  0.5 \text{ V} \\ V_{\text{AREF}} &= V_{\text{SS}}  0.5 \text{ V} \end{split}$ |
| CAP2, HIRES, CAP1,<br>CMP, VAC, CAP0,<br>COMM | $V_{INP2} = V_{SS}$ - 0.3 V                                                                                                                                                    |



# 3.1.4 Operating Conditions

The following operating conditions must not be exceeded in order to ensure correct operation and reliability of the XMCXXXXSC. All parameters specified in the following tables refer to these operating conditions, unless noted otherwise.

**Table 15 Operating Conditions Parameters** 

| Parameter                                            | Symbol             |    |      | Values |      |    | Note /         |
|------------------------------------------------------|--------------------|----|------|--------|------|----|----------------|
|                                                      |                    |    | Min. | Тур.   | Max. |    | Test Condition |
| Ambient Temperature                                  | $T_{A}$            | SR | -40  | _      | 105  | °C | Temp. Range X  |
| Digital supply voltage <sup>1)</sup>                 | $V_{DDP}$          | SR | 3.3  | _      | 5.5  | V  |                |
| Short circuit current of digital outputs             | $I_{SC}$           | SR | -5   | _      | 5    | mA |                |
| Absolute sum of short circuit currents of the device | $\Sigma I_{SC\_D}$ | SR | _    | -      | 25   | mA |                |

<sup>1)</sup> See also the Supply Monitoring thresholds, Chapter 3.3.2.



### 3.2 DC Parameters

# 3.2.1 Input/Output Characteristics

Table 16 provides the characteristics of the input/output pins of the XMCXXXXSC.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Note: Unless otherwise stated, input DC and AC characteristics, including peripheral timings, assume that the input pads operate with the standard hysteresis.

Table 16 Input/Output Characteristics (Operating Conditions apply)

| Parameter                                                  | Symbol               | Limit \                  | Values           | Unit | Test Conditions                                        |
|------------------------------------------------------------|----------------------|--------------------------|------------------|------|--------------------------------------------------------|
|                                                            |                      | Min.                     | Max.             |      |                                                        |
| Output low voltage on port pins                            | $V_{OLP}CC$          | _                        | 1.0              | V    | $I_{OL}$ = 11 mA (5 V)<br>$I_{OL}$ = 7 mA (3.3 V)      |
| (with standard pads)                                       |                      | _                        | 0.4              | V    | $I_{OL}$ = 5 mA (5 V)<br>$I_{OL}$ = 3.5 mA (3.3 V)     |
| Output low voltage on high current pads                    | $V_{OLP1}CC$         | _                        | 1.0              | V    | $I_{OL}$ = 50 mA (5 V)<br>$I_{OL}$ = 25 mA (3.3 V)     |
|                                                            |                      | _                        | 0.32             | V    | $I_{OL}$ = 10 mA (5 V)                                 |
|                                                            |                      | _                        | 0.4              | V    | $I_{OL} = 5 \text{ mA } (3.3 \text{ V})$               |
| Output high voltage on port pins                           | $V_{OHP}CC$          | V <sub>DDP</sub> - 1.0   | _                | V    | $I_{OH}$ = -10 mA (5 V)<br>$I_{OH}$ = -7 mA (3.3 V)    |
| (with standard pads)                                       |                      | $V_{\rm DDP}$ - 0.4      | _                | V    | $I_{OH}$ = -4.5 mA (5 V)<br>$I_{OH}$ = -2.5 mA (3.3 V) |
| Output high voltage on high current pads                   | $V_{OHP1}CC$         | V <sub>DDP</sub> - 0.32  | _                | V    | $I_{OH} = -6 \text{ mA } (5 \text{ V})$                |
|                                                            |                      | V <sub>DDP</sub> - 1.0   | _                | V    | $I_{\rm OH}$ = -8 mA (3.3 V)                           |
|                                                            |                      | $V_{\mathrm{DDP}}$ - 0.4 | _                | V    | $I_{\rm OH}$ = -4 mA (3.3 V)                           |
| Input low voltage on port<br>pins<br>(Standard Hysteresis) | $V_{ILPS}SR$         | _                        | $V_{\text{DDP}}$ | V    | CMOS Mode<br>(5 V, 3.3 V)                              |
| Input high voltage on port pins (Standard Hysteresis)      | V <sub>IHPS</sub> SR | $V_{DDP}$                | _                | V    | CMOS Mode<br>(5 V, 3.3 V)                              |



Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)

| Parameter                                          | Symbol          | Limit Values U                                           |                                                          | Unit | Test Conditions                           |
|----------------------------------------------------|-----------------|----------------------------------------------------------|----------------------------------------------------------|------|-------------------------------------------|
|                                                    |                 | Min.                                                     | Max.                                                     |      |                                           |
| Input low voltage on port pins (Large Hysteresis)  | $V_{ILPL}SR$    | -                                                        | $0.08 \times \\ V_{\rm DDP}$                             | V    | CMOS Mode<br>(5 V, 3.3 V)                 |
| Input high voltage on port pins (Large Hysteresis) | $V_{IHPL}SR$    | $0.85 \times V_{\mathrm{DDP}}$                           | _                                                        | V    | CMOS Mode<br>(5 V, 3.3 V)                 |
| Rise/fall time on High                             | $t_{HCPR},CC$   | _                                                        | 9                                                        | ns   | 50 pF @ 5 V <sup>2)</sup>                 |
| Current Pad <sup>1)</sup>                          | $t_{HCPF}$      | _                                                        | 12                                                       | ns   | 50 pF @ 3.3 V <sup>3)</sup>               |
| Rise/fall time on                                  | $t_{R},t_{F}CC$ | _                                                        | 12                                                       | ns   | 50 pF @ 5 V <sup>5)</sup>                 |
| Standard Pad <sup>1)</sup>                         |                 | _                                                        | 15                                                       | ns   | 50 pF @ 3.3 V <sup>6)</sup> .             |
| Input Hysteresis on port pin except VBR, VIN,      | HYS CC          | $\begin{matrix} 0.08 \times \\ V_{\rm DDP} \end{matrix}$ | _                                                        | V    | CMOS Mode (5 V),<br>Standard Hysteresis   |
| TEMP, CAP1, CMP,<br>VAC, CAP0 <sup>8)</sup>        |                 | $\begin{matrix} 0.03 \times \\ V_{\rm DDP} \end{matrix}$ | _                                                        | V    | CMOS Mode (3.3 V),<br>Standard Hysteresis |
|                                                    |                 | $V_{ m DDP}$                                             | $\begin{matrix} 0.75 \times \\ V_{\rm DDP} \end{matrix}$ | V    | CMOS Mode(5 V),<br>Large Hysteresis       |
|                                                    |                 | $\begin{matrix} 0.4 \times \\ V_{\rm DDP} \end{matrix}$  | ${0.75 \times \atop V_{\rm DDP}}$                        | V    | CMOS Mode(3.3 V),<br>Large Hysteresis     |



Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)

