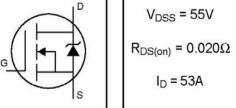
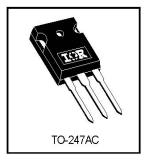
PD-95421

International

- Advanced Process Technology
- Dynamic dv/dt Rating
- 175°C Operating Temperature

Absolute Maximum Ratings


- Fast Switching
- Fully Avalanche Rated
- Lead-Free


Description

Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-247 package is preferred for commercial-industrial applications where higher power levels preclude the use of TO-220 devices. The TO-247 is similar but superior to the earlier TO-218 package because of its isolated mounting hole.

IRFP044NPbF HEXFET[™] Power MOSFET

Parameter Max. Units $I_D @ T_C = 25^{\circ}C$ 53 Continuous Drain Current, VGS @ 10V I_D @ T_C = 100°C Continuous Drain Current, VGS @ 10V 37 A Pulsed Drain Current 00 180 I_{DM} W $P_{D}@T_{C}=25^{\circ}C$ Power Dissipation 120 0.77 W/°C Linear Derating Factor Gate-to-Source Voltage ± 20 ٧ VGS EAS Single Pulse Avalanche Energy 25 230 mJ Avalanche Current^① 28 AR A Repetitive Avalanche Energy^① 12 EAR mJ dv/dt Peak Diode Recovery dv/dt 35 5.0 V/ns -55 to + 175 ΤJ Operating Junction and TSTG Storage Temperature Range °C Soldering Temperature, for 10 seconds 300 (1.6mm from case) Mounting torque, 6-32 or M3 screw 10 lbf•in (1.1N•m)

Thermal Resistance

	Parameter	Тур.	Max.	Units
R _{eJC}	Junction-to-Case		1.3	
R _{0CS}	Case-to-Sink, Flat, Greased Surface	0.24		°C/W
ROJA	Junction-to-Ambient		40	

	Parameter	Min.	Тур.	Max.	Units	Conditions
V _{(BR)DSS}	Drain-to-Source Breakdown Voltage	55			V	$V_{GS} = 0V, I_D = 250 \mu A$
ΔV(BR)DSS/ΔTJ	Breakdown Voltage Temp. Coefficient	3 11	0.017		V/°C	Reference to 25°C, $I_D = 1mA$
R _{DS(on)}	Static Drain-to-Source On-Resistance			0.020	Ω	V _{GS} = 10V, I _D = 29A ④
V _{GS(th)}	Gate Threshold Voltage	2.0		4.0	V	$V_{DS} = V_{GS}, I_{D} = 250 \mu A$
g fs	Forward Transconductance	16			S	V _{DS} = 25V, I _D = 28A ⁽ 3)
I _{DSS}	Drain-to-Source Leakage Current			25	μA	V _{DS} = 55V, V _{GS} = 0V
				250		V_{DS} = 44V, V_{GS} = 0V, T_{J} = 150°C
	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
IGSS	Gate-to-Source Reverse Leakage			-100		V _{GS} = -20V
Qg	Total Gate Charge			61		I _D = 28A
Q _{gs}	Gate-to-Source Charge			13	nC	V _{DS} = 44V
Q _{gd}	Gate-to-Drain ("Miller") Charge	_		24		V _{GS} = 10V, See Fig. 6 and 13 ④ ⑤
t _{d(on)}	Turn-On Delay Time		12			V _{DD} = 28V
tr	Rise Time		80			I _D = 28A
t _{d(off)}	Turn-Off Delay Time		43	0.000	ns	$R_G = 12\Omega$
t _f	Fall Time		52			R _D = 0.98Ω, See Fig. 10 ④⑤
LD	Internal Drain Inductance		5.0		- nH	Between lead,
-0			5.0			6mm (0.25in.)
L _S	Internal Source Inductance		13	—		from package
						and center of die contact
Ciss	Input Capacitance		1500	<u></u>		V _{GS} = 0V
Coss	Output Capacitance		450		pF	V _{DS} = 25V
C _{rss}	Reverse Transfer Capacitance		160			f = 1.0MHz, See Fig. 5

Electrical Characteristics @ T_J = 25°C (unless otherwise specified)

