

CoolGaN[™] Integrated Power Stage IGI60F140A1L

140 m Ω / 600 V GaN power switch with robust, fast and accurate isolated gate driver

Features

- 140 m Ω GaN switch with dedicated functional isolated gate driver
 - Source / sink peak driving current 1 A / 2 A _
 - Application-configurable turn-on and turn-off speed
- Fast input-to-output propagation (47 ns typ.) with low variation
- PWM input signal (switching frequency up to 3 MHz)
- Standard logic input levels compatible with digital controllers
- Wide supply operating range •
- Single gate driver supply voltage possible (typ. 8 V) with fast UVLO recovery.
- Low-side open source for current sensing with external shunt resistor •
- Galvanic input-to-output isolation based on robust coreless transformer technology
- Gate driver with very high common mode transient immunity (CMTI) > 150 V/ns
- Thermally enhanced 8 x 8 mm QFN-21 package with large exposed pad
- Product is fully qualified acc. JEDEC for Industrial Applications

Description

IGI60F140A1L combines a single 140 mΩ (typ.) / 600 V enhancement-mode CoolGaN[™] switch with a dedicated gate driver in a thermally enhanced 8 x 8 mm QFN-21 package. Due to the galvanic functional isolation between input and output the power stage is able to cover a broad spectrum of applications and topologies.

Infineon's CoolGaN[™] and related power switches provide a very robust gate structure. When driven by a continuous gate current of a few mA in the "on" state, a minimum on-resistance R_{dson} is always guaranteed, independent of temperature and parameter variations.

Figure 1 **Typical Application**

Due to the GaN-specific low threshold voltage and the fast switching transients, a negative gate drive voltage is required in certain applications to both enable fast turn-off and avoid cross-conduction effects. This can be achieved by the well-known RC interface between driver and switch. A few external SMD resistors and caps enable easy adaptation to different power topologies.

The driver utilizes on-chip coreless transformer technology (CT) to achieve signal level-shifting to the high-side. Further, CT guarantees robustness even for extremely fast switching transients above 300 V/ns.

Applications

- Charger and Adaptors
- Server, Telecom & Networking SMPS
- Motor Drive
- Energy Storage Systems
- LED Lighting

Power Topologies

- Active clamp flyback or hybrid flyback converters
- LLC or LCC resonant converters
- Single or interleaved synchronous buck or boost converter
- Single phase or multiphase two-level inverters

Product Versions

	<u> </u>	<u> </u>	•	
Part Number	OPN	Package	Typ. R _{dson}	Marking
			25°C	
IGI60F100A1L	IGI60F100A1LAU MA1	PG-TIQFN-21-1 8 x 8 mm	100 mΩ	60F100A
IGI60F140A1L	IGI60F140A1LAU MA1	PG-TIQFN-21-1 8 x 8 mm	140 mΩ	60F140A
IGI60F200A1L	IGI60F200A1LAU MA1	PG-TIQFN-21-1 8 x 8 mm	200 mΩ	60F200A
IGI60F270A1L	IGI60F270A1LAU MA1	PG-TIQFN-21-1 8 x 8 mm	270 mΩ	60F270A

Table 1 CoolGaN[™] integrated power stage single channel products overview

Table of contents

Table	e of contents
1	Pin configuration and description
2	Functional description
2.1	Block Diagram5
2.2	Power supply6
2.2.1	Driver input supply voltage6
2.2.2	Driver output supply voltage6
2.3	Input configurations6
2.4	Driver output7
2.5	Undervoltage Lockout (UVLO)7
2.6	Start-up and active clamping7
2.7	CT Communication and Data Transmission7
2.8	CoolGaN output stage8
3	Characteristics9
3.1	Absolute maximum ratings9
3.2	Thermal characteristics10
3.3	Recommended Operating range10
3.4	Electrical characteristics
3.5	Timing diagram and test circuit16
4	Driving CoolGaN [™] HEMTs
5	Typical characteristics
5.1	GaN switch characteristics20
5.2	Gate driver characteristics
6	Application circuit
7	Package information27
Revis	sion history

1 Pin configuration and description

Figure 2 Pin configuration and exposed for QFN-21 8 x 8 mm package, top view (not to scale)