| Parameter                                                                              | Symbol                | Limit \                                                             | <b>Values</b>                                            | Unit | Test Conditions                                                                                         |
|----------------------------------------------------------------------------------------|-----------------------|---------------------------------------------------------------------|----------------------------------------------------------|------|---------------------------------------------------------------------------------------------------------|
|                                                                                        |                       | Min.                                                                | Max.                                                     |      |                                                                                                         |
| Input Hysteresis on port pin VBR, VIN, TEMP,                                           | HYS_ CC<br>P2         | $\begin{array}{c} \text{0.08} \times \\ V_{\text{DDP}} \end{array}$ | _                                                        | V    | CMOS Mode (5 V),<br>Standard Hysteresis                                                                 |
| CAP1, CMP, VAC,<br>CAP0 <sup>8)</sup>                                                  |                       | $0.03 \times \\ V_{\rm DDP}$                                        | _                                                        | V    | CMOS Mode (3.3 V),<br>Standard Hysteresis                                                               |
|                                                                                        |                       | $\begin{array}{c} \text{0.35} \times \\ V_{\text{DDP}} \end{array}$ | $\begin{matrix} 0.75 \times \\ V_{\rm DDP} \end{matrix}$ | V    | CMOS Mode(5 V),<br>Large Hysteresis                                                                     |
|                                                                                        |                       | $\begin{array}{c} \text{0.25} \times \\ V_{\text{DDP}} \end{array}$ | $\begin{matrix} 0.75 \times \\ V_{\rm DDP} \end{matrix}$ | V    | CMOS Mode(3.3 V),<br>Large Hysteresis                                                                   |
| Pin capacitance (digital inputs/outputs)                                               | $C_{IO}$ CC           | _                                                                   | 10                                                       | pF   |                                                                                                         |
| Pull-up current on port                                                                | $I_{PUP}$ CC          | _                                                                   | -80                                                      | μΑ   | $V_{IH,min}$ (5 V)                                                                                      |
| pins                                                                                   |                       | -95                                                                 | -                                                        | μΑ   | $V_{IL,max}$ (5 V)                                                                                      |
|                                                                                        |                       | _                                                                   | -50                                                      | μΑ   | $V_{IH,min}$ (3.3 V)                                                                                    |
|                                                                                        |                       | -65                                                                 | _                                                        | μΑ   | $V_{\rm IL,max}$ (3.3 V)                                                                                |
| Pull-down current on                                                                   | $I_{PDP}$ CC          | _                                                                   | 40                                                       | μΑ   | $V_{IL,max}$ (5 V)                                                                                      |
| port pins                                                                              |                       | 95                                                                  | _                                                        | μΑ   | V <sub>IH,min</sub> (5 V)                                                                               |
|                                                                                        |                       | _                                                                   | 30                                                       | μΑ   | $V_{\rm IL,max}$ (3.3 V)                                                                                |
|                                                                                        |                       | 60                                                                  | _                                                        | μΑ   | $V_{IH,min}$ (3.3 V)                                                                                    |
| Input leakage current except GPIO11 <sup>9)</sup>                                      | $I_{OZP}$ CC          | -1                                                                  | 1                                                        | μА   | $ 0 < V_{\rm IN} < V_{\rm DDP}, \\ T_{\rm A} \leq 105~{\rm ^{\circ}C} $                                 |
| Input leakage current for GPIO11 <sup>9)</sup>                                         | $I_{\rm OZP1}{ m CC}$ | -10                                                                 | 1                                                        | μА   | $ \begin{aligned} &0 < V_{\rm IN} < V_{\rm DDP}, \\ &T_{\rm A} \leq 105~{\rm ^{\circ}C} \end{aligned} $ |
| Voltage on any pin during $V_{\rm DDP}$ power off                                      | $V_{PO}$ SR           | _                                                                   | 0.3                                                      | V    | 10)                                                                                                     |
| Maximum current per pin (excluding high current pins, $V_{\rm DDP}$ and $V_{\rm SS}$ ) | $I_{MP}$ SR           | -10                                                                 | 11                                                       | mA   | _                                                                                                       |
| Maximum current per high current pins                                                  | I <sub>MP1A</sub> SR  | -10                                                                 | 50                                                       | mA   | _                                                                                                       |

Subject to Agreement on the Use of Product Information



# Table 16 Input/Output Characteristics (Operating Conditions apply) (cont'd)

|                                              |                                 | _            | -    | _    |                 |  |  |
|----------------------------------------------|---------------------------------|--------------|------|------|-----------------|--|--|
| Parameter                                    | Symbol                          | Limit Values |      | Unit | Test Conditions |  |  |
|                                              |                                 | Min.         | Max. |      |                 |  |  |
| Maximum current into $V_{DDP}$ (VQFN40)      | $I_{\mathrm{MVDD3}}\mathrm{SR}$ | _            | 260  | mA   |                 |  |  |
| Maximum current out of $V_{\rm SS}$ (VQFN40) | $I_{	ext{MVSS3}} SR$            | _            | 260  | mA   |                 |  |  |

