

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Authors: Jaber Hasan, Peter B. Green

About this document

Scope and purpose

This user manual presents a detailed description of the functionalities of the Infineon EVAL_TOLT_DC48V_3kW evaluation power board for battery-powered brushless direct current (BLDC) motor drives. This board is used to drive three-phase BLDC motors with three Hall sensors used for rotor position detection using pulse-width modulation (PWM) 6-step (block) commutation control to regulate the speed of the motor. The power board uses OptiMOS™ 100 V power MOSFET technology – TO-leaded top-side cooling (TOLT) MOSFET (IPTC015N10NM5) for each phase of the three-phase inverter – and the firmware is developed based on the XMC1300 drive card.

Intended audience

This document is intended for manufacturers of battery-powered power tools, and engineers familiar with three-phase motor drive systems and motor controls.

Infineon components featured

- **IPTC015N10NM5**, 100 V, 1.5 mΩ TOLT N-channel power MOSFET
- IRLML6346TRPBF, 30 V, 3.4 A, SOT-23, N-channel MOSFET
- **2EDL8124GXUMA1**, EiceDRIVER™ 100 V, +/-4 A half-bridge gate driver IC with true differential inputs
- ILD8150EXUMA1, buck regulator controller with integrated MOSFET
- KIT_XMC1300_DC_V1, motor drive control card

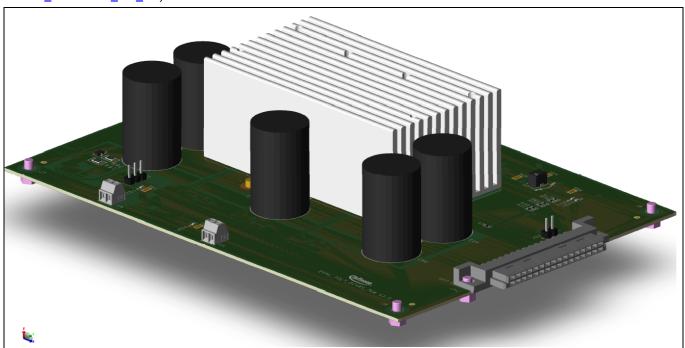


Figure 1 Isometric image of evaluation power board (EVAL_TOLT_DC48V_3kW V 3.0)

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Important notice

Important notice

"Evaluation boards and reference boards" shall mean products embedded on a printed circuit board (PCB) for demonstration and/or evaluation purposes, which include, without limitation, demonstration, reference and evaluation boards, kits and design (collectively referred to as "reference boards").

Environmental conditions have been considered in the design of the evaluation boards and reference boards provided by Infineon Technologies. The design of the evaluation boards and reference boards has been tested by Infineon Technologies only as described in this document. The design is not qualified in terms of safety requirements, manufacturing and operation over the entire operating temperature range or lifetime.

The evaluation boards and reference boards provided by Infineon Technologies are subject to functional testing only under typical load conditions. Evaluation boards and reference boards are not subject to the same procedures as regular products regarding returned material analysis (RMA), process change notification (PCN) and product discontinuation (PD).

Evaluation boards and reference boards are not commercialized products, and are solely intended for evaluation and testing purposes. In particular, they shall not be used for reliability testing or production. The evaluation boards and reference boards may therefore not comply with CE or similar standards (including but not limited to the EMC Directive 2004/EC/108 and the EMC Act) and may not fulfill other requirements of the country in which they are operated by the customer. The customer shall ensure that all evaluation boards and reference boards will be handled in a way which is compliant with the relevant requirements and standards of the country in which they are operated.

The evaluation boards and reference boards as well as the information provided in this document are addressed only to qualified and skilled technical staff, for laboratory usage, and shall be used and managed according to the terms and conditions set forth in this document and in other related documentation supplied with the respective evaluation board or reference board.

It is the responsibility of the customer's technical departments to evaluate the suitability of the evaluation boards and reference boards for the intended application, and to evaluate the completeness and correctness of the information provided in this document with respect to such application.

The customer is obliged to ensure that the use of the evaluation boards and reference boards does not cause any harm to persons or third-party property.

The evaluation boards and reference boards and any information in this document is provided "as is" and Infineon Technologies disclaims any warranties, express or implied, including but not limited to warranties of non-infringement of third-party rights and implied warranties of fitness for any purpose, or for merchantability.

Infineon Technologies shall not be responsible for any damages resulting from the use of the evaluation boards and reference boards and/or from any information provided in this document. The customer is obliged to defend, indemnify and hold Infineon Technologies harmless from and against any claims or damages arising out of or resulting from any use thereof.

Infineon Technologies reserves the right to modify this document and/or any information provided herein at any time without further notice.

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Safety precautions

Safety precautions

Note: P

Please note the following warnings regarding the hazards associated with development systems.

$\hat{\ }$	
7	7

Warning: The DC link potential of this board is up to 100 V DC. Ensure the polarity is correct, otherwise the board will be damaged!

When measuring voltage waveforms by oscilloscope, high-voltage differential probes are required. Failure to use correct probes may result in damage, personal injury or death.

Warning: The evaluation or reference board contains DC bus capacitors, which take time to discharge after removal of the main supply. Before working on the drive system, wait five minutes for capacitors to discharge to safe voltage levels. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.

