

TLD5190 VOLT DEMO evaluation board

User Manual

About this document

Product description

TLD5190: H-Bridge buck-boost DC-DC controller designed for high power, high efficiency automotive applications

- Constant current (LED driver) and constant voltage regulation
- EMC optimized device: Spread spectrum

Scope and purpose

Scope of this user manual is to provide to the audience instructions on usage of the TLD5190 VOLT DEMO evaluation board schematic version V3.1, PCB version R2.

The TLD5190 VOLT DEMO is an evaluation platform for the TLD5190 set as compact voltage regulator.

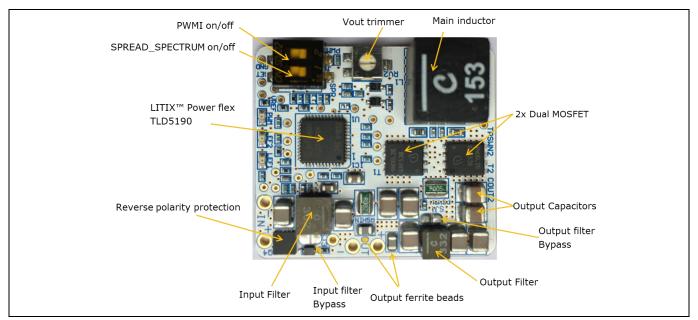


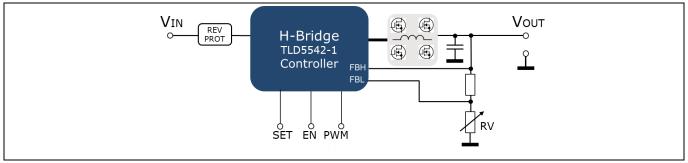
Figure 1 TLD5190 VOLT DEMO evaluation board

Intended audience

Hardware engineers, system architects

1 Table of contents

Abou	t this document	. 1
1	Table of contents	. 2
2	Description	. 3
	Quick start procedure	
4	Operating range and power derating	. 6
5	Electrical characteristics	. 7
6	PCB - component placement	. 8
7	Schematic	. 9
8	ВОМ	10
Revis	ion history	11
	•	


2 Description

The H-Bridge architecture is among the most efficient buck-boost topologies for high current applications. The TLD5190 can be configured as voltage regulator or LED driver.

The TLD5190 VOLT DEMO is an evaluation platform for the TLD5190 as voltage regulator. The PCB is extremely compact and can fit in to small applications enclosures for fast prototyping.

Note: The board has been designed as voltage pre-regulator for rear lighting applications, so it will <u>startup correctly only with output current > 100 mA.</u> In case of startup with no load the soft-start capacitor has to be dimensioned accordingly with the application conditions (input and output voltage).

The soft start enables DCM (Discontinuous Conduction Mode), this may prevent exact regulation at startup with no load. In case of startup without load the output voltage may rise above the target and the Comp capacitor to be discharged. After the soft start expires, the TLD5190 applies CCM, and the output voltage would be discharged producing a short circuit detection.

Figure 2 TLD5190 as voltage regulator

On the board, in addition there are 3 LEDs to indicate PWMI and error flags status, and 2 switches to activate spread spectrum and PWMI.

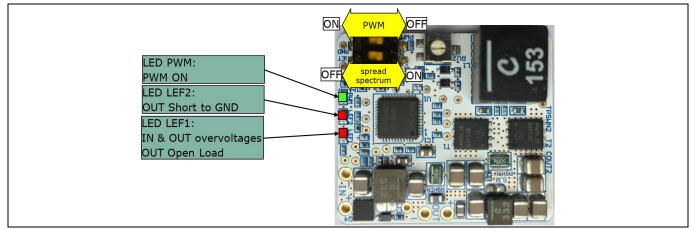


Figure 3 TLD5190 VOLT DEMO LEDs signals

Quick start procedure

3 Quick start procedure

Below, step by step procedures are laid out for setup and running the TLD5190 VOLT DEMO.