- 1) Rise/Fall time parameters are taken with 10% 90% of supply.
- Additional rise/fall time valid for C<sub>L</sub> = 50 pF C<sub>L</sub> = 100 pF @ 0.150 ns/pF at 5 V supply voltage.
- 3) Additional rise/fall time valid for  $C_L = 50 \text{ pF} C_L = 100 \text{ pF} @ 0.205 \text{ ns/pF}$  at 3.3 V supply voltage.
- 4) .
- 5) Additional rise/fall time valid for C<sub>L</sub> = 50 pF C<sub>L</sub> = 100 pF @ 0.225 ns/pF at 5 V supply voltage.
- 6) Additional rise/fall time valid for C<sub>L</sub> = 50 pF C<sub>L</sub> = 100 pF @ 0.288 ns/pF at 3.3 V supply voltage.
- 7) .
- 8) Hysteresis is implemented to avoid meta stable states and switching due to internal ground bounce. It cannot be guaranteed that it suppresses switching due to external system noise.
- 9) An additional error current (I<sub>INJ</sub>) will flow if an overload current flows through an adjacent pin.
- 10) However, for applications with strict low power-down current requirements, it is mandatory that no active voltage source is supplied at any GPIO pin when V<sub>DDP</sub> is powered off.



# 3.2.2 Oscillator Pins

Note: It is strongly recommended to measure the oscillation allowance (negative resistance) in the final target system (layout) to determine the optimal parameters for the oscillator operation. Please refer to the limits specified by the crystal or ceramic resonator supplier.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

The oscillator pins can be operated with an external crystal/resonator (see Figure 15) or in direct input mode (see Figure 16).

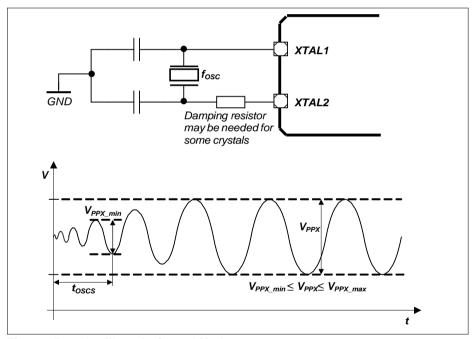



Figure 15 Oscillator in Crystal Mode



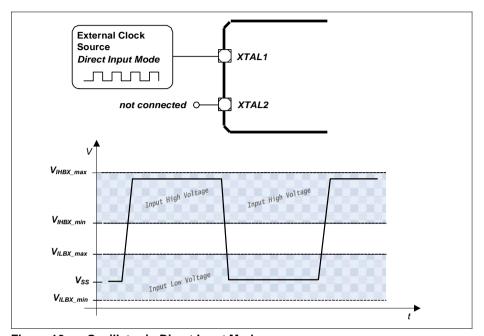



Figure 16 Oscillator in Direct Input Mode



# Table 21 OSC\_XTAL Parameters

| Parameter                                                | Symbol                |      | Values |      | Unit | Note /                   |
|----------------------------------------------------------|-----------------------|------|--------|------|------|--------------------------|
|                                                          |                       | Min. | Тур.   | Max. |      | Test Condition           |
| Input frequency                                          | $f_{\rm OSC}{\rm SR}$ | 4    | _      | 48   | MHz  | Direct Input Mode        |
|                                                          |                       | 4    | _      | 20   | MHz  | External Crystal<br>Mode |
| Oscillator start-up time <sup>1)2)</sup>                 | t <sub>OSCS</sub>     | -    | -      | 10   | ms   |                          |
| Input voltage at GPIO10                                  | $V_{IX}SR$            | -0.3 | -      | 1.5  | V    | External Crystal<br>Mode |
|                                                          |                       | -0.3 | _      | 5.5  | V    | Direct Input Mode        |
| Input amplitude (peak-to-peak) at GPIO10 <sup>2)3)</sup> | $V_{PPX}SR$           | 0.6  | -      | 1.7  | V    | External Crystal<br>Mode |

t<sub>OSCS</sub> is defined from the moment the oscillator is enabled wih SCU\_ANAOSCHPCTRL.MODE until the oscillations reach an amplitude at XTAL1 of 0.9 \* V<sub>PPX</sub>.

<sup>2)</sup> The external oscillator circuitry must be optimized by the customer and checked for negative resistance and amplitude as recommended and specified by crystal suppliers.

<sup>3)</sup> If the shaper unit is enabled and not bypassed.



# 3.2.3 Power Supply Current

The total power supply current defined below consists of a leakage and a switching component.

Application relevant values are typically lower than those given in the following tables, and depend on the customer's system operating conditions (e.g. thermal connection or used application configurations).