Warning: The evaluation or reference board is connected to the grid input during testing. Hence, high-voltage differential probes must be used when measuring voltage waveforms by oscilloscope. Failure to do so may result in personal injury or death. Darkened display LEDs are not an indication that capacitors have discharged to safe voltage levels.

Warning: Remove or disconnect power from the drive before you disconnect or reconnect wires, or perform maintenance work. Wait five minutes after removing power to discharge the bus capacitors. Do not attempt to service the drive until the bus capacitors have discharged to zero. Failure to do so may result in personal injury or death.

Caution: The heatsink and device surfaces of the evaluation or reference board may become hot during testing. Hence, necessary precautions are required while handling the board. Failure to comply may cause injury.

Caution: Only personnel familiar with the drive, power electronics and associated machinery should plan, install, commission and subsequently service the system. Failure to comply may result in personal injury and/or equipment damage.

Caution: The evaluation or reference board contains parts and assembly's sensitive to electrostatic discharge (ESD). Electrostatic control precautions are required when installing, testing, servicing or repairing the assembly. Component damage may result if ESD control procedures are not followed. If you are not familiar with electrostatic control procedures, refer to the applicable ESD protection handbooks and guidelines.

Caution: A drive that is incorrectly applied or installed can lead to component damage or reduction in product lifetime. Wiring or application errors such as undersizing the motor, supplying an incorrect or inadequate AC supply, or excessive ambient temperatures may result in system malfunction.

Caution: The evaluation or reference board is shipped with packing materials that need to be removed prior to installation. Failure to remove all packing materials that are unnecessary for system installation may result in overheating or abnormal operating conditions.

Table of contents

Table of contents

Abou	ıt this document	1
Impo	ortant notice	2
Safet	ty precautions	3
Table	e of contents	4
1	Introduction	5
1.1	Overview	5
1.2	Board parameters and technical data	6
1.3	Main features	
1.4	Block diagram	7
2	Hardware description	8
2.1	Power supplies	9
2.2	Gate drivers	10
2.3	TOLT MOSFET package	11
2.4	Heatsink and thermal insulating material	13
2.5	Protection circuitry	16
2.6	Power board connector	18
3	Control and firmware	20
3.1	Trapezoidal control also known as six-step or block commutation	20
3.2	P-I control	22
4	System operation	23
4.1	System startup	23
4.2	System performance	24
4.2.1	Operating waveforms	25
4.2.2	Power measurements	28
4.2.3	Thermal measurements	29
5	Schematic and PCB layout	30
5.1	Schematic	30
5.2	Layout	31
5.3	Bill of materials	35
Refe	rences	40
Revis	sion history	41

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

1 Introduction

1.1 Overview

The EVAL_TOLT_DC48V_3kW evaluation power board uses OptiMOS[™] 100 V power MOSFET technology TOLT devices for battery-powered medium-voltage BLDC motor drives suitable for high-power tools. This evaluation board is designed to be driven by the Infineon XMC1300 drive card KIT_XMC1300_DC_V1 (or higher) loaded with the correct firmware. Both power board and drive card are needed for this application. A 32-pin male–female connector (MAB32B2-FAB32Q2) is needed to connect the power board and drive card, as shown in Figure 2. V2.0 of the EVAL_TOLT_DC48V_3kW differs from V1.0 in the number and values of the electrolytic bus capacitors, otherwise it is the same. The capacitor modification was made to reduceelectrolytic capacitor case temperature during operation at high load with high ripple current.

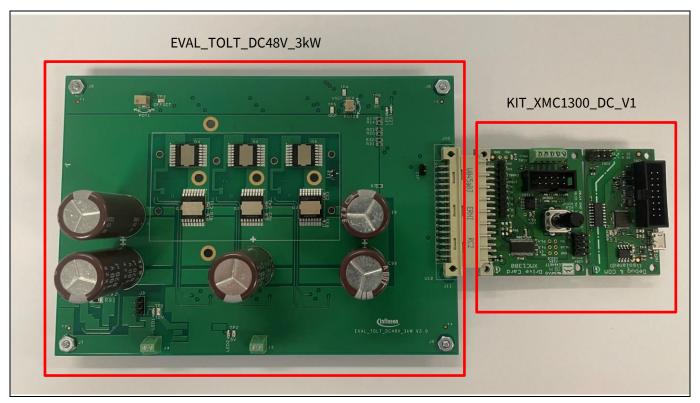


Figure 2 Evaluation power board EVAL_TOLT_DC48V_3kW V 3.0 and control card KIT_XMC1300_DC_V1 motor drive system

The EVAL_TOLT_DC48V_3kW evaluation power board generates on-board 12.0 V and 5.0 V DC rails to power the gate driver ICs, and the microcontroller in the XMC1300 drive card. The power board also provides protection against overcurrent and overtemperature. The overcurrent threshold level can be changed by adjusting the potentiometer (POT2). Meanwhile, the overtemperature threshold can be changed only by firmware. Because this evaluation board is designed to be able to work with both 6-step block commutation control and field-oriented control (FOC) for three-phase BLDC motors there are three low-side shunt resistors to measure the current in the three phases of the inverter. The Hall sensors for the BLDC motors need to be connected to connector X101 on the XMC1300 drive card, as shown in Figure 2.