Pin No.	Symbol	Description
1, 2, 20, 21	D	Drain connection GaN switch
3 – 9, 14	S	Source connection GaN switch
10	G	Gate connection GaN switch
11	OUTSNK	Driver output sink (connects to S)
12	OUTSRC	Driver output source (connects to VDD)
13	VDD	Driver supply voltage (typ. 8 V)
15, 19	GNDI	Ground connection of driver input stage
16	VDDI	Supply voltage driver input stage
17	IN	Input signal (default state "Low"); controls GaN switch
18	ENABLE	Input signal (default state "High" – driver output set to "Low" state); logic "Low" required to activate driver output

Table 2Pin description

2 Functional description

2.1 Block Diagram

A simplified functional block diagram of the GaN Power Stage is given in **Figure 3**. For level-shifting of the input signal to a high-side switch an on-chip coreless transformer (CT) is utilized, resulting in a galvanic input-to-output isolation.

Figure 3 Block Diagram IGI60F140A1L

2.2 Power supply

Basically the Power Stage requires two supply voltages: a μ Controller ground-related V_{DDI} (3 to 15 V) for the driver input circuitry and a source-related V_{DD} (8 to 12 V) as the gate drive supply. In low-side applications usually a single 8 V supply voltage can be used for both V_{DDI} and V_{DD}. Operation as a high-side switch, however, requires a floating gate driver supply. In applications with moderate duty cycle variations (e. g. LLC), this high-side supply voltage can be generated from the ground-related one via bootstrapping. Independent Undervoltage Lockout (UVLO) functions for both supply voltages ensure a defined start-up and robust functionality under all operating conditions.

2.2.1 Driver input supply voltage

The driver input die is supplied via V_{DDI} . Any applied voltage up to 15 V is regulated by an internal LDO to 3.3V. A ceramic bypass capacitance C_{VDDI} of typ. 100 nF has to be placed close to pin VDDI. The Undervoltage Lockout threshold, defining the minimum V_{DDI} , is set to typically 2.85 V.

Power consumption to some extent depends on switching frequency, as the input signal is converted into a train of repetitive current pulses to drive the CT. Due to the chosen robust encoding scheme the average pulse repetition rate and thus the average supply current depends on the switching frequency f_{sw} . However, for $f_{sw} < 500$ kHz this effect is very small.

2.2.2 Driver output supply voltage

The output stage has to be supplied by a voltage V_{DD} of typically 8 V related to the source of the GaN switch. In lowside applications V_{DD} can be ground-related. A ceramic bypass capacitance C_{VDD} of typ. 100 nF has to be placed close to pin VDD. The minimum operating supply voltage is defined by the implemented undervoltage lockout function.

2.3 Input configurations

The input IN is an independent logic (PWM) channel. The input signal is transferred non-inverted to the corresponding gate driver outputs OUTsrc and OUTsnk. All inputs are compatible with LV-TTL threshold levels with a hysteresis of typ. 0.8 V. The hysteresis is independent of the supply voltage VDDI.

The PWM inputs are internally pulled down to a logic low voltage level (GNDI). In case the PWM-controller signals have an undefined state during the power-up sequence, the gate driver outputs are forced to the "off"-state (low). If the Enable input is high, OUTsrc will have high impedance and OUTsnk will be low, regardless of the state of IN. **Table 3** shows the logic table in normal operation.

Inp	outs	Gate Drive Ouput				
Enable	IN	OUTsrc	OUTsnk			
Н	x	Z	L			
L	Н	Н	Z			
L	L	Z	L			

Table 3 Logic table (UVLO input inactive, both output side UVLO inactive; normal operation)

2.4 Driver output

The rail-to-rail driver output stage realized with complementary MOS transistors is able to provide a typical 1 A sourcing and 2 A sinking current. This is by far sufficient when driving a GaN HEMT due to the low gate charge. In addition, the relatively low driver output resistance is beneficial, too. With an Ron of 3.1 Ω for the sourcig pMOS and 1.2 Ω for the sinking nMOS transistor the driver can be considered as nearly ideal. The gate drive parameters can thus be determined easily and accurately by the external components as described in chapter 4. The p-channel sourcing transistor allows real rail-to-rail behavior without suffering from a source follower's voltage drop.

2.5 Undervoltage Lockout (UVLO)

The Undervoltage Lockout function ensures that the gate drive outputs can be switched to their high level only, if both input and output supply voltages exceed the corresponding UVLO threshold voltages. Thus it can be guaranteed that the GaN switches are in "off" state, if the driving voltage is too low for complete and fast switching-on, thereby avoiding excessive power dissipation and keeping the switch transistors within their safe operating area (SOA).