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 23 Power Supply parameter table; V<sub>DDP</sub> = 5V

| Parameter                                                   | Symbol                | Values |                    |      | Unit | Note /         |
|-------------------------------------------------------------|-----------------------|--------|--------------------|------|------|----------------|
|                                                             |                       | Min.   | Typ. <sup>1)</sup> | Max. |      | Test Condition |
| Active mode current<br>Peripherals<br>enabled <sup>2)</sup> | I <sub>DDPAE</sub> CC | _      | 14.1               | 20   | mA   | 48 / 96        |



Table 23 Power Supply parameter table;  $V_{DDP} = 5V$ 

| Parameter                                                                               | Symbol                   |      | Values             |      | Unit       | Note /         |
|-----------------------------------------------------------------------------------------|--------------------------|------|--------------------|------|------------|----------------|
|                                                                                         |                          | Min. | Typ. <sup>1)</sup> | Max. |            | Test Condition |
| Sleep mode current<br>Peripherals clock<br>disabled<br>Flash powered down <sup>6)</sup> | I <sub>DDPSR</sub><br>CC | _    | 1.1                | _    | mA         | 1/1            |
| Deep Sleep mode current <sup>7)</sup>                                                   | I <sub>DDPDS</sub><br>CC | -    | 0.27               | _    | mA         |                |
| Wake-up time from Sleep to Active mode <sup>8)</sup>                                    | t <sub>SSA</sub> CC      | -    | 6                  | _    | cycl<br>es |                |
| Wake-up time from Deep<br>Sleep to Active mode <sup>9)</sup>                            | $t_{DSA}CC$              | -    | 290                | _    | μѕес       |                |

- 1) The typical values are measured at  $T_A = +25$  °C and  $V_{DDP} = 5$  V.
- 2) CPU and all peripherals clock enabled, Flash is in active mode.
- 3) .
- 4) .
- 5) .
- 6) CPU in sleep, Flash is powered down and code executed from RAM after wake-up.
- 7) CPU in sleep, peripherals clock disabled, Flash is powered down and code executed from RAM after wake-up.
- 8) CPU in sleep, Flash is in active mode during sleep mode.
- 9) CPU in sleep, Flash is in powered down mode during deep sleep mode.



# 3.3 AC Parameters

# 3.3.1 Testing Waveforms

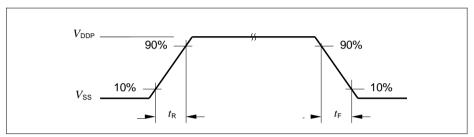



Figure 20 Rise/Fall Time Parameters

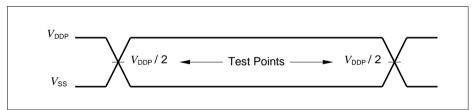



Figure 21 Testing Waveform, Output Delay

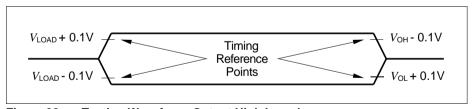



Figure 22 Testing Waveform, Output High Impedance



# 3.3.2 Power-Up and Supply Threshold Characteristics

Table 26 provides the characteristics of the supply threshold in XMCXXXXSC.

The guard band between the lowest valid operating voltage and the brownout reset threshold provides a margin for noise immunity and hysteresis. The electrical parameters may be violated while  $V_{\rm DDP}$  is outside its operating range.

The brownout detection triggers a reset within the defined range. The prewarning detection can be used to trigger an early warning and issue corrective and/or fail-safe actions in case of a critical supply voltage drop.

Note: These parameters are not subject to production test, but verified by design and/or characterization.

Table 26 Power-Up and Supply Threshold Parameters (Operating Conditions apply)

