

V _{DSS}	30	٧
$R_{DS(on)}$ max $(@V_{GS} = 10V)$	3.8	mΩ
Qg (typical)	15	nC
Rg (typical)	2.5	Ω
I _D (@T _{C (Bottom)} = 25°C)	77	A

results in

Applications

Battery Operated DC Motor Inverter MOSFET

Features

Benefits

Dellelles
Lower Conduction Losses
Enable better thermal dissipation
Increased Reliability
Increased Power Density
Multi-Vendor Compatibility
Easier Manufacturing
Environmentally Friendlier
Increased Reliability

Orderable next number	erable part number Package Type Standard Pack Form Quantity		Note	
Orderable part number			Quantity	Note
IRFHM830TRPbF	PQFN 3.3mm x 3.3mm	Tape and Reel	4000	
IRFHM830TR2PBF	PQFN 3.3mm x 3.3mm	Tape and Reel	400	EOL notice # 259

Absolute Maximum Ratings

Symbol	Parameter	Max.	Units	
V_{DS}	Drain-to-Source Voltage	30	V	
V_{GS}	Gate-to-Source Voltage	± 20	V	
I _D @ T _A = 25°C	Continuous Drain Current, V _{GS} @ 10V	21		
I _D @ T _A = 70°C	Continuous Drain Current, V _{GS} @ 10V	17		
I _D @ T _{C(Bottom)} = 25°C	Continuous Drain Current, V _{GS} @ 10V ®	77 A		
I _D @ T _{C(Bottom)} = 100°C	Continuous Drain Current, V _{GS} @ 10V ®	49		
I _{DM}	Pulsed Drain Current ①	308		
P _D @T _A = 25°C	P _D @T _A = 25°C Power Dissipation ©		W	
P _D @T _{C(Bottom)} = 25°C	Power Dissipation ©	37		
	Linear Derating Factor ⑤	0.022	W/°C	
TJ	Operating Junction and	-55 to + 150	°C	
T _{STG}	Storage Temperature Range		°C	

Notes ① through ⑥ are on page 9

Static @ T_J = 25°C (unless otherwise specified)

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
BV _{DSS}	Drain-to-Source Breakdown Voltage	30			V	$V_{GS} = 0V, I_D = 250\mu A$
$\Delta BV_{DSS}/\Delta T_{J}$	Breakdown Voltage Temp. Coefficient		0.02		V/°C	Reference to 25°C, I _D = 1mA
R _{DS(on)}	Static Drain-to-Source On-Resistance		3.0	3.8		$V_{GS} = 10V, I_D = 20A$ ③
			4.8	6.0	mΩ	V _{GS} = 4.5V, I _D = 20A ③
$V_{GS(th)}$	Gate Threshold Voltage	1.35	1.8	2.35	V	V/ - V/ I - FO. A
$\Delta V_{GS(th)}$	Gate Threshold Voltage Coefficient		-6.3		mV/°C	$V_{DS} = V_{GS}$, $I_D = 50\mu A$
I _{DSS}	Drain-to-Source Leakage Current			1		$V_{DS} = 24V$, $V_{GS} = 0V$
				150	μA	$V_{DS} = 24V, V_{GS} = 0V, T_{J} = 125^{\circ}C$
I_{GSS}	Gate-to-Source Forward Leakage			100	nA	V _{GS} = 20V
	Gate-to-Source Reverse Leakage			-100	I IIA	$V_{GS} = -20V$
gfs	Forward Transconductance	52			S	$V_{DS} = 15V, I_{D} = 20A$
Q_g	Total Gate Charge		31			$V_{GS} = 10V, V_{DS} = 15V, I_D = 20A$
Q_g	Total Gate Charge		15	23		
Q _{gs1}	Pre-Vth Gate-to-Source Charge		3.8			V _{DS} = 15V
Q _{gs2}	Post-Vth Gate-to-Source Charge		2.0		nC	V _{GS} = 4.5V
Q_{gd}	Gate-to-Drain Charge		5.0			I _D = 20A
Q_{godr}	Gate Charge Overdrive		4.2			See Fig.17 & 18
Q_{sw}	Switch Charge (Q _{gs2} + Q _{gd})		7.0			
Q _{oss}	Output Charge		9.7		nC	$V_{DS} = 16V, V_{GS} = 0V$
R_G	Gate Resistance		2.5		Ω	
$t_{d(on)}$	Turn-On Delay Time		12			$V_{DD} = 15V, V_{GS} = 4.5V$
t _r	Rise Time		25		, no	I _D = 20A
$t_{d(off)}$	Turn-Off Delay Time		13		ns	$R_G = 1.8\Omega$
t _f	Fall Time		9.2			See Fig.15
C _{iss}	Input Capacitance		2155			$V_{GS} = 0V$
C _{oss}	Output Capacitance		350		pF	$V_{DS} = 25V$
C_{rss}	Reverse Transfer Capacitance		160]	f = 1.0MHz