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Introduction

1.2 Board parameters and technical data

Table 2 includes the evaluation board parameters and technical details.

Table 2 Parameters

Parameter Symbo		Conditions	Value	Unit
Input DC voltage V _{IN} DC voltage input		DC voltage input	36~52	V
12 V output voltage	+12 V	Maximum 200 mA output current	12 ± 5%	٧
5 V output voltage	+5 V	Maximum 200 mA output current	5 ±5 %	V
Max. switching frequency	f _{sw}	V _{CC} = 12 V	10	kHz
		$T_A = 20$ °C, $T_C = 100$ °C, air cooling, $f_{SW} = 10$ kHz	100	A _{peak}
Maximum output power P _{OUT}		Sufficient cooling applied to maintain heatsink temperature below 120°C	30001	W
PCB characteristics				•
Material		1.6 mm thickness, 2 oz. copper each layer, six layers	FR4	
Dimensions		Length x width x height	170 x 120 x 1.6	mm
System environment				
Max. ambient temperature		Non-condensing, maximum RH 95%	40	°C

1.3 Main features

The main features of the EVAL_TOLT_DC48V_3kW evaluation power board using OptiMOS™ 100 V power MOSFET technology (TOLT MOSFET) for battery-powered motor drive applications are:

- Single MOSFET at each leg of the inverter
- Standard 32-pin male-female connector to interface power board and XMC1300 drive card
- 48.0 V nominal input voltage
- 36.0 V to 52.0 V input voltage range
- 100.0 A_{peak} maximum phase current for each phase
- Latched shutdown overcurrent protection (OCP) by sensing the current through the shunt resistor of each phase
- Programmable overtemperature protection (OTP)
- 12.0 V and 5.0 V on-board power supplies for gate driver ICs and microcontroller, respectively
- Hardware supports both block commutation control and FOC control using Hall senors or back EMF

¹ Continuous operation at full load may require forced air cooling. This is not recommended unless operating from a 48 V battery with short power cables.

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Introduction

1.4 **Block diagram**

A block diagram of the three-phase inverter board is shown in **Figure 3**. In this design, a buck (step-down) converter is used to convert the input voltage to 12.0 V for gate driver ICs. Alternatively, for ease of debugging, by changing the position of jumper J3, an external 12.0 V supply can be used. The 12.0 V rail is converted to 5.0 V by a linear drop-out (LDO) regulator to provide power to the analog circuits on the power board and to power the XMC[™] drive card via the 32-pin connector. Moreover, by removing the resistor R1, an external 5.0 V supply can be used.

OCP is achieved by measuring the voltage drop across each shunt of each phase. The output of the current amplifier is also fed to the XMC[™] drive card after passing through a low-pass RC filter for FOC control. OTP is achieved by using an on-board temperature sensor. The output voltage of the temperature sensor is also passed to the XMC[™] drive card after filtering using an RC filter for OTP. Back EMF signals are provided to the XMC[™] drive card after reducing the voltage below 5 V through the resistive divider for sensorless control. The Hall sensor signals are directly connected to the XMC[™] drive card.

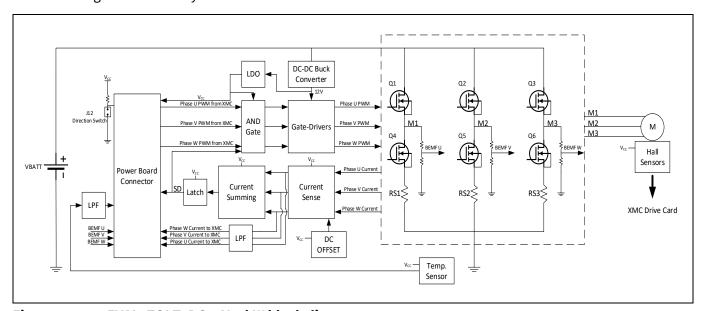


Figure 3 EVAL_TOLT_DC48V_3kW block diagram

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Hardware description

2 Hardware description

Different sections of the evaluation board are shown in **Figure 4** and **Figure 5**. An aluminum heatsink is attached on top of the TOLT MOSFET to push more power to the load, because the maximum temperature rating of the FR4 PCB is 130°C. An insulator made of thermal insulating material (TIM) is placed between the heatsink and the MOSFETs. The heatsink is connected to ground to reduce electromagnetic interference (EMI).