| Parameter                       | Symbol                          | \                               | /alues |                 | Unit | Note /                                                                      |
|---------------------------------|---------------------------------|---------------------------------|--------|-----------------|------|-----------------------------------------------------------------------------|
|                                 |                                 | Min.                            | Тур.   | Max.            |      | Test Condition                                                              |
| $V_{ m DDP}$ ramp-up time       | $t_{RAMPUP}SR$                  | $V_{ m DDP}/ \ S_{ m VDDPrise}$ | _      | 10 <sup>7</sup> | μS   |                                                                             |
| $V_{DDP}$ slew rate             | $S_{	extsf{VDDPOP}}	extsf{SR}$  | 0                               | _      | 0.1             | V/μs | Slope during normal operation                                               |
|                                 | $S_{ m VDDP10}{ m SR}$          | 0                               | _      | 10              | V/μs | Slope during fast transient within +/- 10% of $V_{\rm DDP}$                 |
|                                 | $S_{ m VDDPrise}{ m SR}$        | 0                               | _      | 10              | V/μs | Slope during<br>power-on or<br>restart after<br>brownout event              |
|                                 | S <sub>VDDPfa</sub> '' SR       | 0                               | _      | 0.25            | V/μs | Slope during<br>supply falling out<br>of the +/-10%<br>limits <sup>2)</sup> |
| $V_{ m DDP}$ prewarning voltage | $V_{\mathrm{DDPPW}}\mathrm{CC}$ | 2.1                             | 2.25   | 2.4             | V    | ANAVDEL.VDEL_<br>SELECT = 00 <sub>B</sub>                                   |



Table 26 Power-Up and Supply Threshold Parameters (Operating Conditions apply) (cont'd)

| Parameter                                                     | Symbol                          | \    | /alues |      | Unit | Note /                                                |
|---------------------------------------------------------------|---------------------------------|------|--------|------|------|-------------------------------------------------------|
|                                                               |                                 | Min. | Тур.   | Max. |      | Test Condition                                        |
| $\overline{V_{\mathrm{DDP}}}$ brownout reset voltage          | $V_{\mathrm{DDPBO}}\mathrm{CC}$ | 1.55 | 1.62   | 1.75 | V    | calibrated, before user code starts running           |
| $\overline{V_{\rm DDP}}$ voltage to ensure defined pad states | $V_{DDPPA}CC$                   | _    | 1.0    | _    | V    |                                                       |
| Start-up time from power-on reset                             | t <sub>SSW</sub> SR             | _    | 260    | _    | μS   | Time to the first user code instruction <sup>3)</sup> |

A capacitor of at least 100 nF has to be added between V<sub>DDP</sub> and V<sub>SSP</sub> to fulfill the requirement as stated for this parameter.

<sup>3)</sup> This values does not include the ramp-up time. During startup firmware execution, MCLK is running at 48 MHz and the clocks to peripheral as specified in register CGATSTAT0 are gated.

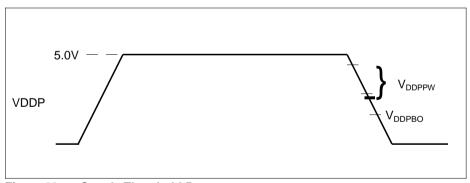
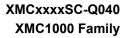




Figure 23 Supply Threshold Parameters

<sup>2)</sup> Valid for a 100 nF buffer capacitor connected to supply pin where current from capacitor is forwarded only to the chip. A larger capacitor value has to be chosen if the power source sink a current.





# 3.3.3 Peripheral Timings

Note: These parameters are not subject to production test, but verified by design and/or characterization.



# 3.3.3.1 Inter-IC (IIC) Interface Timing

The following parameters are applicable for a USIC channel operated in IIC mode.

Note: Operating Conditions apply.

Table 33 USIC IIC Standard Mode Timing<sup>1)</sup>

| Parameter                                        | Symbol                   |      | Values |      | Unit | Note /         |
|--------------------------------------------------|--------------------------|------|--------|------|------|----------------|
|                                                  |                          | Min. | Тур.   | Max. |      | Test Condition |
| Fall time of both SDA and SCL                    | t <sub>1</sub><br>CC/SR  | -    | -      | 300  | ns   |                |
| Rise time of both SDA and SCL                    | t <sub>2</sub><br>CC/SR  | -    | -      | 1000 | ns   |                |
| Data hold time                                   | t <sub>3</sub><br>CC/SR  | 0    | -      | -    | μs   |                |
| Data set-up time                                 | t <sub>4</sub><br>CC/SR  | 250  | -      | -    | ns   |                |
| LOW period of SCL clock                          | t <sub>5</sub><br>CC/SR  | 4.7  | -      | -    | μs   |                |
| HIGH period of SCL clock                         | t <sub>6</sub><br>CC/SR  | 4.0  | -      | -    | μs   |                |
| Hold time for (repeated)<br>START condition      | t <sub>7</sub><br>CC/SR  | 4.0  | -      | -    | μs   |                |
| Set-up time for repeated START condition         | t <sub>8</sub><br>CC/SR  | 4.7  | -      | -    | μs   |                |
| Set-up time for STOP condition                   | t <sub>9</sub><br>CC/SR  | 4.0  | -      | -    | μs   |                |
| Bus free time between a STOP and START condition | t <sub>10</sub><br>CC/SR | 4.7  | -      | -    | μs   |                |
| Capacitive load for each bus line                | $C_{b}SR$                | -    | -      | 400  | pF   |                |

<sup>1)</sup> Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximalely 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.