- 1. Connect a dummy load at the OUT terminals which could withstand the Max V_{OUT}
 - a. Example: $10W 47 \Omega$ resistor
- 2. Connect the power supply at the IN terminals

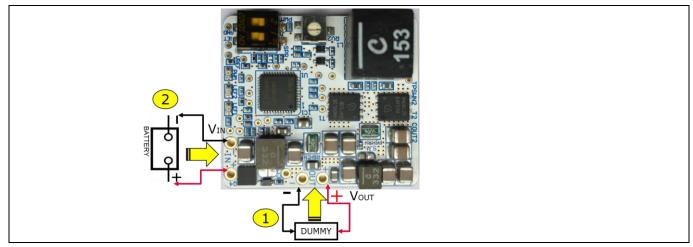


Figure 4 Connect the load and the power supply

- 3. Set J1-PWMI DIP switch to $ON \rightarrow$ the green PWMI LED should light up
- 4. Set the output voltage to the desired value by rotating RV2

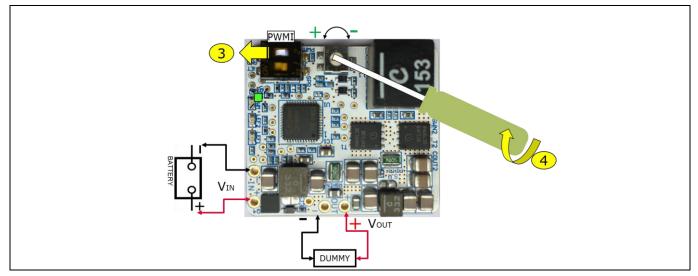


Figure 5 Set PWMI to ON and trim Vout to the desired value

5. Now that V_{out} has been trimmed to the right value, connect the real load at the OUT terminals

TLD5190 VOLT DEMO evaluation board

User Manual

Quick start procedure

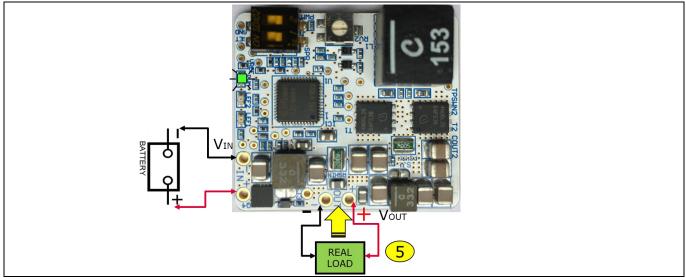


Figure 6 Connect the real load

User Manual

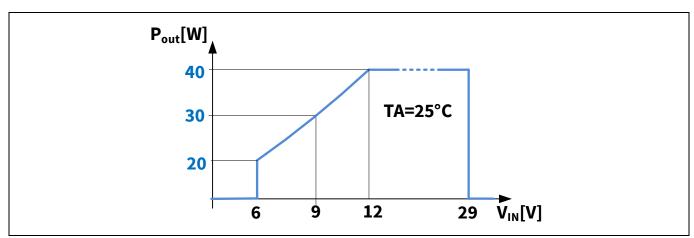
Operating range and power derating

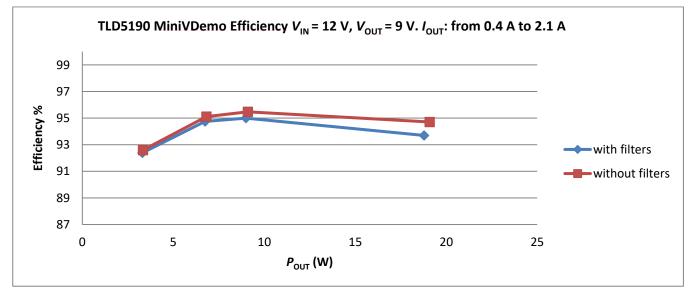
4 Operating range and power derating

The TLD5190 VOLT DEMO has very high efficiency, so it can deliver up to 40 W at the output without a heat sink at $T_A = 25^{\circ}$ C, $V_{IN} = 12 \text{ V} I_{OUT} < 3 \text{ A}$ (see Figure 7 for power-derating curve).