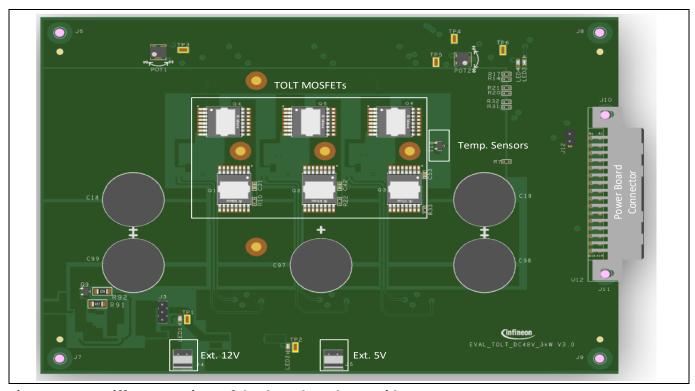


Figure 4 Different sections of the demo board - top side

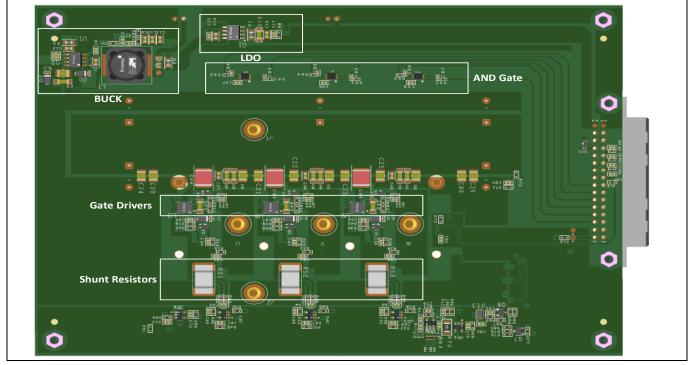


Figure 5 Different sections of the demo board – bottom side

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Hardware description

2.1 Power supplies

The buck converter reduces the battery voltage (voltage range of 36 V~52 V) to a regulated value of 12 V to supply the gate driver ICs. For powering the microcontroller in the XMC[™] drive card and other analog circuits in the power evaluation board, the 12 V is further reduced to 5 V by the LDO. The on-board power supply architecture is shown in **Figure 6**.

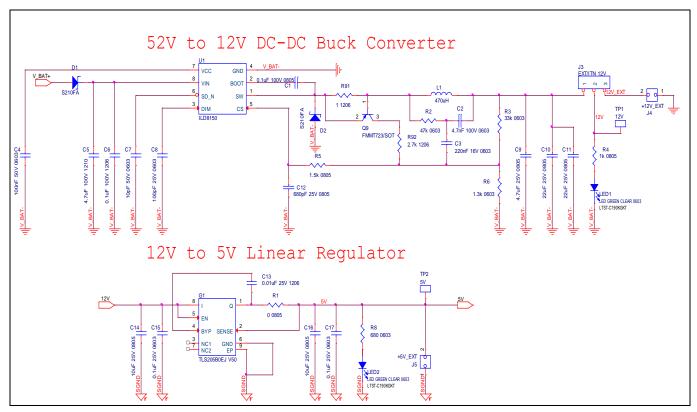


Figure 6 Buck and LDO regulators used in the demo board

Infineon's **ILD8150 buck LED driver IC** has been used in this design to reduce battery voltage to a regulated 12 V. The ILD8150, originally designed for constant current control in LED drivers, uses a hysteretic controller, which has been modified to provide constant voltage regulation at the output. The hysteretic control in the ILD8150 provides extremely fast regulation and stable output voltage combined with good EMI performance. The ILD8150 is rated to supply output current of up to 1.5 A.

The hysteretic controller stability depends on the ramp of the feedback voltage. The ramp of the feedback voltage should be large enough to reduce jitter. The ILD8150 implements two voltage thresholds V_{CSH} and V_{CSL} , so that when the feedback voltage crosses above the V_{CSH} threshold, the internal MOSFET turns off and when the feedback voltage crosses below the V_{CSL} threshold, the internal MOSFET turns on. The feedback ramp is largely dependent on the equivalent-series resistance (ESR) current of the inductor or from the external RC (R2, C2) components used to generate the ripple when a small ESR ceramic output capacitor is used. R5 and C12 act as a low-pass filter (LPF) to extract high-frequency noise. Additionally, to protect the LED driver IC from short-circuit, a simple circuit using a PNP BJT transistor (Q9) has been implemented, which limits the load current to 0.3 A. Therefore, as the load current is increased, it will create 0.7 V across R91, turning on the PNP transistor (Q9) and pulling the feedback pin high and dropping the output voltage low. As mentioned, an external power supply may also be used to provide 12 V to the gate driver ICs by changing the position of the jumper J3.

The TLS205B LDO (G1) provides a fixed 5 V power to the microcontroller in the XMC[™] drive card and other analog circuits in the power board. An external bypass capacitor (C13) provides low output voltage ripple. This

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Hardware description

device is capable of supplying a maximum output current of 500 mA. By removing jumper R1, an external power supply can be used to provide 5 V to the microcontroller and the analog circuitry.

2.2 Gate drivers

Infineon's 2EDL8124G high-side and low-side gate driver IC has been implemented in this design for driving the three-phase inverter MOSFETs. The **2EDL8124G EiceDRIVER™** is a true differential input (TDi) gate driver IC with enhanced noise immunity due to built-in hysteresis. The use of TDi gate drivers is strongly recommended in high-current applications to avoid mis-triggering due to di/dt-induced transients, which can damage standard gate drivers. Additionally, the gate driver IC has a built-in 2 ns delay between the turn-on and turn-off of each MOSFET. The gate driver circuit for phase U is shown in **Figure 7**.