Source-Drain Ratings and Characteristics

	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current			53	Α	MOSFET symbol
	(Body Diode)					showing the
I _{SM}	Pulsed Source Current	sed Source Current	400		integral reverse 🛛 🖓 📥	
	(Body Diode) ①			180		p-n junction diode.
V _{SD}	Diode Forward Voltage			1.3	V	T _J = 25°C, I _S = 29A, V _{GS} = 0V ④
t _m	Reverse Recovery Time		72	110	ns	T _J = 25°C, I _F = 28A
Qrr	Reverse Recovery Charge		210	310	μC	di/dt = -100A/µs ⊕⑤
t _{on}	Forward Turn-On Time	Intr	Intrinsic turn-on time is negligible (turn-on is dominated by L _S +L _D)			

Notes:

① Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)

④ Pulse width \leq 300µs; duty cycle \leq 2%.

- $\textcircled{3} I_{\text{SD}} \leq 28\text{A}, \, \text{di/dt} \, \leq 240 \text{A/}\mu\text{s}, \, V_{\text{DD}} \leq V_{(\text{BR})\text{DSS}}, \\ T_{\text{J}} \leq 175^{\circ}\text{C}$

⑤ Uses IRFZ46N data and test conditions

International **ICPR** Rectifier

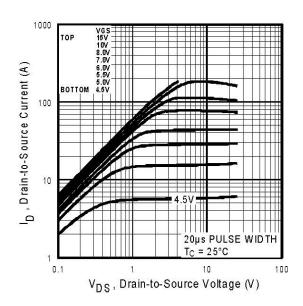


Fig 1. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 2. Typical Output Characteristics

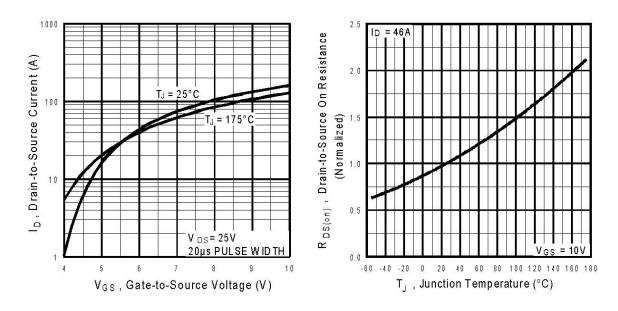
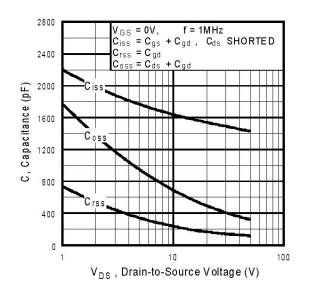
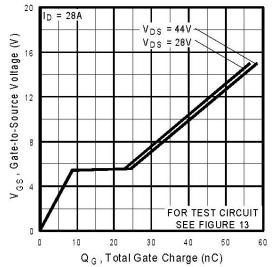
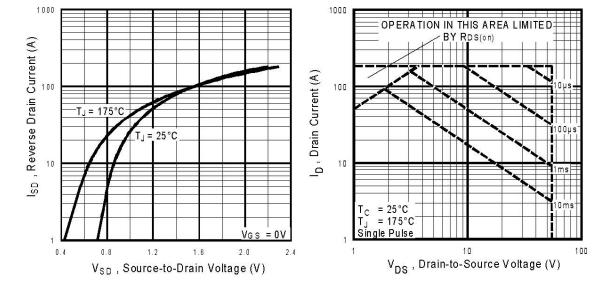
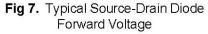
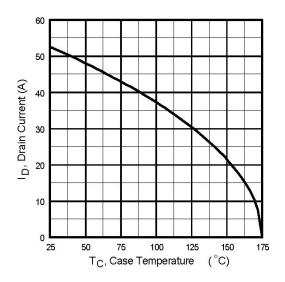
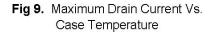