Avalanche Characteristics

Symbol	Parameter	Тур.	Max.	Units
E _{AS} (Thermally limited)	Single Pulse Avalanche Energy ②		82	mJ
I _{AR}	Avalanche Current ①		20	Α

Diode Characteristics

Symbol	Parameter	Min.	Тур.	Max.	Units	Conditions
Is	Continuous Source Current (Body Diode)			37		MOSFET symbol showing the
I _{SM}	Pulsed Source Current (Body Diode) ①			308		integral reverse p-n junction diode.
V_{SD}	Diode Forward Voltage			1.0	V	$T_J = 25^{\circ}C$, $I_S = 20A$, $V_{GS} = 0V$ ③
t _{rr}	Reverse Recovery Time		17	26	ns	$T_J = 25^{\circ}C$, $I_F = 20A$, $V_{DD} = 15V$
Q _{rr}	Reverse Recovery Charge		23	35	nC	di/dt = 300A/µs ③

Thermal Resistance

Symbol	Parameter	Тур.	Max.	Units
R _{θJC} (Bottom)	Junction-to-Case 4		3.4	
R ₀ JC (Top)	Junction-to-Case ④		37	°C/\\/
$R_{\theta JA}$	Junction-to-Ambient ©		46	°C/W
R _{θJA} (<10s)	Junction-to-Ambient ©		31	

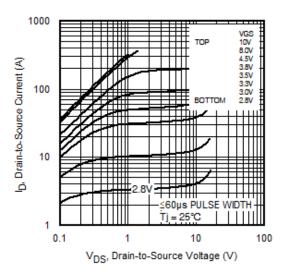


Fig 1. Typical Output Characteristics

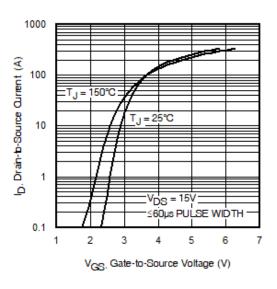
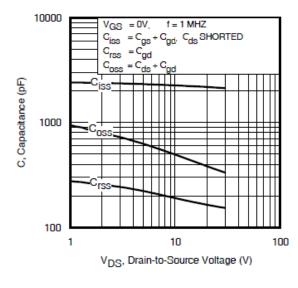



Fig 3. Typical Transfer Characteristics

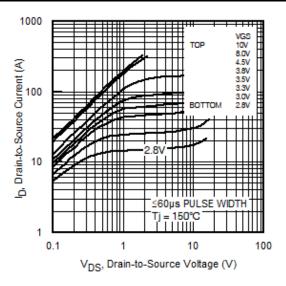


Fig 2. Typical Output Characteristics

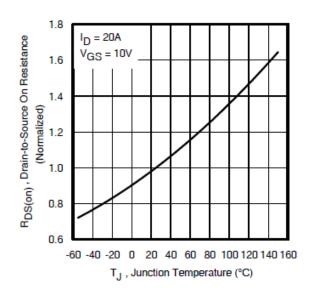


Fig 4. Normalized On-Resistance vs. Temperature

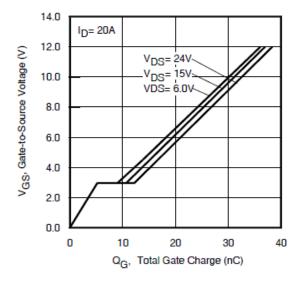


Fig 5. Typical Capacitance vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge vs. Gate-to-Source Voltage