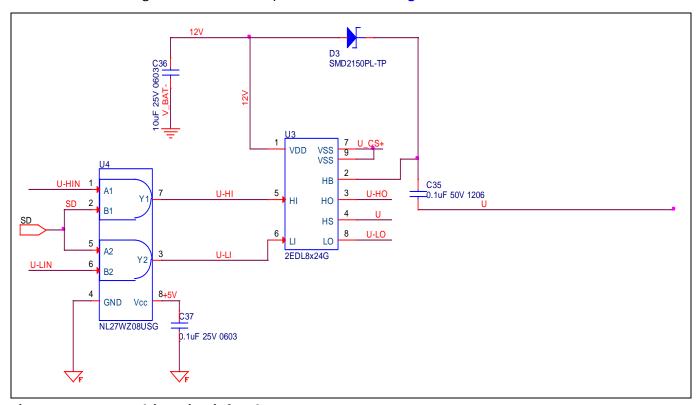


Figure 7 Gate driver circuit for phase U

For normal operation of the circuit, shutdown (SD) is high, which allows PWM signals (U-H and U-L) to pass through the dual-input AND gates generating PWM drive signals for the high-side and low-side MOSFETs (U-HO and U-LO). When there is overcurrent in any of the phases, SD is pulled low by the latch circuit and thus turns off the switching of the MOSFETs. Additionally, the firmware also has control of the SD signal via the driver enable signal ($\overline{DR_EN}$). During normal operation of the circuit, the $\overline{DR_EN}$ is pulled low and thus MOSFET Q7 is off. In this scenario, the green LED (LED3) is turned on and SD is pulled high. However, during an overcurrent situation, the microcontroller pulls $\overline{DR_EN}$ high and the MOSFET Q7 is turned on and the SD is pulled low to provide firmware OCP which is set to 100 A_{peak}.

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Hardware description

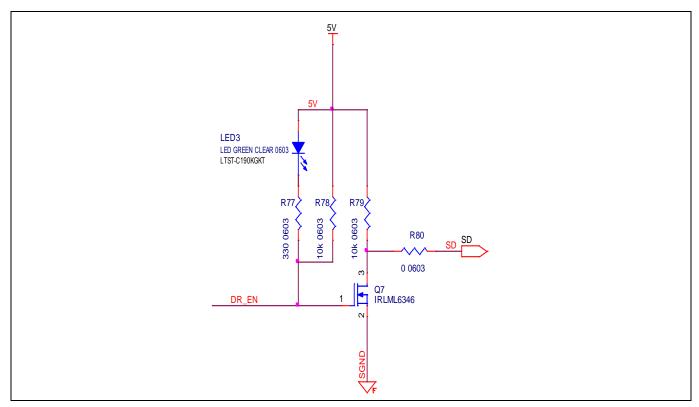


Figure 8 Firmware OCP circuit

2.3 TOLT MOSFET package

Infineon's **IPTC015N10NM5** TOLT MOSFET is used in the power inverter section of this design to drive the BLDC motor phases. The TOLT MOSFET is designed with a flipped leadframe inside the package, and the drain pad is exposed at the top of the package as shown in **Figure 9**. With an exposed drain pad, heat can be passed onto the heatsink through the TIM, enabling the inverter to push more power to the load. **Figure 10** shows the difference between the standard cooling technique (back-side) and top-side cooling.

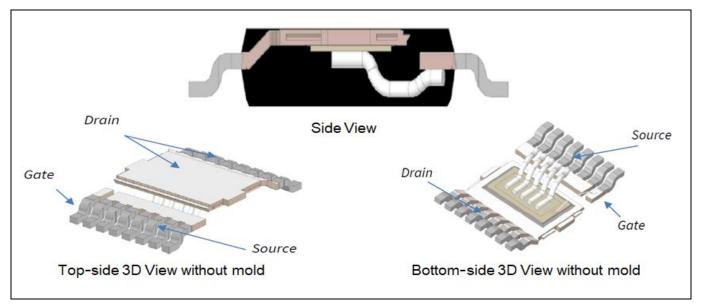


Figure 9 TOLT package structure

Hardware description

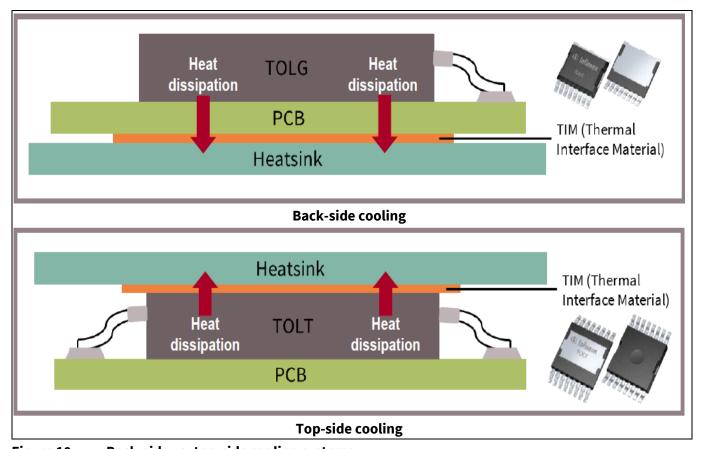


Figure 10 Back-side vs. top-side cooling systems

Main advantages of the TOLT packaged MOSFETs:

- Top-side cooling cost savings in cooling systems and higher application power capability
- Sn-free exposed pad
- Components can be placed on the bottom side of the PCB because the heatsink is not mounted on the bottom as in a standard (not flipped) package MOSFET
- Distance between source and drain (creepage) is increased
- More efficient heat transfer is made possible by using a heatsink instead of transferring heat to the PCB and nearby components as in the back-side cooling system
- Negative standoffs

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Hardware description

2.4 Heatsink and thermal insulating material

One of the major advantages of TOLT package MOSFETs is top-side cooling using a heatsink. For this design, a heatsink from Advanced Thermal Solutions (ATS-EXL110-300-R0) has been customized. Thermal resistance as a function of the airflow of EXL101 series heatsink for the entire extrusion is shown in **Figure 11**. **Figure 12** shows the dimensions of the heatsink.