The UVLO level for the output supply voltage V_{DD} is set to a typical "on"-value of 4.2 V (with 0.3 V hysteresis), whereas UVLO_{in} for V_{DDI} is set to 2.85 V with 0.15 V hysteresis.

		Gate Drive Ouput			
Enable	IN	UVLO input	UVLO output	OUTsrc	OUTsnk
x	x	Active	х	Z	L
х	х	x	Active	Z	L
Н	L	Inactive	Inactive	Z	L
Н	Н	Inactive	Inactive	Н	Z

Table 4 Logic table (dependence on UVLO status)

2.6 Start-up and active clamping

Special attention has been paid to cover all possible operating conditions, like start-up or arbitrary supply voltage situations:

- if V_{DDI} drops below UVLO_{in}, a "switch-to-low" command is sent to the gate driver output
- for V_{DD} lower than the respective output UVLO level, a new fast active clamping circuit provides a lowimpedance path from the gate driver output to the source of the GaN switch. As soon as the output voltage exceeds a low threshold level (typ. below 1 V), the clamp is activated within approximately 20 ns.

As the result, safe operation of the GaN Power Stage can be guaranteed under any circumstances.

2.7 CT Communication and Data Transmission

A Coreless Transformer (CT) based communication module is used for PWM signal transfer between input and output. A proven high-resolution pulse repetition scheme in the transmitter combined with a watchdog time-out at the receiver side enables recovery from communication fails and ensures safe system shut-down in failure cases.

Final Datasheet

2.8 CoolGaN output stage

he output stage consists of a CoolGaNTM 600V switch. The switch is characterized by a typical R_{dson} of 140 m Ω @ 25 °C. And thanks to the current driving concept, this value increases by a comparably moderate 85 % @ 150 °C. As typical for GaN, gate and output charges are very small and there is no reverse recovery charge due to the lack of a physical body diode (for more information please refer to [1]).

3 Characteristics

3.1 Absolute maximum ratings

The absolute maximum ratings are listed in **Table 3**. Stresses beyond these values may cause permanent damage to the device. Exposure to absolute maximum rating conditions for extended periods may affect device reliability.

Parameter	Symbol	Valu	ues	Unit	Note or Test Conditions	
		Min.	Max.			
Drain-to-source voltage continuous	V _{DS}	-	600	V	$V_{GS} = 0 V$	
Drain-to-source voltage pulsed	V _{DS,pulse}	-	750 ¹	V	$T_J = 25^{\circ}C, V_{GS} \le 0 V,$ cumulated stress time < 1h	
		-	650	V	$\label{eq:TJ} \begin{split} T_{\rm J} &= 125^{\circ}C, V_{\rm GS} \leq 0 \ V, \\ \text{cumulated stress time} < 1h \end{split}$	
Continuous drain current ²	ID	-	10.6	А	T _{Case} = 25°C	
		-	7.8	А	T _{Case} = 125°C (see Fig. 8)	
Pulsed drain current ³	I _{D,pulse}	-	23	А	T _{Case} = 25°C	
		-	11 ⁴	А	T _{Case} = 125°C (see Fig. 8)	
Supply voltage input chip	V _{DDI}	-0.3	17	V		
Supply voltage output chips	V _{DD}	-0.3	22	V		
Voltage at pins IN and ENABLE	Vin	-0.3	17	V		
Voltage at pin OUT	Vout	-0.3	V _{DD} + 0.3	V		
Junction temperature	TJ	- 40	150	°C		
Storage temperature	Ts	- 55	150	°C		
Soldering temperature	T _{sold}	-	260	°C	Reflow/wave soldering ⁵	
ESD capability	V_{ESD} HBM	-	2	kV	Human Body Model ⁶	
	Vesd_cdm	-	1	kV	Charged Device Model ⁷	

Table 5Absolute maximum ratings

¹ Acc to JEDEC-JEP180

 $^{\rm 2}$ Limited by $T_{\rm jmax}$. Maximum Duty Cycle D=0.5

³ Limits derived from product characterization, parameter not measured during production

⁴ Parameter is influenced by reliability requirements. Please contact the local Infineon Sales Office to get an assessment of your application