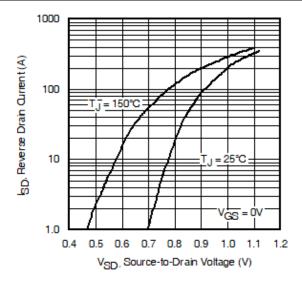


Fig 7. Typical Source-Drain Diode Forward Voltage

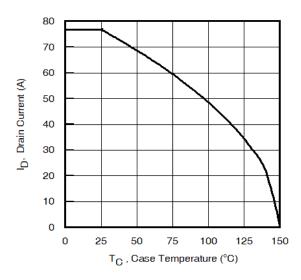


Fig 9. Maximum Drain Current vs. Case Temperature



Fig 8. Maximum Safe Operating Area

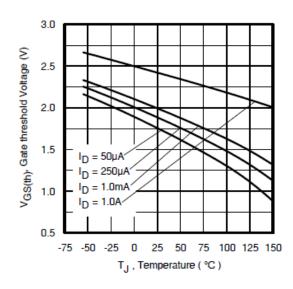


Fig 10. Threshold Voltage Vs. Temperature

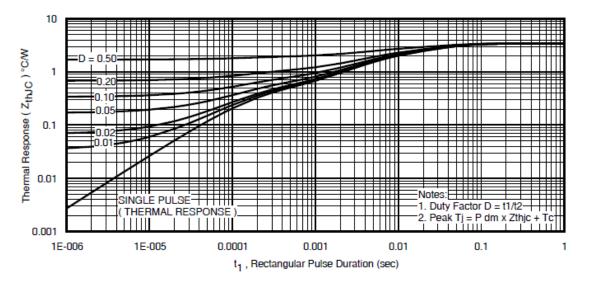


Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case

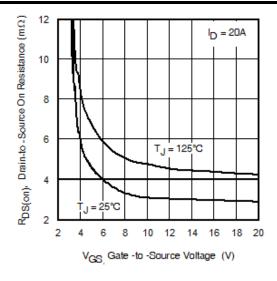
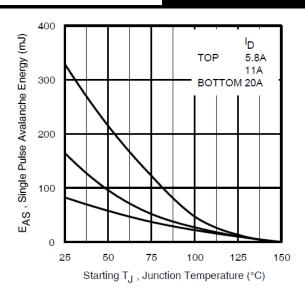



Fig 12. On-Resistance vs. Gate Voltage

Fig 13. Maximum Avalanche Energy vs. Drain Current

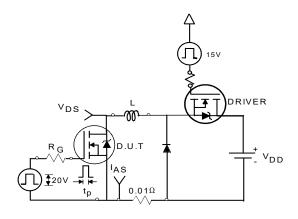


Fig 14a. Unclamped Inductive Test Circuit

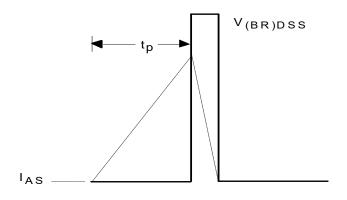


Fig 14b. Unclamped Inductive Waveforms

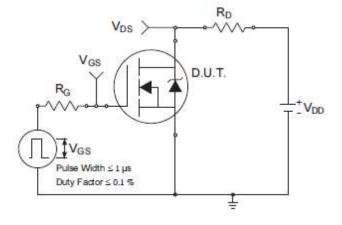


Fig 15a. Switching Time Test Circuit

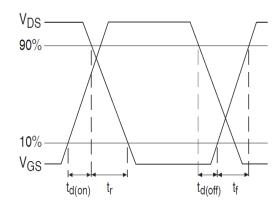


Fig 15b. Switching Time Waveforms

5

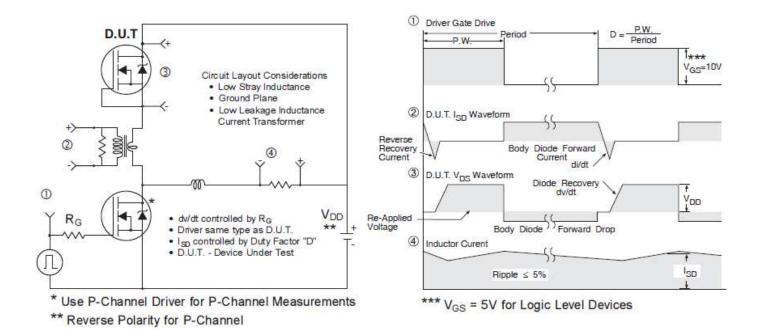


Fig 16. Peak Diode Recovery dv/dt Test Circuit for N-Channel HEXFET® Power MOSFETs

