Advanced Process Technology
Dynamic dv/dt Rating
175°C Operating Temperature
Fast Switching
Fully Avalanche Rated
Lead-Free

Description
Fifth Generation HEXFETs from International Rectifier utilize advanced processing techniques to achieve extremely low on-resistance per silicon area. This benefit, combined with the fast switching speed and ruggedized device design that HEXFET Power MOSFETs are well known for, provides the designer with an extremely efficient and reliable device for use in a wide variety of applications.

The TO-220 package is universally preferred for all commercial-industrial applications at power dissipation levels to approximately 50 watts. The low thermal resistance and low package cost of the TO-220 contribute to its wide acceptance throughout the industry.

Absolute Maximum Ratings

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>I_D @ T_C = 25°C Continuous Drain Current, V_GS @ 10V</td>
<td>9.7</td>
<td>A</td>
</tr>
<tr>
<td>I_D @ T_C = 100°C Continuous Drain Current, V_GS @ 10V</td>
<td>6.8</td>
<td>A</td>
</tr>
<tr>
<td>I_{DM} Pulsed Drain Current</td>
<td>38</td>
<td></td>
</tr>
<tr>
<td>P_D @ T_C = 25°C Power Dissipation</td>
<td>48</td>
<td>W</td>
</tr>
<tr>
<td>Linear Derating Factor</td>
<td>0.32</td>
<td>W/C</td>
</tr>
<tr>
<td>V_GS Gate-to-Source Voltage</td>
<td>± 20</td>
<td>V</td>
</tr>
<tr>
<td>E_{AS} Single Pulse Avalanche Energy</td>
<td>91</td>
<td>mJ</td>
</tr>
<tr>
<td>I_{AR} Avalanche Current</td>
<td>5.7</td>
<td>A</td>
</tr>
<tr>
<td>E_{AR} Repetitive Avalanche Energy</td>
<td>4.8</td>
<td>mJ</td>
</tr>
<tr>
<td>dv/dt Peak Diode Recovery dv/dt</td>
<td>5.0</td>
<td>V/ns</td>
</tr>
<tr>
<td>T_J Operating Junction and Storage Temperature Range</td>
<td>-55 to +175</td>
<td>°C</td>
</tr>
<tr>
<td>Soldering Temperature, for 10 seconds</td>
<td>300 (1.6mm from case)</td>
<td></td>
</tr>
<tr>
<td>Mounting torque, 6-32 or M3 screw</td>
<td>10 lb•in (1.1N•m)</td>
<td></td>
</tr>
</tbody>
</table>

Thermal Resistance

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
</tr>
</thead>
<tbody>
<tr>
<td>R_{JUC} Junction-to-Case</td>
<td>—</td>
<td>3.1</td>
<td>°C/W</td>
</tr>
<tr>
<td>R_{ICS} Case-to-Sink, Flat, Greased Surface</td>
<td>0.50</td>
<td>—</td>
<td></td>
</tr>
<tr>
<td>R_{JUA} Junction-to-Ambient</td>
<td>—</td>
<td>62</td>
<td></td>
</tr>
</tbody>
</table>

11/5/03
IRF520NPbF

Electrical Characteristics @ \(T_J = 25\degree C \) (unless otherwise specified)