Note:

The module does not implement thermal protection, so ensure proper cooling when output power exceeds the power-derating curve. The heat sink has to be positioned below the switching MOSFETs.




Figure 7 Output power derating curve ($T_A = 25^{\circ}C$, $I_{OUT} < 3A$)

Electrical characteristics 5

Table 1 **TLD5190 VOLT DEMO schematic version V3.1 – Electrical characteristics**

Deveneter	Symbol	Value			11	Note/Test Condition
Parameter		Min.	Тур.	Max.	Unit	Note/Test Condition
Input voltage	V _{IN}	5	-	29	v	-
Output voltage	Vout	3	-	21	V	RV2 trimmer could set V_{OUT} as low as 1.5 V , but short to GND would be detected
Output current	I _{OUT}	0	-	3	А	-
Input current limit	I _{IN_MAX}	-	7	-	А	-
Output power	P _{OUT}	-	40	-	w	$V_{\rm IN}$ 12 V to 28 V, $I_{\rm OUT}$ < 3 A, $T_{\rm A}$ = 25°C see Figure 7 for power derating curve
Switching frequency	Switching frequency	-	290	_	kHz	Spread spectrum deviation is present
System efficiency	Eff	-	94	-	%	-

TLD5190 VOLT DEMO Efficiency Figure 8

PCB - component placement

6 PCB - component placement

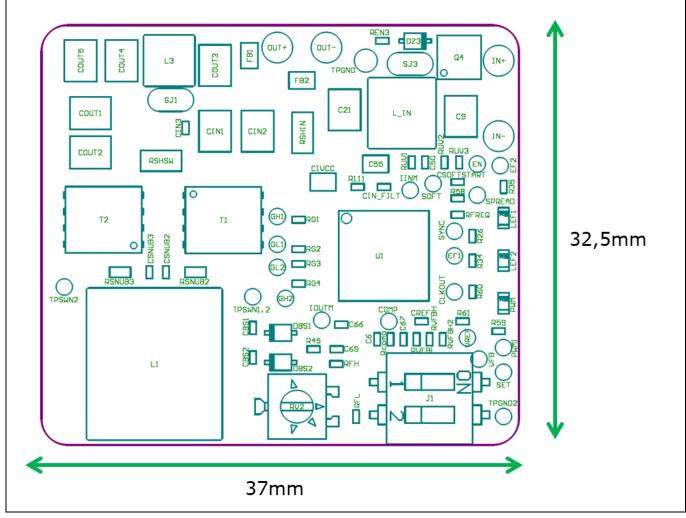
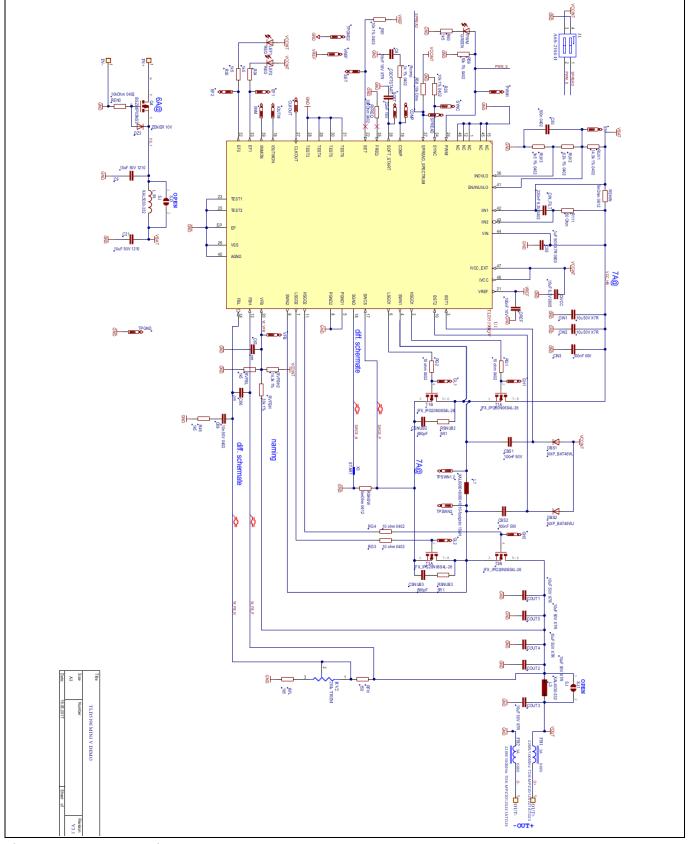