⁵ Acc. to JESD22A111

⁶ Acc. to ANSI/ESDA/JEDEC JS-001

7 Acc. to ANSI/ESDA/JEDEC JS-002

Final Datasheet

3.2 Thermal characteristics

Table 6Thermal characteristics

Parameter	Symbol	Values			Unit	Note or Test
		Min.	Тур.	Max.		Conditions
Thermal resistance junction-to- case	RthJC	-	-	2.1	°C/W	
Thermal resistance junction-to- ambient	R _{thJA}	-	31	-	°C/W	Device mounted on four-layer PCB with 600 mm ² total cooling area

3.3 Recommended Operating range

Table 7 Recommended Operating range

Parameter	Symbol	Values			Values			Unit	Note or Test
		Min.	Тур.	Max.		Conditions			
Input supply voltage	V _{DDI}	3	-	15	V				
Driver output supply voltage	Vdd	5.5	8	12	V	min. defined by UVLO _{out}			
Logic input voltage at pins IN and /ENABLE	Vin	-0.3	-	15	V				
Gate current, continuous ^{1 2}	I _{G, avg}	-	-	9.6	mA				
Junction temperature	TJ	-40	-	125 ³	°C				

³ continuous operation above 125 °C may reduce lifetime

¹ Parameter is influenced by rel-requirements. Contact the local Infineon Sales Office to get an assessment of your application.

² We recommend to use RC interface gate drive to optimize the device performance. Please see gate drive application note for details.

3.4 Electrical characteristics

Unless otherwise noted, min/max values of characteristics are the lower and upper limits, respectively. They are valid within the full operating range. Typical values are given at $T_J = 25$ °C with $V_{DDI} = V_{DD} = 8$ V.

Table 8Power supply

Parameter	Symbol		Values		Unit	Note or Test
		Min.	Тур.	Max.		Conditions
V _{DDI} quiescent current	I _{∨DDlqu}	-	0.9	-	mA	no switching
V _{DD} quiescent current	I _{VDDqu}	-	0.7	-	mA	no switching
Undervoltage Lockout input (UVLO _{in}) turn-on threshold	UVLO _{in}	2.7	2.85	3.0	V	
UVLO _{in} turn-off threshold	UVLO _{in-}	-	2.65	-	V	
UVLOin threshold hysteresis	∆UVLOin	0.15	0.2	0.25	V	
Undervoltage Lockout outputs (UVLO _{out}) turn-on threshold	UVLO _{out}	4.0	4.2	4.4	V	
UVLOout turn-off threshold	UVLO _{out-}	-	3.9	-	V	
UVLO _{out} threshold hysteresis	$\Delta UVLO_{out}$	0.2	0.3	0.4	V	

Table 9Logic inputs IN and ENABLE

Parameter	Symbol		Values	Unit	Note or Test	
		Min.	Тур.	Max.		Conditions
Input voltage threshold for transition LH	Vinh	1.9	2.2	2.5	V	independent of VDDI
Input voltage threshold for transition HL	Vinl	1.0	1.3	1.6	V	independent of V_{DDI}
Input voltage threshold hysteresis	V _{IN_hys}	-	0.9	-	V	
Input pull down resistor	RIN	-	75	-	kΩ	
Input pull up resistor (/ENABLE)	R _{ENA}	-	75	-	kΩ	

Table 10Static gate driver output characteristics

Parameter	Symbol		Values		Values		Unit	Note or Test
		Min.	Тур.	Max.		Conditions		
High-level (sourcing) output resistance	Ron	1.4	3.4	6.2	Ω			
Peak sourcing output current ¹	I _{src,pk}	-	1	-	А	actively limited to 1.3 A		
Low-level (sinking) output resistance	R _{off}	0.6	1.6	2.9	Ω			
Peak sinking output current ²	I _{snk,pk}	-	-2	-	А	actively limited to -2.6 A		
Active clamp threshold voltage	V _{cImp}	-	1	-	V			