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(V_{BRDSS}) Drain-to-Source Breakdown Voltage</td>
<td>100</td>
<td>—</td>
<td>—</td>
<td>V</td>
<td>(V_{GS} = 0V, I_D = 250\mu A)</td>
</tr>
<tr>
<td>(\Delta V_{BRDSS}/\Delta T_J) Breakdown Voltage Temp. Coefficient</td>
<td>—</td>
<td>0.11</td>
<td>—</td>
<td>(V/\degree C)</td>
<td>Reference to 25\degree C, (I_D = 1\mu A)</td>
</tr>
<tr>
<td>(R_{DS(on)}) Static Drain-to-Source On-Resistance</td>
<td>—</td>
<td>—</td>
<td>0.20</td>
<td>(\Omega)</td>
<td>(V_{GS} = 10V, I_D = 5.7A) @</td>
</tr>
<tr>
<td>(V_{GS(th)}) Gate Threshold Voltage</td>
<td>2.0</td>
<td>—</td>
<td>4.0</td>
<td>V</td>
<td>(V_{DS} = V_{GS}, I_D = 250\mu A)</td>
</tr>
<tr>
<td>(g_f) Forward Transconductance</td>
<td>2.7</td>
<td>—</td>
<td>—</td>
<td>S</td>
<td>(V_{DS} = 50V, I_D = 5.7A) @</td>
</tr>
<tr>
<td>(I_{DS}) Drain-to-Source Leakage Current</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>(\mu A)</td>
<td>(V_{DS} = 100V, V_{GS} = 0V)</td>
</tr>
<tr>
<td>(I_{GSS}) Gate-to-Source Forward Leakage</td>
<td>—</td>
<td>—</td>
<td>100</td>
<td>nA</td>
<td>(V_{GS} = 20V)</td>
</tr>
<tr>
<td>(Q_g) Total Gate Charge</td>
<td>—</td>
<td>—</td>
<td>25</td>
<td>nC</td>
<td>(I_D = 5.7A) @</td>
</tr>
<tr>
<td>(Q_{gs}) Gate-to-Source Charge</td>
<td>—</td>
<td>—</td>
<td>4.8</td>
<td>nC</td>
<td>(V_{DS} = 80V)</td>
</tr>
<tr>
<td>(Q_{gd}) Gate-to-Drain ("Miller") Charge</td>
<td>—</td>
<td>—</td>
<td>11</td>
<td>nC</td>
<td>(V_{GS} = 10V,) See Fig. 6 and 13 @</td>
</tr>
<tr>
<td>(t_{on(m)}) Turn-On Delay Time</td>
<td>—</td>
<td>—</td>
<td>4.5</td>
<td>ns</td>
<td>(V_{DD} = 50V)</td>
</tr>
<tr>
<td>(t_r) Rise Time</td>
<td>—</td>
<td>—</td>
<td>23</td>
<td>—</td>
<td>(I_D = 5.7A)</td>
</tr>
<tr>
<td>(t_{off}) Turn-Off Delay Time</td>
<td>—</td>
<td>—</td>
<td>32</td>
<td>—</td>
<td>(R_G = 22\Omega)</td>
</tr>
<tr>
<td>(t_f) Fall Time</td>
<td>—</td>
<td>—</td>
<td>23</td>
<td>—</td>
<td>(R_D = 8.6\Omega,) See Fig. 10 @</td>
</tr>
<tr>
<td>(L_D) Internal Drain Inductance</td>
<td>—</td>
<td>—</td>
<td>4.5</td>
<td>nH</td>
<td>Between lead, 6mm (0.25in.) from package</td>
</tr>
<tr>
<td>(L_S) Internal Source Inductance</td>
<td>—</td>
<td>—</td>
<td>7.5</td>
<td>—</td>
<td>and center of die contact</td>
</tr>
<tr>
<td>(C_{iss}) Input Capacitance</td>
<td>—</td>
<td>—</td>
<td>330</td>
<td>pF</td>
<td>(V_{GS} = 0V)</td>
</tr>
<tr>
<td>(C_{oss}) Output Capacitance</td>
<td>—</td>
<td>—</td>
<td>92</td>
<td>pF</td>
<td>(V_{DS} = 25V)</td>
</tr>
<tr>
<td>(C_{rss}) Reverse Transfer Capacitance</td>
<td>—</td>
<td>—</td>
<td>54</td>
<td>pF</td>
<td>(f = 1.0MHz,) See Fig. 5</td>
</tr>
</tbody>
</table>

Source-Drain Ratings and Characteristics

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Min.</th>
<th>Typ.</th>
<th>Max.</th>
<th>Units</th>
<th>Conditions</th>
</tr>
</thead>
<tbody>
<tr>
<td>(I_S) Continuous Source Current (Body Diode)</td>
<td>—</td>
<td>—</td>
<td>9.7</td>
<td>A</td>
<td>MOSFET symbol showing the integral reverse p-n junction diode.</td>
</tr>
<tr>
<td>(I_{SM}) Pulsed Source Current (Body Diode) @</td>
<td>—</td>
<td>—</td>
<td>38</td>
<td>A</td>
<td>(V_{DD} = 25V), (I_S = 5.7A), (V_{GS} = 0V) @</td>
</tr>
<tr>
<td>(V_{SD}) Diode Forward Voltage</td>
<td>—</td>
<td>—</td>
<td>1.3</td>
<td>V</td>
<td>(T_J = 25\degree C, I_S = 5.7A)</td>
</tr>
<tr>
<td>(t_{rr}) Reverse Recovery Time</td>
<td>—</td>
<td>—</td>
<td>99</td>
<td>ns</td>
<td>(T_J = 25\degree C), (I_F = 5.7A)</td>
</tr>
<tr>
<td>(Q_{rr}) Reverse Recovery Charge</td>
<td>—</td>
<td>—</td>
<td>390</td>
<td>nC</td>
<td>(\text{di/dt} = 100A/\mu s) @</td>
</tr>
</tbody>
</table>

