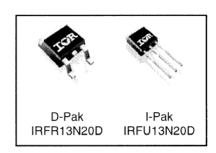
International TOR Rectifier

SMPS MOSFET

PD-95354A

IRFR13N20DPbFIRFU13N20DPbF

HEXFET® Power MOSFET


Applications

- High frequency DC-DC converters
- Lead-Free

V_{DSS}	R _{DS(on)} max	l _D
200V	0.235Ω	13A

Benefits

- Low Gate to Drain Charge to Reduce Switching Losses
- Fully Characterized Capacitance Including Effective C_{OSS} to Simplify Design, (See App. Note AN1001)
- Fully Characterized Avalanche Voltage and Current

Absolute Maximum Ratings

	Parameter	Max.	Units
I _D @ T _C = 25°C	Continuous Drain Current, V _{GS} @ 10V	13	
I _D @ T _C = 100°C	Continuous Drain Current, V _{GS} @ 10V	9.2	A
I _{DM}	Pulsed Drain Current ①	52	
P _D @T _C = 25°C	Power Dissipation	110	W
	Linear Derating Factor	0.71	W/°C
V _{GS}	Gate-to-Source Voltage	± 30	V
dv/dt	Peak Diode Recovery dv/dt 3	2.2	V/ns
TJ	Operating Junction and	-55 to + 175	
T _{STG}	Storage Temperature Range		°C
	Soldering Temperature, for 10 seconds	300 (1.6mm from case)	

Typical SMPS Topologies

• Telecom 48V input Forward Converters

International

TOR Rectifier

Static @ T_J = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	200		_	٧	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta V_{(BR)DSS}/\Delta T_J$	Breakdown Voltage Temp. Coefficient		0.25		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		_	0.235	Ω	$V_{GS} = 10V, I_D = 8.0A$ @
V _{GS(th)}	Gate Threshold Voltage	3.0		5.5	٧	$V_{DS} = V_{GS}, I_D = 250 \mu A$
lana	Drain-to-Source Leakage Current		<u> </u>	25	μА	$V_{DS} = 200V, V_{GS} = 0V$
DSS	Diali-to-Source Leakage Ourient			250	μΛ [$V_{DS} = 160V$, $V_{GS} = 0V$, $T_{J} = 150$ °C
I _{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 30V
	Gate-to-Source Reverse Leakage			-100	''^	V _{GS} = -30V

Dynamic @ T_{.1} = 25°C (unless otherwise specified)

	Parameter	Min.	Тур.	Max.	Units	Conditions
9fs	Forward Transconductance	6.2	_	_	S	$V_{DS} = 50V, I_D = 7.8A$
Qg	Total Gate Charge		25	38		I _D = 7.8A
Q _{gs}	Gate-to-Source Charge	I	7.3	11	nC	V _{DS} = 160V
Q _{gd}	Gate-to-Drain ("Miller") Charge		12	18		V _{GS} = 10V, ④
t _{d(on)}	Turn-On Delay Time		11	_		V _{DD} = 100V
t _r	Rise Time		27		ns	I _D = 7.8A
t _{d(off)}	Turn-Off Delay Time		17	_		$R_G = 6.8\Omega$
tf	Fall Time	T	10	_		V _{GS} = 10V ④
C _{iss}	Input Capacitance	_	830			V _{GS} = 0V
Coss	Output Capacitance	_	140			$V_{DS} = 25V$
C _{rss}	Reverse Transfer Capacitance	_	35		pF	f = 1.0MHz
Coss	Output Capacitance		990			$V_{GS} = 0V$, $V_{DS} = 1.0V$, $f = 1.0MHz$
Coss	Output Capacitance		57			$V_{GS} = 0V$, $V_{DS} = 160V$, $f = 1.0MHz$
Coss eff.	Effective Output Capacitance		59			V _{GS} = 0V, V _{DS} = 0V to 160V S

Avalanche Characteristics

	Parameter	Тур.	Max.	Units
E _{AS}	Single Pulse Avalanche Energy®		130	mJ
I _{AR}	Avalanche Current①		7.8	Α
E _{AR}	Repetitive Avalanche Energy®		11	mJ

Thermal Resistance

	Parameter	Тур.	Max.	Units
$R_{\theta JC}$	Junction-to-Case		1.4	
$R_{\theta JA}$	Junction-to-Ambient (PCB mount)*		50	°C/W
$R_{\theta JA}$	Junction-to-Ambient		110	