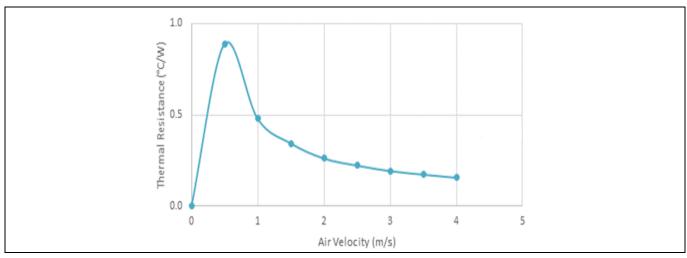


Figure 11 Thermal resistance

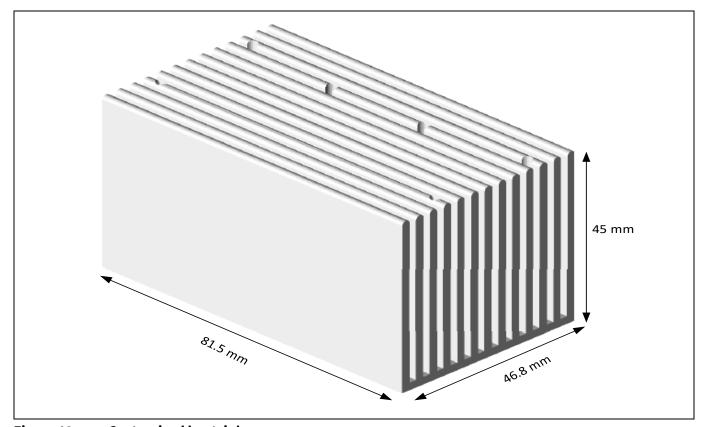


Figure 12 Customized heatsink

The heatsink is mounted to the top side of the board, with screws inserted from the bottom side. The heatsink is drilled and tapped to accept screw size 2-56 with the holes located to line up with the PCB holes. The torque setting for the screws is between 1 in-lbs to 2 in-lbs.

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Hardware description

Figure 13 Heatsink mounting holes

For this design, a Bergquist® gap pad® TGP 5000 (gap pad® 5000S35) with 500 μ m thickness and 5 W/m-K thermal conductivity is used for the TIM. **Figure 14** shows the typical properties of the selected TIM. Thermal resistance as a function of airflow of this TIM is shown in **Figure 15**.

PROPERTY	IMPERIAL VALUE	METRIC V	ALUE	TEST M	ETHO	
Color	Light Green	Light Gre	en	Vis	ual	
Reinforcement Carrier	Fiberglass	Fibergla	SS	_	_	
Thickness (in.) / (mm)	0.020 to 0.125	0.508 to 3	3.175	ASTM	D374	
Inherent Surface Tack (1-sided)	2	2		_	_	
Density, Bulk, Rubber (g/cc)	3.6	3.6		ASTM	D792	
Heat Capacity (J/g-K)	1.0	1.0		ASTM	E1269	
Hardness, Bulk Rubber (Shore 00)(1)	35	35		ASTM	D2240	
Young's Modulus (psi) / (kPa) ⁽²⁾	17.5	121		ASTM	D575	
Continuous Use Temp. (°F) / (°C)	-76 to 392	-60 to 20	00	-	-	
ELECTRICAL						
Dielectric Breakdown Voltage (VAC)	> 5,000	> 5,000)	ASTM	D149	
Dielectric Constant (1,000 Hz)	7.5	7.5		ASTM	D150	
Volume Resistivity (Ω-m)	109	10°		ASTM	D257	
Flame Rating	V-O	V-O		UL	94	
THERMAL						
Thermal Conductivity (W/m-K)	5.0	5.0		ASTM	D5470	
THERMAL PERFORMANCE VS. STRAIN						
Deflection (% strain) 10 20 30						
Thermal Impedance (°C-in.²/W) 0.040 in. ⁽³⁾ 0.37 0.32 0.29						