Table 11 Output characteristics GaN switch

Parameter	Symbol	Values			Unit	Note or Test
		Min.	Тур.	Max.		Conditions
Rdson	R _{dson}	-	140	190	mΩ	$\begin{split} I_G &= 9.6 \text{ mA}, \ I_D = 5 \text{ A}, \\ T_J &= 25^\circ\text{C} \end{split}$
		-	260	-	mΩ	$I_G = 9.6 \text{ mA}, I_D = 5 \text{ A},$ $T_J = 150^{\circ}\text{C}$
Drain-source leakage current	I _{DSS}	-	0.4	-	μA	$V_{DS} = 600 \text{ V}, V_{GS} = 0 \text{ V},$ $T_J = 25^{\circ}\text{C}$
		-	8	-	μA	$V_{DS} = 600 V, V_{GS} = 0 V,$ $T_J = 150^{\circ}C$
Total gate charge ³	Q _G	-	2.2	-	nC	I _G =0 to 3 mA, V _{DS} = 400 V; I _D = 2 A

¹Verified by design / characterization, not tested in production

²Verified by design / characterization, not tested in production

³ Verified by design / characterization, not tested in production

Table 12 Static characteristics GaN switches

Parameter	Symbol	Values			Unit	Note or Test Condition	
		Min.	Тур.	Max.			
Gate threshold voltage	V _{GS} (th)	0.9 0.7	1.2 1.0	1.6 1.4	V	$ I_{DS} = 0.96 \text{ mA}, V_{DS} = 10 \text{ V}, T_j = 25 \text{ °C} \\ I_{DS} = 0.96 \text{ mA}, V_{DS} = 10 \text{ V}, T_j = 125 \\ ^{\circ}C $	
Gate-source reverse clamping voltage	$V_{GS, \ clamp}$	-	-	-8	V	I _{GSS} ¹ = -1 mA, T _j =25 °C	
Gate resistance	R _{G,int}	-	0.74	-	Ω	LCR impedance measurement	

Table 13 Dynamic characteristics SWITCH

Parameter	Symbol	Values		Unit	Note/Test Condition	
		Min.	Тур.	Max.		
Input capacitance	Ciss	-	157	-	pF	$V_{GS} = 0 V$, $V_{DS} = 400 V$; f = 1 MHz
Output capacitance	Coss	-	28	-	pF	$V_{GS} = 0 V$, $V_{DS} = 400 V$; f = 1 MHz
Reverse transfer capacitance	Crss	-	0.15	-	pF	$V_{GS} = 0 V$, $V_{DS} = 400 V$; f = 1 MHz
Effective output capacitance, energy related ²	C _{o(er)}	-	32.5	-	pF	$V_{GS} = 0 V$, $V_{DS} = 0$ to 400 V
Effective output capacitance, time related ³	C _{o(tr)}	-	40	-	pF	$V_{GS} = 0 V$, $V_{DS} = 0$ to 400 V
Output charge	Q _{oss}	-	16	-	nC	V _{DS} = 0 to 400 V

¹ Gate-Source leakage current

 $^{^1\,}C_{o(er)}$ is a fixed capacitance that gives the same stored energy as C_{oss} while V_{DS} is rising from 0 to 400 V

 $^{^2}$ C_{o(tr)} is a fixed capacitance that gives the same charging time as C_{oss} while V_{DS} is rising from 0 to 400 V

Note/Test Condition

Parameter	Symbol	Value	S	Unit	
		 -			

Table 14 Reverse conduction characteristics

		Min.	Тур.	Max.		
Source-Drain reverse voltage	VSD	-	2.5	3	V	$V_{GS} = 0V$, $I_{SD} = 5 A$
Pulsed current, reverse	I _{S,pulse}	-	-	23	A	I _G = 9.6 mA
Reverse recovery charge	Q _{rr} ¹	-	0	-	nC	I _{SD} = 5 A, V _{DS} = 400V
Reverse recovery time	trr	-	0	-	ns	
Peak reverse recovery current	Irrm	-	0	-	А	

Table 15 Dynamic Characteristics² DRIVER (see Figure 4, Figure 5)

Parameter	Symbol Values				Unit	Note or Test	
		Min.	Тур.	Max.		Conditions	
INL to SW propagation delay "on"	t _{PDonL}	-	47	-	ns	R _{tr} = 50 Ω	
INL to SW propagation delay "off"	t _{PDoffL}	-	47	-	ns	I _{load} = 2 A	
ENABLE to SW propagation delay	tpd_dis_on, tpd_dis_off	-	70 70	-	ns ns		
Rise time SW	t _{rise}	-	6	-	ns	10 % to 90 %	
Fall time SW	t _{fall}	-	5	-	ns	90 % to 10 %	
Minimum input pulse width that changes output state	tpw	-	18	-	ns		
Input-side start-up time ²	tstart,vddi	-	7	-	μs	see Figure 6	
Input-side deactivation time ²	tstop,vddi	-	255	-	ns	see Figure 6	
Output-side start-up time ²	t _{START,VDDL/H}	-	5	-	ns	see Figure 6	
Output-side deactivation time ²	tstop,vddl/h	-	110	-	ns	see Figure 6	