Diode Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions		
Is	Continuous Source Current			13		MOSFET symbol		
	(Body Diode)			10	A	showing the		
I _{SM}	Pulsed Source Current			52	1 ^	integral reverse [©]		
	(Body Diode) ①			52		p-n junction diode.		
V _{SD}	Diode Forward Voltage	_		1.3	٧	$T_J = 25^{\circ}C$, $I_S = 7.8A$, $V_{GS} = 0V$ ④		
t _{rr}	Reverse Recovery Time	_	140	210	ns	$T_J = 25^{\circ}C, I_F = 7.8A$		
Qrr	Reverse RecoveryCharge	_	750	1120	nC	di/dt = 100A/μs ④		
ton	Forward Turn-On Time	Intrinsic tum-on time is negligible (tum-on is dominated by L _S +L _D)						

International TOR Rectifier

Fig 1. Typical Output Characteristics

(V) = 100 $T_{J} = 175^{\circ}C$ $T_{J} = 25^{\circ}C$ $V_{DS} = 50V$ $20\mu \text{s PULSE WIDTH}$ $V_{GS}, \text{ Gate-to-Source Voltage (V)}$

Fig 3. Typical Transfer Characteristics

IRFR/U13N20DPbF

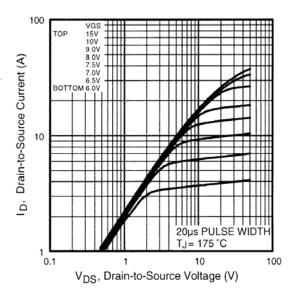
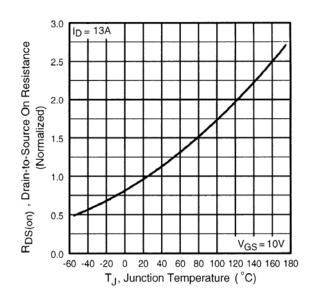
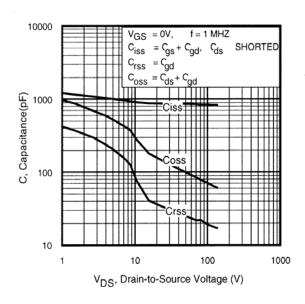
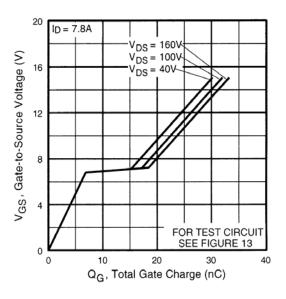


Fig 2. Typical Output Characteristics


Fig 4. Normalized On-Resistance Vs. Temperature

International

TOR Rectifier

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

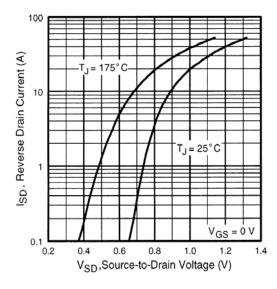


Fig 7. Typical Source-Drain Diode Forward Voltage

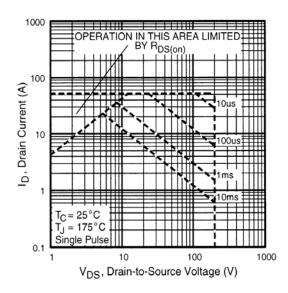


Fig 8. Maximum Safe Operating Area

International TOR Rectifier

14 (V) tues of the second of

Fig 9. Maximum Drain Current Vs. Case Temperature

IRFR/U13N20DPbF

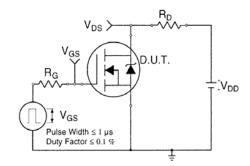


Fig 10a. Switching Time Test Circuit

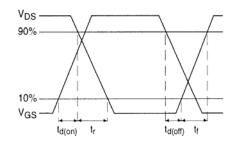
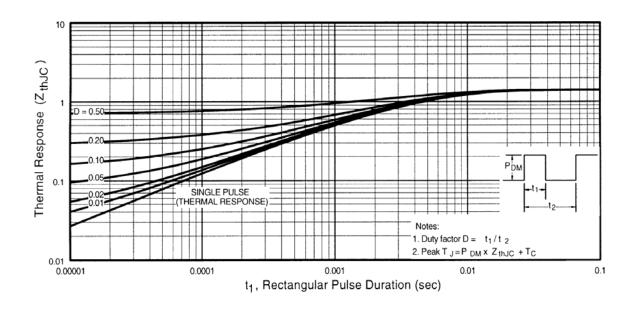