Fig 4. Normalized On-Resistance Vs. Temperature

International


Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage



International

IRFP044NPbF

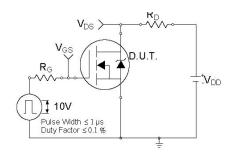


Fig 10a. Switching Time Test Circuit

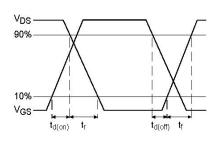


Fig 10b. Switching Time Waveforms

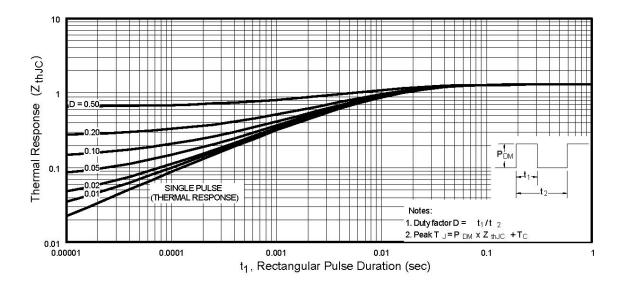


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

International

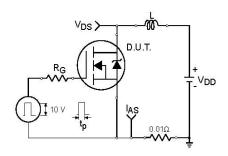


Fig 12a. Unclamped Inductive Test Circuit

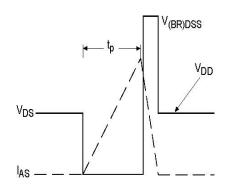


Fig 12b. Unclamped Inductive Waveforms

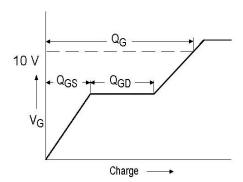


Fig 13a. Basic Gate Charge Waveform

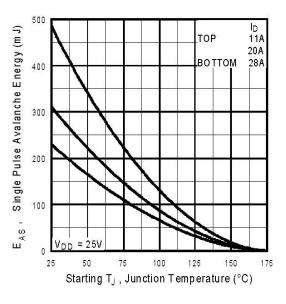


Fig 12c. Maximum Avalanche Energy Vs. Drain Current

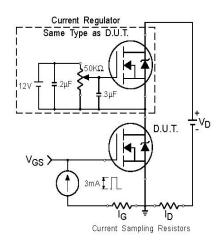
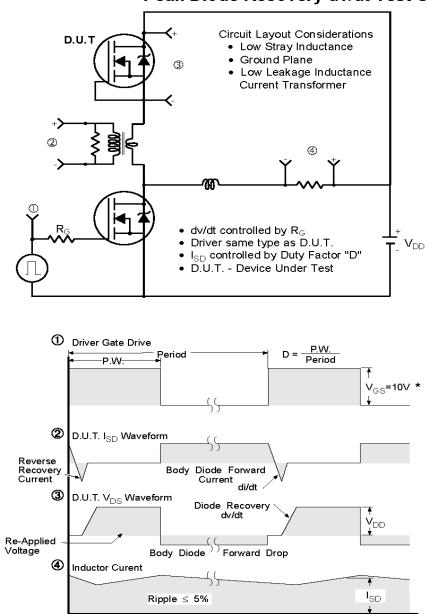



Fig 13b. Gate Charge Test Circuit

International

IRFP044NPbF

Peak Diode Recovery dv/dt Test Circuit

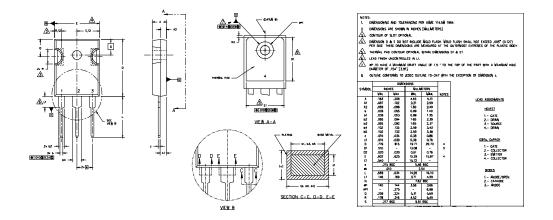
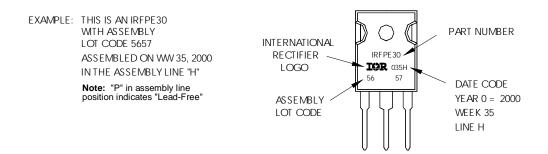

* V_{GS} = 5V for Logic Level Devices

Fig 14. For N-Channel HEXFETS


International

TO-247AC Package Outline

Dimensions are shown in millimeters (inches)

TO-247AC Part Marking Information

Data and specifications subject to change without notice.

International

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105 TAC Fax: (310) 252-7903 Visit us at www.irf.com for sales contact information. 06/04 8 www.irf.com Note: For the most current drawings please refer to the IR website at: <u>http://www.irf.com/package/</u>

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: IRFP044NPBF