Notes:

1. Repetitive rating; pulse width limited by max. junction temperature. (See fig. 11)
2. \(V_{DD} = 25V \), starting \(T_J = 25\degree C \), \(L = 4.7mH \), \(R_G = 25\Omega \), \(I_{AS} = 5.7A \). (See Figure 12)
3. \(I_{SD} \leq 5.7A \), \(\text{di/dt} \leq 240A/\mu s \), \(V_{DD} \leq V_{BRDSS} \), \(T_J \leq 175\degree C \)
4. Pulse width \leq 300\mu s; duty cycle \leq 2\%.
Fig 1. Typical Output Characteristics

Fig 2. Typical Output Characteristics

Fig 3. Typical Transfer Characteristics

Fig 4. Normalized On-Resistance Vs. Temperature
IRF520NPbF

Fig 5. Typical Capacitance Vs. Drain-to-Source Voltage

Fig 6. Typical Gate Charge Vs. Gate-to-Source Voltage

Fig 7. Typical Source-Drain Diode Forward Voltage

Fig 8. Maximum Safe Operating Area
Fig 9. Maximum Drain Current Vs. Case Temperature

Fig 10a. Switching Time Test Circuit

Fig 10b. Switching Time Waveforms

Fig 11. Maximum Effective Transient Thermal Impedance, Junction-to-Case
IRF520NPbF

Fig 12a. Unclamped Inductive Test Circuit

Fig 12b. Unclamped Inductive Waveforms

Fig 12c. Maximum Avalanche Energy Vs. Drain Current

Fig 13a. Basic Gate Charge Waveform

Fig 13b. Gate Charge Test Circuit
Peak Diode Recovery dv/dt Test Circuit

- **Driver Gate Drive**
- **D.U.T. ISD Waveform**
- **D.U.T. VDS Waveform**
- **Inductor Current**
- **Reverse Recovery Current**
- **Re-Applied Voltage**

Circuit Layout Considerations
- Low Stray Inductance
- Ground Plane
- Low Leakage Inductance
- Current Transformer

D.U.T. - Device Under Test
- dV/dt controlled by R_G
- Driver same type as D.U.T.
- I_{SD} controlled by Duty Factor "D"

Fig 14. For N-Channel HEXFETS

* $V_{GS} = 5V$ for Logic Level Devices
IRF520NPbF

TO-220AB Package Outline
Dimensions are shown in millimeters (inches)

LEAD ASSIGNMENTS
1 - GATE
2 - DRAIN
3 - SOURCE
4 - DRAIN

- B -

1.32 (.052)
1.22 (.048)

3X 0.55 (.022)
0.46 (.018)
2.92 (.115)
2.64 (.104)

4.69 (.185)
4.20 (.165)

1.15 (.045)
0.69 (.027)

MIN

6.47 (.255)
6.10 (.240)

15.24 (.600)
14.84 (.584)

14.09 (.556)
13.47 (.530)

1.40 (.055)
1.15 (.045)

2.54 (.100)

2X

NOTES:
1 DIMENSIONING & TOLERANCING PER ANSI Y14.5M, 1982.
2 CONTROLLING DIMENSION: INCH
3 OUTLINE CONFORMS TO JEDEC OUTLINE TO-220AB.
4 HEATSINK & LEAD MEASUREMENTS DO NOT INCLUDE BURRS.

TO-220AB Part Marking Information

EXAMPLE: THIS IS AN IRF1010
LOT CODE 1789
ASSEMBLED ON WW 19, 1997
IN THE ASSEMBLY LINE "C"

Note: "P" in assembly line position indicates "Lead-Free"

Data and specifications subject to change without notice.

IR WORLD HEADQUARTERS: 233 Kansas St., El Segundo, California 90245, USA Tel: (310) 252-7105
TAC Fax: (310) 252-7903
Visit us at www.irf.com for sales contact information.11/03
Note: For the most current drawings please refer to the IR website at:
http://www.irf.com/package/
IMPORTANT NOTICE
The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer’s compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer’s products and any use of the product of Infineon Technologies in customer’s applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer’s technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS
Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies’ products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:
IRF520NPBF