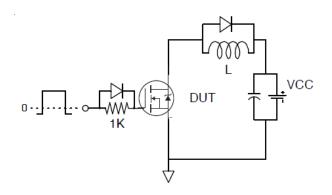


Fig 17. Gate Charge Test Circuit

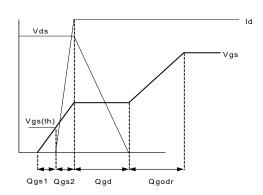
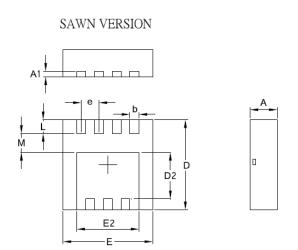
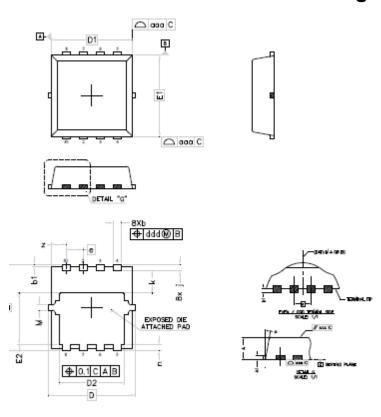



Fig 18. Gate Charge Waveform

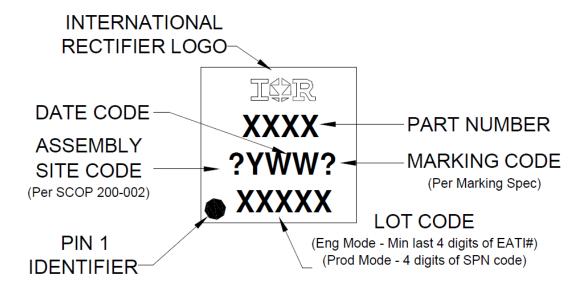


PQFN 3.3 x 3.3 Outline "B" Package Details

S Y	COMMON				
M B	N	IM	INCH		
O L	MIN.	MAX.	MIN.	MAX.	
Α	0.70	1.05	0.0276	0.0413	
A 1	0.12	0.39	0.0047	0.0154	
b	0.25	0.39	0.0098	0.0154	
D	3.20	3.45	0.1260	0.1358	
D1	3.00	3.20	0.1181	0.1417	
D2	1.69	2.20	0.0665	0.0866	
Е	3.20	3.40	0.1260	0.1339	
E1	3.00	3.20	0.1181	0.1417	
E2	2.15	2.59	0.0846	0.1020	
е	0.65 BSC		0.025	6 BSC	
L	0.15	0.55	0.0059	0.0217	
М	0.59		0.0232		
0	9Deg	12Deg	9Deg	12Deg	

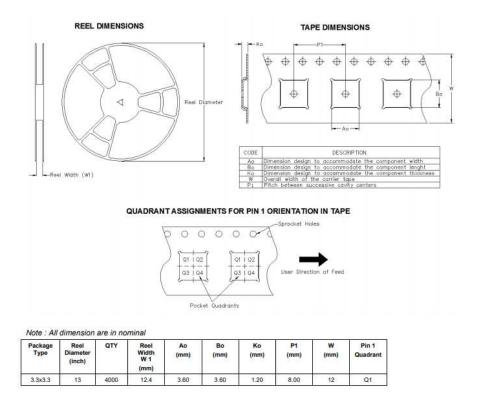
PQFN 3.3 x 3.3 Outline "G" Package Details

Du.	MILLIMETERS		INCH	ES	
DIM	MIN	MAX	MIN	MAX	
Α	0.80	0.90	.0315	.0354	
A1	0.12	0.22	.0047	.0086	
ь	0.22	0.42	.0087	.0165	
Ь1	0.05	0.15	.0020	.0059	
D	3.30	BSC	.1299	BSC	
D1	3.10	BSC	.1220	BSC	
D2	2.29	2.69	.0902	.1059	
E	3.30	BSC	.1299 BSC		
E1	3.10 BSC		.1220 BSC		
E2	1.85	2.05	.0728	.0807	
е	0.65	BSC	.0255	BSC	
j	0.15	0.35	.0059	.0137	
k	0.75	0.95	.0295	.0374	
n	0.15	0.35	.0059	.0137	
М	NOM.	0.20	NOM.	.0078	
Р	9*	11*	9*	1 1*	