Table 34 USIC IIC Fast Mode Timing<sup>1)</sup>

| Parameter                                        | Symbol                   |                            | Values |      |    | Note /         |
|--------------------------------------------------|--------------------------|----------------------------|--------|------|----|----------------|
|                                                  |                          | Min.                       | Тур.   | Max. |    | Test Condition |
| Fall time of both SDA and SCL                    | t <sub>1</sub><br>CC/SR  | 20 +<br>0.1*C <sub>b</sub> | -      | 300  | ns |                |
| Rise time of both SDA and SCL                    | t <sub>2</sub><br>CC/SR  | 20 +<br>0.1*C <sub>b</sub> | -      | 300  | ns |                |
| Data hold time                                   | t <sub>3</sub><br>CC/SR  | 0                          | -      | -    | μs |                |
| Data set-up time                                 | t <sub>4</sub><br>CC/SR  | 100                        | -      | -    | ns |                |
| LOW period of SCL clock                          | t <sub>5</sub><br>CC/SR  | 1.3                        | -      | -    | μs |                |
| HIGH period of SCL clock                         | t <sub>6</sub><br>CC/SR  | 0.6                        | -      | -    | μs |                |
| Hold time for (repeated)<br>START condition      | t <sub>7</sub><br>CC/SR  | 0.6                        | -      | -    | μs |                |
| Set-up time for repeated START condition         | t <sub>8</sub><br>CC/SR  | 0.6                        | -      | -    | μs |                |
| Set-up time for STOP condition                   | t <sub>9</sub><br>CC/SR  | 0.6                        | -      | -    | μs |                |
| Bus free time between a STOP and START condition | t <sub>10</sub><br>CC/SR | 1.3                        | -      | -    | μs |                |
| Capacitive load for each bus line                | $C_{b}SR$                | -                          | -      | 400  | pF |                |

<sup>1)</sup> Due to the wired-AND configuration of an IIC bus system, the port drivers of the SCL and SDA signal lines need to operate in open-drain mode. The high level on these lines must be held by an external pull-up device, approximately 10 kOhm for operation at 100 kbit/s, approximately 2 kOhm for operation at 400 kbit/s.

<sup>2)</sup> C<sub>b</sub> refers to the total capacitance of one bus line in pF.



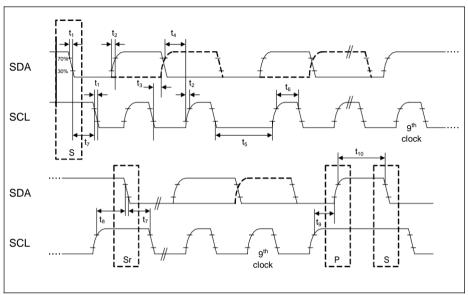



Figure 26 USIC IIC Timing



### Package and Reliability

# 4 Package and Reliability

The XMCXXXXSC is a member of the XMC1000 Family of microcontrollers. It is also compatible to a certain extent with members of similar families or subfamilies.

Each package is optimized for the device it houses. Therefore, there may be slight differences between packages of the same pin-count but for different device types. In particular, the size of the exposed die pad may vary.

If different device types are considered or planned for an application, it must be ensured that the board layout fits all packages under consideration.

# 4.1 Package Parameters

Table 37 provides the thermal characteristics of the packages used in XMCXXXXSC.