 $^{^{\}rm 1}$ Excluding $Q_{\rm oss}$

² Verified by design / characterization, not tested in production

Parameter	Symbol		Values		Unit	Note or Test Conditions	
		Min.	Тур.	Max.			
Input-to-output isolation voltage	Viso	1200	-	-	VDC	production test > 10 ms	
Package clearance	CLR	-	1.9	-	mm	shortest distance over air, from any input pin to any output pin	
Package creepage	CPG	-	1.9	-	mm	shortest distance over surface, from any input pin to any output pin	
Common Mode Transient Immunity	CMTI	150	-	-	V/ns	acc. to DIN V VDE V0884- 10, static and dynamic test	

Table 16 Functional isolation input-to-output

Table 17Package characteristics

Parameter	Symbol	Values			Unit	Note or Test Conditions
		Min.	Тур.	Max.		
Comparative Tracking Index of package mold	СТІ	400	-	600	V	according to DIN EN 60112 (VDE 0303-11)
Material group	-	-	2	-	-	according to IEC 60112

3.5 Timing diagram and test circuit

Figure 4 depicts rise, fall and delay times measured at the drain node of the GaN switch.

Figure 5 shows the associated test circuit. The power stage is operated in a boost configuration at a constant current I_{load} . In this so-called double-pulse arrangement I_{load} is determined by the high-voltage supply (400 V), the output inductance and the length of the first "on"-phase of the IN-signal. The specified delay and transient times are related to an I_{load} value of 2 A (particularly the "off" transient strongly depends on this current).

Figure 5 Test circuit

Figure 6 UVLO behavior, start-up and deactivation time (unloaded output)

4 Driving CoolGaN[™] HEMTs

Although Gallium Nitride High Electron Mobility Transistors (GaN HEMTs) with ohmic connection to a pGaN gate are robust enhancement-mode ("normally-off") devices, they differ significantly from MOSFETs. The gate module is not isolated from the channel, but behaves like a diode with a forward voltage V_F of 3 to 4 V. Equivalent circuit and typical gate input characteristic are given in **Figure 7**. In the steady "on" state a continuous gate current is required to achieve stable operating conditions. The switch is "normally-off", but the threshold voltage V_{th} is rather low (~ +1 V). This is why in many applications a negative gate voltage -V_N, typically in the range of several Volts, is required to safely keep the switch "off" (**Figure 7b**).

Figure 7 Equivalent circuit (a) and gate input characteristics (b) of typical normally-off GaN HEMT

Obviously the transistor in **Figure 7** cannot be driven like a conventional MOSFET due to the need for a steady-state "on" current I_{ss} and a negative "off" voltage $-V_N$. While an I_{ss} of a few mA is sufficient, fast switching transients require gate charging currents I_{on} and I_{off} in the 1 A range. To avoid a dedicated driver with 2 separate "on" paths and bipolar supply voltage, the solution depicted in **Figure 8** is usually chosen, combining a standard gate driver with a passive RC circuit to achieve the intended behavior. The high-current paths containing the small gate resistors R_{tr} and R_{off}, respectively, are connected to the gate via a coupling capacitance C_c. C_c is chosen to have no significant effect on the dynamic gate currents I_{on} and I_{off}. In parallel to the high-current charging path the much larger resistor R_{ss} forms a direct gate connection to continuously deliver the small steady-state gate current I_{ss}. In addition, C_c can be used to generate a negative gate voltage. Obviously, in the "on"-state C_c is charged to the difference of driver supply V_{DD} and diode voltage V_F. When switching off, this charge is redistributed between C_c and C_{Gs} and causes an initial negative V_{Gs} of value:

$$V_N = \frac{C_C \cdot (V_{DD} - V_F) - Q_G}{C_C + C_{GS}}$$
(2)

with Q_G denoting the total gate charge $Q_{GS} + Q_{GD} 3$ nC. V_N can thus be controlled by proper choice of V_{DD} and C_C . During the "off" state the negative V_{GS} decreases, as C_C is discharged via R_{SS} . The associated time constant cannot be chosen independently, but is related to the steady-state current and is typically in the 1 μ s range. The negative gate voltage at the end of the "off" phase (V_{Nf} in **Figure 8b**) thus depends on the "off" duration. It lowers the effective driver voltage for the following switching-on event, resulting in a slight dependence of switching dynamics on frequency and duty cycle. However, in most applications the impact of this effect is negligible.