Fig 10b. Switching Time Waveforms

 $\textbf{Fig 11.} \ \ \textbf{Maximum Effective Transient Thermal Impedance, Junction-to-Case}$

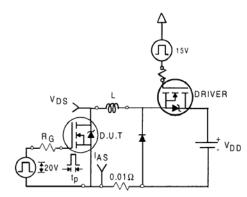


Fig 12a. Unclamped Inductive Test Circuit

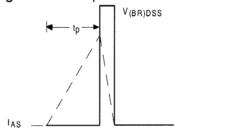


Fig 12b. | Unclamped Inductive Waveforms

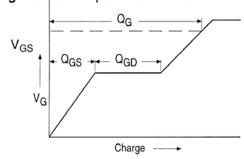


Fig 13a. Basic Gate Charge Waveform

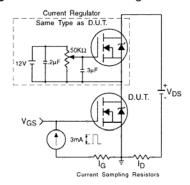


Fig 13b. Gate Charge Test Circuit 6

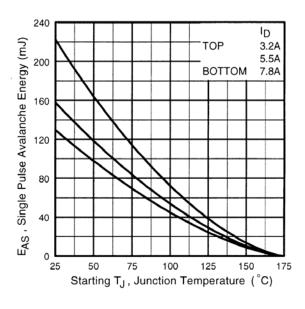
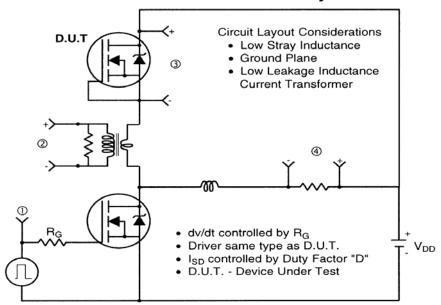
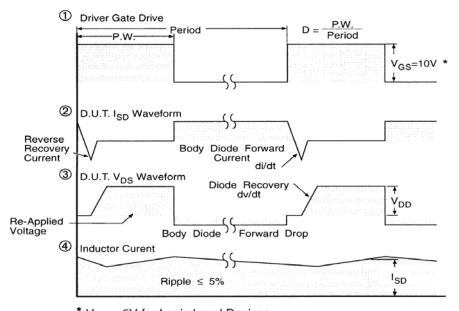
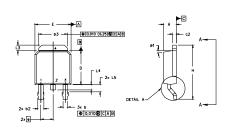
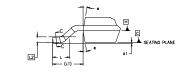
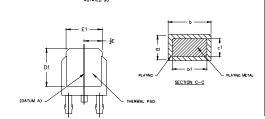




Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Peak Diode Recovery dv/dt Test Circuit



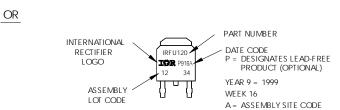

* $V_{GS} = 5V$ for Logic Level Devices


Fig 14. For N-Channel HEXFET® Power MOSFETs

D-Pak (TO-252AA) Package Outline

Dimensions are shown in millimeters (inches)

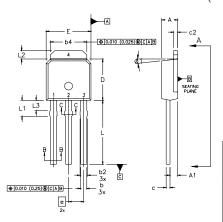
VIEW A-A


1.0 DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994.	INO IL	J.				
	1.0	DIMENSIONING AND	TOLERANCING PER	ASME	Y14,5 M- 1	994.

- DIMENSIONING AND TOLERANCING PER ASME Y14.5 M- 1994,
 DIMENSIONS ARE SHOWN IN INCHES [MILLIMETERS]
 LEAD DIMENSION UNCONTROLLED IN L5
 DIMENSION DIT AND ET ESTABLISH A MINIMUM MOUNTING SURFACE FOR THERMAL PAD,
 SECTION C-C DIMENSIONS APPLY TO THE FLAT STETION OF THE LEAD BETWEEN .005 [0.127] AND
 .010 [0.2540 FROM THE LEAD TIP,
 DIMENSION D & E DO NOT INCLUDE MOLD FLASH, MOLD FLASH SHALL NOT EXCEED
 .005* (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERWOST
 EXTREMES OF THE PLASTIC BODY.
 OUTLINE CONFORMS TO JEDEC OUTLINE TO-252AA.