Figure 14 Typical properties of gap pad® TGP 5000

Hardware description

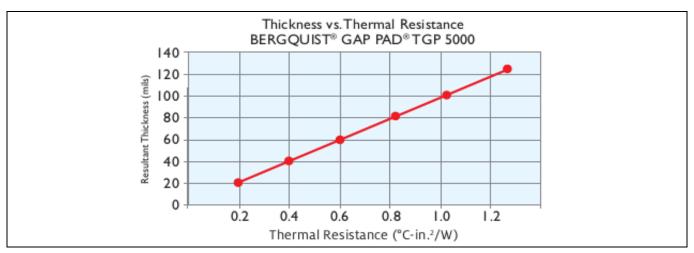


Figure 15 Thermal resistance of gap pad® TGP 5000

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Hardware description

2.5 **Protection circuitry**

In order to protect the MOSFETs of the three-phase inverter from overcurrent, OCP circuitry is implemented in this design as shown in Figure 16 and Figure 17. Each leg of the three-phase inverter has a 1 m Ω shunt resistor with respect to power ground, as shown in Figure 3. The voltage drop across the shunt resistor for phase U is measured using differential amplifier OP1 with a gain of 12.0 for phase U. To protect against leading-edge blanking, an integrator is implemented using R46 and C62. Because the voltage drop across the shunt resistor needs to be sensed by the microcontroller in the XMC[™] drive card, there is a need to create an offset, as the voltage drop across the shunt resistor will be both positive and negative. Thus, OP2 is a buffer which applies a DC offset of 2.5 V to the differential amplifier OP1. The output of OP1 passes through an LPF and connects through the board connector to the microcontroller in the XMC™ drive card to be processed by the control algorithm and protection implemented in the firmware. Similar functions are performed by differential amplifiers OP2 and OP3 for phases V and W. The outputs of all the differential amplifiers of all the phases are summed together using diodes D12, D13 and D14 to detect the peak voltage. This peak voltage is compared against a reference voltage of 4.8 V by comparator U11. During normal operation, the output of this comparator will be low and thus the output of the D-flip-flop U13 remains low. However, during a short-circuit condition the output of the comparator goes high, as the detected peak voltage exceeds 4.8 V and thus the output of the U13 will transition high, turning on the MOSFET Q8 to pull SD low and turn off the inverter. With this setup the overcurrent trip level is set at 192 Apeak.

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Hardware description

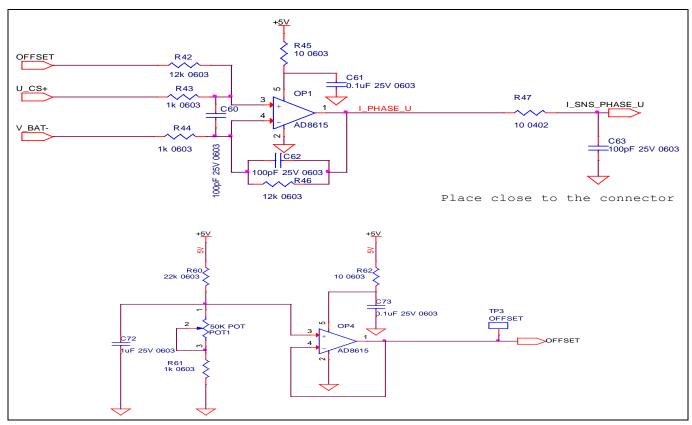


Figure 16 Current amplifier

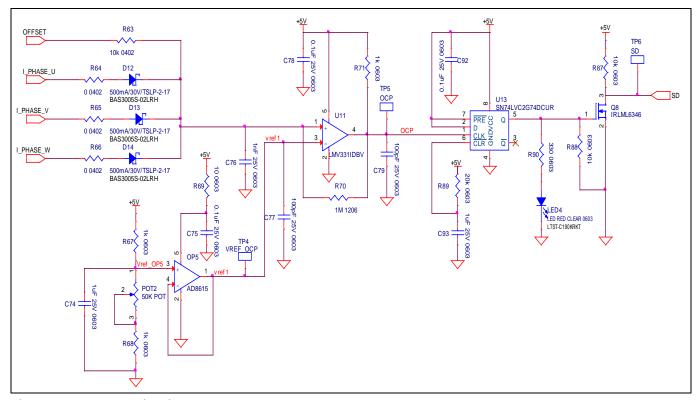


Figure 17 OCP circuitry

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Hardware description

2.6 Power board connector

Figure 18 shows the interface using the 32-pin connector U12. The pin assignments are shown in Table 3.

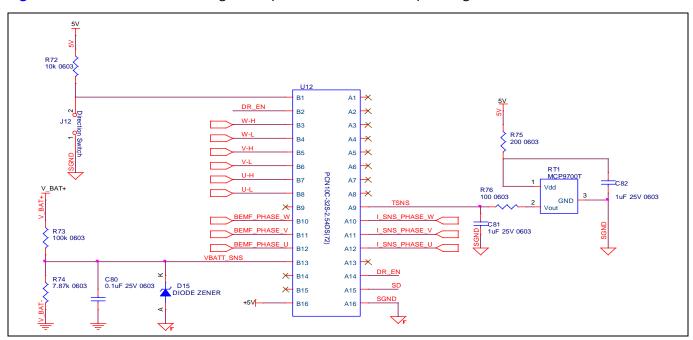


Figure 18 Power board connector

Table 3 Power board connector

X302 MAB32B2	U12 FAB32Q2	Function on power board	Port	Peripheral	5
A1	A16	GND	VSS, VSSP		
A2	A15	SD	P0.5	CCU40.CC40	CMP2.OUT
A3	A14	DR_EN	P2.2	VADC0.G0CH7	ACMP2.INN
A4	A13	-	P2.4		VADC0.G1CH6
A5	A12	I_SNS_PHASE_U	P2.9	VADC0.G0CH2	VADC0.G1CH4
A6	A11	I_SNE_PHASE_V	P2.10	VADC0.G0CH3	VADC0.G1CH2
A7	A10	I_SNS_PHASE_W	P2.11	VADC0.G0CH4	VADC0.G1CH3
A8	A9	TSNS	P2.1	VADC0.G0CH6	
A9	A8	_	_		
A10	A7	_	_		
A11	A6	_	_		
A12	A5	_	_		
A13	A4	_	-		
A14	A3	_	-		
A15	A2	_	_		
A16	A1	_	_		
B1	B16	V _{cc}	VDD, VDDP		
B2	B15	_	-		
В3	B14	_	_		
B4	B13	VBATT_SNS	P2.3		VADC0.G1CH5
B5	B12	BEMF_U	P2.6	VADC0.G0CH0	
B6	B11	BEMF_V	P2.8	VADC0.G0CH1	VADC0.G0CH0
B7	B10	BEMF_W	P2.0	VADC0.G0CH5	