Figure 9 PCB dimensions and component placement - top view

7 Schematic

8 BoM

	LD5190 - microVBoard R2						
Configuration: Voltage mode							
Designator	Comment	Footprint					
C6	15nF 16V X7R	C0402					
C9,C21,CIN1,CIN2,COUT1,COUT2,COUT3,COUT4,COUT5	10uF 50V 1210	C1210					
C50	100n 0402	C0402					
C55	1uF 50V X7R 0603	C0805					
C66	nm	C0402					
C67	nm	C0402					
C69	10n 50V 0402	C0402					
CBS1,CBS2,CIN3,CREF	100nF 50V	C0402					
CIN_FILT	220nF 6.3V 0402	C0402					
CIVCC	10uF 6.3V 0805	C0805					
CSNUB2,CSNUB3	680pF	C0402					
CSOFTSTART	22nF 16V	C0402					
DBS1,DBS2	NXP_BAT46WJ	SOD323F					
DZ3	ZENER 10V	SOD323					
FB1, FB2	IND 220R/100MHz	IND SMD 0805					
J1	A6S-2104-H	DIP SW 2 SMD SDA02H0SB					
L1	XAL1010-153	IND SMD XAL1010+XAL8080					
L3	XAL4030-332	IND SMD XAL4030					
LEF1,LEF2	RED LED	LED 0603 RED					
LIN	XAL5030-332	IND SMD XAL5030					
 PWM	GREEN LED	LED 0603 GREEN					
Q4	BSZ08P03NS3	PG-TSDSON-8 SGD					
R26	10k 1% 0402	R0402					
R34,R35,R45	1k5	R0402					
R58,R59,R61	10kΩ1%	R0402					
R60	1k5	R0402					
R111	50Ω	R0402					
Rcomp	1k 1% 0402	R0402					
REN3	10kΩ 0402	R0402					
RFH	150	R0402					
RFL	1k5	R0402					
RFREQ	39kΩ 0402	R0402					
RG1,RG2,RG3,RG4	10 Ω	R0402					
RSHIN	7mΩ 0612	R0612					
RSHSW	5mΩ 0612	R0612					
RSNUB2,RSNUB3	5.1Ω	R0603					
RUV1	14.3k 1% 0402	R0402					
RUV2	6.2k 1% 0402	R0402					
RUV2 RUV3	1k5 1% 0402	R0402 R0402					
RUV3 RV2		TRIMMER SMD 23B					
	20k TRIM						
RVFBH	33k 1%	R0402					
RVFBH2	14.3k 1%	R0402					
RVFBL		R0402					
SJ1,SJ2	SOLDER JUMP						
T1,T2U1	IFX_IPG20N06S4L-26 TLD5190QV	PG-TDSON-8-4 VQFN48 7X7 P05					

Revision history

Document version	Date of release	Description of changes
Rev. 1.00	2020-06-05	Initial User Manual

Trademarks All referenced product or service names and trademarks are the property of their respective owners.

Edition 2020-06-05 Published by Infineon Technologies AG

81726 München, Germany

© 2020 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Email: erratum@infineon.com

Document reference UM TLD5190 VOLT DEMO

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contair dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: TLD5190VOLTDEMOTOBO1