

OPTIREG™ linear TLE4295GV

Low dropout voltage regulator

Features

- Three versions: 3.0 V, 3.3 V, 5.0 V
- Output voltage tolerance $\leq \pm 4\%$
- Very low drop voltage
- Output current: 30 mA
- Power fail output
- Low quiescent current consumption
- Wide operation range: up to 45 V
- Wide temperature range: $T_i = -40^{\circ}$ C to +150°C
- Output protected against short circuit
- Overtemperature protection
- Reverse polarity proof
- Very small SMD package PG-SCT595-5
- Green Product (RoHS compliant)

Potential applications

• General automotive applications

Product validation

Qualified for automotive applications. Product validation according to AEC-Q100.

Description

The OPTIREG[™] linear TLE4295GV is a monolithic integrated low-drop voltage regulator in the very small SMD package PG-SCT595-5. It is designed to supply e.g. microcontroller systems under the severe conditions of automotive applications. Therefore the device is equipped with additional protection functions against overload, short circuit and reverse polarity. At overtemperature the regulator is automatically turned off by the integrated thermal protection circuit.

Input voltages up to 40 V are regulated to $V_{Q,nom}$ = 3.0 V (V30 version) 3.3 V (V33 version) or 5.0 V (V50 version). The output is able to drive a load of more than 30 mA while it regulates the output voltage within a 4% accuracy. The power fail output (open collector) is switched to low in case of undervoltage overload or saturation of the output transistor.

Туре	Package	Marking
TLE4295GV50	PG-SCT595-5	D1
TLE4295GV33	PG-SCT595-5	D2
TLE4295GV30	PG-SCT595-5	D3

Table of contents

	Features
	Potential applications
	Product validation
	Description
	Table of contents 3
1	Block diagram
2 2.1 2.2	Pin configuration5Pin assignment5Pin definitions and functions5
3 3.1 3.2 3.3	General product characteristics6Absolute maximum ratings6Functional range7Thermal resistance7
4 4.1	Electrical characteristics 8 Electrical characteristics voltage regulator 8
5	Application information
6	Package information
7	Revision history

Block diagram

1 Block diagram

Figure 1 Block diagram

Pin configuration

2 Pin configuration

2.1 Pin assignment

Figure 2 Pin configuration (top view)

2.2 Pin definitions and functions

Table 1Pin definitions and functions

Pin	Symbol	Function
1	PF	Power fail
		L for undervoltage.
2	GND	Ground
		Connected to pin 5.
3	I	Input voltage
4	Q	Output voltage
		Must be blocked by a capacitor $C_0 \ge 2.2 \ \mu$ F, ESR $\le 5 \Omega$ to GND
		(Tantalum capacitor recommended as output capacitor).
5	GND	Ground
		Connected to pin 2.

General product characteristics

3 General product characteristics

3.1 Absolute maximum ratings

Table 2 Absolute maximum ratings

 T_j = -40°C to +150°C; all voltages with respect to ground, direction of currents as shown in **Figure 3** (unless otherwise specified)

Parameter	Symbol	Values		Unit	Note or Test Condition	Number	
		Min.	Тур.	Max.			
Input				1	-+		
Voltage	V	-42	-	45	V	-	P_3.1.1
Current	I _I	-	-	-	mA	1)	P_3.1.2
Output			<u>.</u>				
Voltage	V _Q	-6	-	30	V	-	P_3.1.3
Current	I _Q	-	-	1)	mA		P_3.1.4
Power fail			<u>.</u>				
Voltage	V _{PF}	-0.3	-	45	V	-	P_3.1.5
Current	I _{PF}	-500	-		μA	1)	P_3.1.6
Temperatures		-			·	1	+
Junction temperature	T	-40	-	150	°C	-	P_3.1.7
Storage temperature	T _{stg}	-50	-	150	°C	-	P_3.1.8
4) [1,1,1,1,1,1] [1,1,1,1,1]							

1) Internally limited.

Notes

1. Stresses above the ones listed here may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

2. Integrated protection functions are designed to prevent IC destruction under fault conditions described in the data sheet. Fault conditions are considered as "outside" normal operating range. Protection functions are not designed for continuous repetitive operation.

General product characteristics

3.2 Functional range

Table 3Functional range

Parameter	Symbol	Values			Unit	Note or Test Condition	Number	
		Min.	Тур.	Max.				
Input voltage	V	V _{Q,nom} + 0.5 V	-	45	V	-	P_3.2.1	
Output current	I _Q	-	_	-	mA	1)	P_3.2.2	
Junction temperature	Tj	-40	_	150	°C	-	P_3.2.3	

1) Internally limited.

3.3 Thermal resistance

Note: This thermal data was generated in accordance with JEDEC JESD51 standards. For more information, go to **www.jedec.org**.

Table 4Thermal resistance

Parameter	Symbol	Values			Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Junction to ambient ¹⁾	R _{thJA}	-	-	179	K/W	Zero airflow, zero heat sink area	P_3.3.1
Junction to soldering point	R _{thJSP}	-	-	30	K/W	Measured to pin 5	P_3.3.2

1) Worst case regarding peak temperature.

Note: Within the functional or operating range, the IC operates as described in the circuit description. The electrical characteristics are specified within the conditions given in the electrical characteristics table.