Another situation requires attention, too. If there is by any reason a longer period with both switches of a half-bridge in "off"-state (e.g. during system start-up, burst mode operation etc.), both capacitors C_c will be discharged. That means, for the first switching pulse after such an extended non-switching period no negative voltage is available.

Figure 8 Equivalent circuit of GaN switch with RC gate drive (a) and gate-to-source voltage V_{GS} (b)

In the topology of **Figure 8** often a single resistor R_{tr} can be used for setting the maximum transient charging and discharging current. If this is not acceptable by any reason, an additional resistor R_{off} with series diode in parallel with R_{tr} can be used to realize independent gate impedances for the "on" and "off" transient, respectively.

All relevant driving parameters are easily programmable by choosing V_{DD} , R_{ss} , R_{tr} , R_{off} and C_C according to the relations

$$V_N = \frac{C_C \cdot (V_{DD} - V_F) - Q_G}{C_C + C_{GS}}$$

$$I_{ss} = \frac{V_{DD} - V_F}{R_{ss}}, \qquad I_{on,max} \sim \frac{V_{DD} - V_{Nf}}{R_{tr}}, \qquad I_{off,max} \sim \frac{(V_{th} + V_N) \cdot (R_{off} + R_{tr})}{R_{off} \cdot R_{tr}}$$

The main guidelines for dimensioning gate drive parameters are as follows:

- V_N must always be positive; a target value of 2 V in soft-switching and 4 V to 5 V in hard-switching systems is recommended
- The target value of Iss is around 4 mA, Rss has to be chosen accordingly
- R_{tr} sets the transient speed for a hard switching "on" event. For soft switching systems R_{tr} is anyway uncritical.
- If a separate R_{off} is used, it should not be above 5 Ω to guarantee sufficient damping of oscillations in the gate loop.

For a given driving voltage the values for the gate drive components can now be derived from equations (3). $V_{DD} = 8 \text{ V}$, for example, yields

- C_C = 1.5 nF
- R_{ss} = 1.8 kΩ
- $R_{tr} = 20 \dots 50 \Omega$
- $R_{off} = 4.7 \Omega$ (if used)

For more information regarding how to drive GaN HEMT refer to [2].

Final Datasheet

(3)

5 Typical characteristics

5.1 GaN switch characteristics

The following graphs refer to a single GaN switch.

Figure 9 Typical output characteristics

Figure 11 Typical gate characteristics forward and reverse

Figure 12 Output characteristic I_{ds} (V_{ds}) in normal and reverse operation (parameter V_{gs})

Figure 13 Safe Operating Area (SOA)

Figure 15 Typical output energy

5.2 Gate driver characteristics

Figure 16 Supply current V_{DDI}

Figure 18 Logic input thresholds and V_{DDI} UVLO

Figure 19 VDDL/H UVLO

Figure 20 Propagation delay and rise / fall times

6 Application circuit

Figure 14 shows a typical application of IGI60F140A1L as the primary side switches in an LLC converter. Two integrated power stages are operated from a single 8 V supply, with the high-side supply generated by bootstrapping (diode D_{boot} , capacitance C_{boot} and resistor R_{boot}).

Figure 21 Application of IGI65F140A1L in LLC primary stage

Figure 22 TIQFN-21-1 8 x 8mm package outline

Revision history

Document version	Date of release	Description of changes
V1.0	2023-06-07	1 st version Final Datasheet

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2023-06-07

Published by

Infineon Technologies AG

81726 Munich, Germany

© 2023 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference

ifx1

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application. For further information on the product, technology delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contair dangerous substances. For information on the types in question please contact your nearest Infineor Technologies office.

Except as otherwise explicitly approved by Infineor Technologies in a written document signed by authorized representatives of Infineor Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof car reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: IGI60F140A1LAUMA1