For more information on board mounting, including footprint and stencil recommendation, please refer to application note AN-1136: http://www.irf.com/technical-info/appnotes/an-1136.pdf

For more information on package inspection techniques, please refer to application note AN-1154: http://www.irf.com/technical-info/appnotes/an-1154.pdf

Note: For the most current drawing please refer to website at http://www.irf.com/packaging



PQFN 3.3 x 3.3 Part Marking

Note: For the most current drawing please refer to website at http://www.irf.com/packaging

PQFN 3.3 x 3.3 Tape and Reel

Note: For the most current drawing please refer to website at http://www.irf.com/packaging

Qualification Information

Ovalification Lavel	Industrial			
Qualification Level	(per J	EDEC JESD47F [†] guidelines)		
Moisture Sensitivity Level	PQFN 3.3mm x 3.3mm (per JEDEC J-STD-020D ^{†)}			
RoHS Compliant	Yes			

[†] Applicable version of JEDEC standard at the time of product release.

Notes:

- ① Repetitive rating; pulse width limited by max. junction temperature.
- ② Starting $T_J = 25$ °C, L = 0.41mH, $R_G = 50\Omega$, $I_{AS} = 12$ A.
- 3 Pulse width $\leq 400 \mu s$; duty cycle $\leq 2\%$.
- \P R₀ is measured at TJ of approximately 90°C.
- When mounted on 1 inch square PCB (FR-4). Please refer to AN-994 for more details: http://www.irf.com/technical-info/appnotes/an-994.pdf
- ® Rating refers to the product only with datasheet specified absolute maximum values, maintaining case temperature at 25°C. For higher case temperature please refer to Diagram 9. De-rating will be required based on the actual environmental conditions.

Revision History

Date	Rev.	Comments
12/16/2013	2.1	 Updated ordering information to reflect the End-Of-Life (EOL) of the mini-reel option (EOL notice #259). Updated data sheet with the new IR corporate template.
06/06/2014	2.2	 Updated schematic on page1 Updated part marking on page 7. Updated Tape and Reel on page 8.
09/25/2015	2.3	 Updated package outline to reflect the PCN # (67-PCN90-Public-R2) for "option B" and added package outline for "option G" on page 7 Updated "IFX" logo on all pages.
03/17/2021	2.4	 Updated datasheet based on IFX template. Updated Datasheet based on new current rating and application note: App-AN_1912_PL51_2001_180356 Removed "HEXFET® Power MOSFET" added "IR MOSFETTM "-page1

Trademarks of Infineon Technologies AG

HUNIC™, µIPM™, µPFC™, AU-ConvertIR™, AURIX™, C166™, CanPAK™, CIPOS™, CIPURSE™, CoolGan™, COOLIR™, CoolMOS™, CoolSet™, CoolSic™, DAVE™, DI-POL™, DirectFet™, DrBlade™, EasyPIM™, EconoBRIDGE™, EconoDUAL™, EconoPACK™, EconoPIM™, EiceDRIVER™, eupec™, FCOS™, GaNpowIR™, HEXFET™, HITFET™, HybridPACK™, iMOTION™, IRAM™, ISOFACE™, IsoPACK™, LEDrivIR™, LITIX™, MIPAQ™, ModSTACK™, my-d™, NovalithIc™, OPTIGA™, OptiMOS™, ORIGA™, PowIRaudio™, PowIRStage™, PrimePACK™, PrimeSTACK™, PROFET™, PRO-SIL™, RASIC™, REAL3™, SmartLEWIS™, SOLID FLASH™, SPOC™, StrongIRFET™, SupIRBuck™, TEMPFET™, TRENCHSTOP™, TriCore™, UHVIC™, XHP™, XMC™

Trademarks updated November 2015

Other Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2016-04-16 Published by Infineon Technologies AG 81726 Munich, Germany

© 2016 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

Please note that this product is not qualified according to the AEC Q100 or AEC Q101 documents of the Automotive Electronics Council.

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

IRFHM830TRPBF