Electrical characteristics

4 Electrical characteristics

4.1 Electrical characteristics

Table 5 Electrical characteristics

 $V_{\rm I}$ = 13.5 V; $T_{\rm j}$ = -40°C to +150°C; all voltages with respect to ground, (unless otherwise specified)

Parameter	Symbol		Value	S	Unit	Note or Test Condition	Number
		Min.	Тур.	Max.			
Output		- I	1	1	1		¥
Output voltage TLE4295GV30	V _Q	2.88	3.00	3.12	V	1 mA < <i>I</i> _Q < 30 mA <i>V</i> _I < 13.5 V	P_4.1.1
	V _Q	2.88	3.00	3.12	V	$I_{\rm Q} = 10 \text{ mA};$ 4 V < $V_{\rm I} < 40 \text{ V}$	P_4.1.2
Output voltage TLE4295GV33	V _Q	3.17	3.30	3.43	V	1 mA < <i>I</i> _Q < 30 mA <i>V</i> _I < 13.5 V	P_4.1.3
	V _Q	3.17	3.30	3.43	V	<i>I</i> _Q = 10 mA; 4.3 V < <i>V</i> ₁ < 40 V	P_4.1.4
Output voltage TLE4295GV50	V _Q	4.80	5.00	5.20	V	1 mA < <i>I</i> _Q < 30 mA <i>V</i> _I < 13.5 V	P_4.1.5
	V _Q	4.80	5.00	5.20	V	$I_{\rm Q} = 10 \text{ mA};$ 6 V < $V_{\rm I} < 40 \text{ V}$	P_4.1.6
Output current limitation	I _Q	30	_	-	mA	1)	P_4.1.7
Drop out voltage	V _{dr}	-	0.25	0.40	V	$I_{\rm Q} = 20 {\rm mA}^{1)}$	P_4.1.8
Output capacitor	C _Q	2.2	-	-	μF	ESR≤5Ωat 10kHz	P_4.1.9
Current consumption		ŀ					<u>и</u>
Current consumption $I_q = I_1 - I_Q$	I _q	-	2	4	mA	l _Q < 30 mA	P_4.1.10
Current consumption $I_q = I_1 - I_Q$	I _q	-	120	200	μA	/ _Q < 1 mA	P_4.1.11
Regulator performance		L.	1	1	1		
Load regulation	$ \Delta V_{\rm Q} $	-	10	25	mV	1 mA < <i>I</i> _Q < 25 mA; <i>T</i> _j = 25°C;	P_4.1.12
Load regulation	$ \Delta V_{\rm Q} $	-	10	30	mV	1 mA < I _Q < 25 mA;	P_4.1.13
Line regulation	ΙΔν _Q Ι	-	5	25	mV	$\Delta V_{\rm I} = V_{\rm I,min} \text{ to 36 V;}$ $I_{\rm Q} = 5 \text{ mA;}$ $T_{\rm i} = 25^{\circ}\text{C}$	P_4.1.14
Line regulation	$ \Delta V_{\rm Q} $	-	10	30	mV	$\Delta V_{\rm I} = V_{\rm I,min} \text{ to 36 V;}$ $I_{\rm Q} = 5 \text{ mA;}$	P_4.1.15
Power supply ripple rejection	PSRR	-	60	-	dB	f _r = 100 Hz; V _r = 0.5 Vpp	P_4.1.16

Electrical characteristics

Table 5Electrical characteristics (cont'd)

 $V_{\rm I}$ = 13.5 V; $T_{\rm j}$ = -40°C to +150°C; all voltages with respect to ground, (unless otherwise specified)

Parameter	Symbol		Values			Note or Test Condition	Number
		Min.	Тур.	Max.			
Power fail output	I				-1		
Power fail threshold	V _{QPF}	-	4.86	_	V	TLE4295GV50	P_4.1.17
		-	3.20	-	V	TLE4295GV33	P_4.1.18
		-	2.91	-	V	TLE4295GV30	P_4.1.19
Power fail headroom	V _{Qnom} - V _{QPF}	50	140	300	mV	TLE4295GV50	P_4.1.20
		33	100	200	mV	TLE4295GV33	P_4.1.21
		30	90	180	mV	TLE4295GV30	P_4.1.22
Power fail low voltage	V _{PFL}	-	150	300	mV	I _{PF} = 0.1 mA	P_4.1.23
Pull-up resistor	R _{PF}	70	100	130	kΩ	2)	P_4.1.24

1) Measured when the output voltage V_Q has dropped 100 mV from the nominal value.

2) Internal connected to $V_{\rm Q}$.

Application information

5 Application information

Note: The following information is given as a hint for the implementation of the device only and shall not be regarded as a description or warranty of a certain functionality, condition or quality of the device.

Figure 3 Application diagram

Package information

6 Package information

Green Product (RoHS compliant)

To meet the world-wide customer requirements for environmentally friendly products and to be compliant with government regulations the device is available as a green product. Green products are RoHS-compliant (i.e. Pb-free finish on leads and suitable for Pb-free soldering according to IPC/JEDEC J-STD-020).

Further information on packages

https://www.infineon.com/packages

¹⁾ Dimensions in mm

Revision history

7 Revision history

Revision	Date	Changes
1.5	2021-04-21	Updated layout and structure Editorial changes Deleted 2.6 V version Page 7: added "Thermal resistance" added TOC
1.4	2008-04-21	Initial version of RoHS-compliant derivate of TLE4295GV. Page 1: AEC certified statement added. Marking information added. Page 1 and page 9: RoHS compliance statement and Green product feature added. Package changed to RoHS compliant version. Legal Disclaimer updated
1.3	2004-01-01	Initial release

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-04-21 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference Z8F55129789

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

TLE4295GV26HTSA1 TLE4295GV33HTSA1 TLE4295GV50HTSA1 TLE4295GV30HTSA1