		DIMEN	SIONS			
SYMBOL	MILLIM	ETERS	INC	HES		
	MINL	MAX.	MIN.	MAX.	NOTES	
A	2.18	2.39	.086	.094		
A1		0.13		.005		
ь	0.64	0.89	.025	.035	5	LEAD ASSIGNMENTS
ь1	0.64	0.79	.025	0.031	5	
b2	0.76	1,14	.030	045		<u>HEXFET</u>
b3	4.95	5.46	.195	.215		
с	0.46	0.61	.018	.024	5	1 GATE
c1	0.41	0.56	.016	.022	5	2 DRAIN
c2	.046	0,89	.018	.035	5	3 SOURCE
D	5.97	6.22	.235	.245	6	4,- DRAIN
D1	5.21	-	.205	-	4	
Ε	6.35	6.73	.250	265	6	IGBTs, CoPACK
Ef	4.32	-	.170		4	100 12 00 Mon
e	2.	29	.090	BSC		1 GATE
н	9.40	10,41	.370	.410		2 COLLECTOR
L	1,40	1.78	.055	.070		3. – EMITTER
L1	2.74	REF.	.10B	REF.		4 COLLECTOR
L2	0.051	BSC	.020	BSC		
L3	0,89	1.27	.035	.050		
L4		1.02		.040		
L5	1,14	1.52	.045	.060	3	
8	or	10"	0'	10"		
ø1	or	15"	0.	15*		

D-Pak (TO-252AA) Part Marking Information



International IOR Rectifier

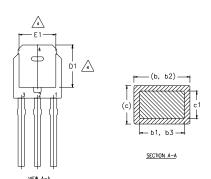
IRFR/U13N20DPbF

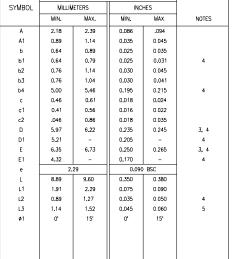
I-Pak (TO-251AA) Package Outline

Dimensions are shown in millimeters (inches)

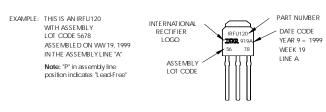
IIE2					
	DIMENSIONING	AND	TOLERANCING	PFR	ASME

- DIMENSIONS ARE SHOWN IN MILLIMETERS [INCHES].
 DIMENSION D & E DO NOT INCLUDE MOLD FLASH. MOLD FLASH SHALL NOT EXCEED 0.005" (0.127) PER SIDE. THESE DIMENSIONS ARE MEASURED AT THE OUTERMOST EXTREMES OF THE PLASTIC BODY.
 THERMAL PAD CONTOUR OPTION WITHIN DIMENSION 64, L2, E1 & D1.
- LEAD DIMENSION UNCONTROLLED IN L3.
- DIMENSION 61, 63 APPLY TO BASE METAL ONLY.
 OUTLINE CONFORMS TO JEDEC OUTLINE TO -251AA.

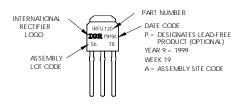

DIMENSIONS


CONTROLLING DIMENSION : INCHES.

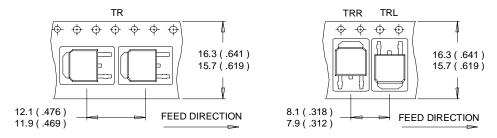
LEAD ASSIGNMENTS


Н	ΕX	F	E	ľ

- 1.- GATE 2.- DRAIN
- 3.- SOURCE 4.- DRAIN

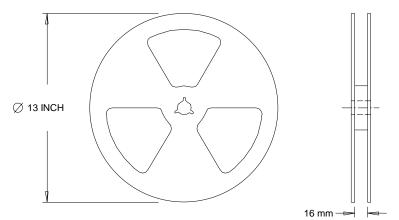


I-Pak (TO-251AA) Part Marking Information



International

TOR Rectifier


D-Pak (TO-252AA) Tape & Reel Information

Dimensions are shown in millimeters (inches)

NOTES:

- 1. CONTROLLING DIMENSION: MILLIMETER.
- 2. ALL DIMENSIONS ARE SHOWN IN MILLIMETERS (INCHES).
- 3. OUTLINE CONFORMS TO EIA-481 & EIA-541.

NOTES:

1. OUTLINE CONFORMS TO EIA-481.

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105

TAC Fax: (310) 252-7903

Visit us at www.irf.com for sales contact information. 01/05

Note: For the most current drawings please refer to the IR website at: http://www.irf.com/package/

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IRFR13N20DPBF IRFR13N20DTRPBF