Table 37 Thermal Characteristics of the Packages

| Parameter                           | Symbol                    | Limit Values |           | Unit | Package Types               |
|-------------------------------------|---------------------------|--------------|-----------|------|-----------------------------|
|                                     |                           | Min.         | Max.      |      |                             |
| Exposed Die Pad<br>Dimensions       | Ex × Ey<br>CC             | -            | 3.7 × 3.7 | mm   | PG-VQFN-40-17               |
| Thermal resistance Junction-Ambient | $R_{\Theta \sf JA}\sf CC$ | -            | 45.3      | K/W  | PG-VQFN-40-17 <sup>1)</sup> |

<sup>1)</sup> Device mounted on a 4-layer JEDEC board (JESD 51-5); exposed pad soldered.

Note: For electrical reasons, it is required to connect the exposed pad to the board ground  $V_{SSP}$ , independent of EMC and thermal requirements.

### 4.1.1 Thermal Considerations

When operating the XMCXXXXSC in a system, the total heat generated in the chip must be dissipated to the ambient environment to prevent overheating and the resulting thermal damage.

The maximum heat that can be dissipated depends on the package and its integration into the target board. The "Thermal resistance  $R_{\Theta JA}$ " quantifies these parameters. The power dissipation must be limited so that the average junction temperature does not exceed 115 °C.



# Package and Reliability

The difference between junction temperature and ambient temperature is determined by  $\otimes T = (P_{INT} + P_{IOSTAT} + P_{IODYN}) \times R_{\Theta,IA}$ 

The internal power consumption is defined as

 $P_{\text{INT}} = V_{\text{DDP}} \times I_{\text{DDP}}$  (switching current and leakage current).

The static external power consumption caused by the output drivers is defined as

$$P_{\text{IOSTAT}} = \Sigma((V_{\text{DDP}} - V_{\text{OH}}) \times I_{\text{OH}}) + \Sigma(V_{\text{OL}} \times I_{\text{OL}})$$

The dynamic external power consumption caused by the output drivers  $(P_{\mathsf{IODYN}})$  depends on the capacitive load connected to the respective pins and their switching frequencies.

If the total power dissipation for a given system configuration exceeds the defined limit, countermeasures must be taken to ensure proper system operation:

- Reduce  $V_{\text{DDP}}$ , if possible in the system
- Reduce the system frequency
- · Reduce the number of output pins
- · Reduce the load on active output drivers



# 4.2 Package Outlines

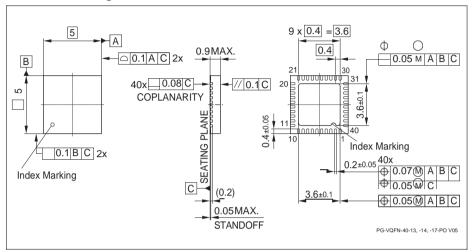



Figure 30 PG-VQFN-40-17

All dimensions in mm.

# 5 Quality Declaration

Table 38 shows the characteristics of the quality parameters in the XMCXXXXSC.

Table 38 Quality Parameters

| Parameter                                                             | Symbol                 | Limit Values |      | Unit | Notes                                  |
|-----------------------------------------------------------------------|------------------------|--------------|------|------|----------------------------------------|
|                                                                       |                        | Min.         | Max. |      |                                        |
| ESD susceptibility<br>according to Human Body<br>Model (HBM)          | V <sub>HBM</sub><br>SR | -            | 2000 | V    | Conforming to<br>EIA/JESD22-<br>A114-B |
| ESD susceptibility<br>according to Charged<br>Device Model (CDM) pins | $V_{\mathrm{CDM}}$ SR  | -            | 500  | V    | Conforming to JESD22-C101-C            |
| Moisture sensitivity level                                            | MSL<br>CC              | -            | 3    | -    | JEDEC<br>J-STD-020D                    |
| Soldering temperature                                                 | $T_{SDR}$ SR           | -            | 260  | °C   | Profile according to JEDEC J-STD-020D  |

www.infineon.com

Published by Infineon Technologies AG

# **Mouser Electronics**

**Authorized Distributor** 

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

# Infineon:

<u>XMC6521SCQ040XAAXUMA1</u> <u>XMC8511SCQ040XAAXUMA1</u> <u>XMC8531SCQ040XAAXUMA1</u> <u>XMC7501SCQ040XAAXUMA1</u> <u>XMC7541SCQ040XAAXUMA1</u> <u>XMC7531SCQ040XAAXUMA1</u> XMC6511SCQ040XAAXUMA1