Hardware description

X302 MAB32B2	U12 FAB32Q2	Function on power board	Port	Peripherals	
B8	В9	_	P2.7		VADC0.G1CH1
B9	B8	U-L	P0.1	CCU80.OUT01	
B10	В7	U-H	P0.0	CCU80.OUT00	
B11	В6	V-L	P0.6	CCU80.OUT11	
B12	B5	V-H	P0.7	CCU80.OUT10	
B13	B4	W-L	P0.9 and P0.3	CCU80.OUT21	CCU80.OUT03
B14	В3	W-H	P0.8 and P0.2	CCU80.OUT20	CCU80.OUT02
B15	B2	DR_EN	P0.12	CCU80.IN0A, IN1A, IN2A, IN3A	
B16	B1	Direction switch	P0.11	GPIO	

Control and firmware

3 Control and firmware

3.1 Trapezoidal control also known as six-step or block commutation

In contrast to common synchronous machines, which are driven with sine wave voltages, BLDC motors are most commonly driven with a block-shaped voltage resulting in a trapezoidal-shaped current. Trapezoidal control is also known as block commutation or six-step control because there are six commutation intervals for each revolution, which are 60 degrees apart. This is the simplest BLDC motor control algorithm. Although performance is acceptable for power tools, block commutation is known to create a torque ripple with six times the frequency of the electrical rotary frequency of the three-phase motor. This leads to vibrations and acoustic noise due to the discrete switching between the phases such that the stator and rotor fields are not always perpendicular to each other. This generates high torque ripple, resulting in some inevitable vibration and noise.

In three-phase machines during each commutation step, a current path is formed between a pair of windings, leaving the third winding disconnected. The Hall sensor outputs are either high or low, depending on which pole of the rotor permanent magnet they are in proximity with, in the current position. During rotation, when one of the rotor north–south pole interfaces passes a Hall sensor, its output toggles and the controller then switches the DC voltage to the next phase (shown below as "A", "B" or "C"). The XMC1300 series microcontroller has sufficient processing power to execute this control algorithm. As shown below, the voltage has a rectangular shape, which results in a trapezoidal current and back-EMF shape in the machine.

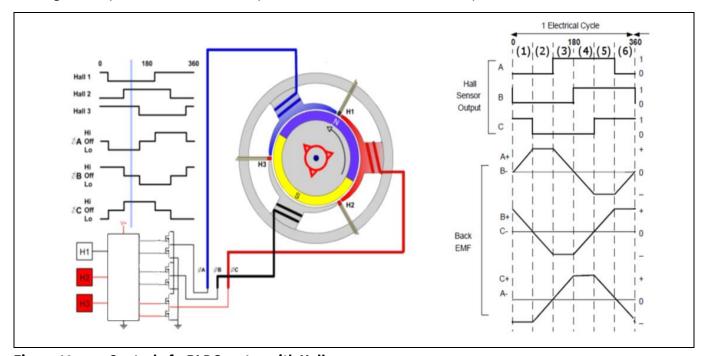


Figure 19 Control of a BLDC motor with Hall sensors

During each commutation step, one of the windings is energized with current entering into it, the second winding has current exiting it, and the third is in a non-energized open-circuit condition. The torque is produced because of the interaction between the magnetic field generated by the stator coils and the permanent magnets. Ideally, the peak torque occurs when these two fields are at 90 degrees to each other and falls off as the fields move together.

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Control and firmware

The block diagram of a typical BLDC trapezoidal control block commutation system with Hall sensors is shown below:

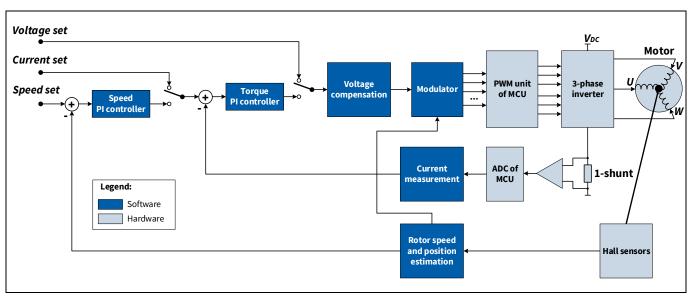


Figure 20 Block diagram of trapezoidal/block commutation algorithm

The switching patterns are shown in the diagram below. In the EVAL_TOLT_DC48V_3kW implementation, the 6PWM mode is used, where all of the high- and low-side gate drive pulses are generated by the microcontroller, which also senses the Hall sensor outputs. The firmware is based on the BLDC_SCALAR_HALL_XMC13 platform developed by Infineon and customized for the EVAL_TOLT_DC48V_3kW board.

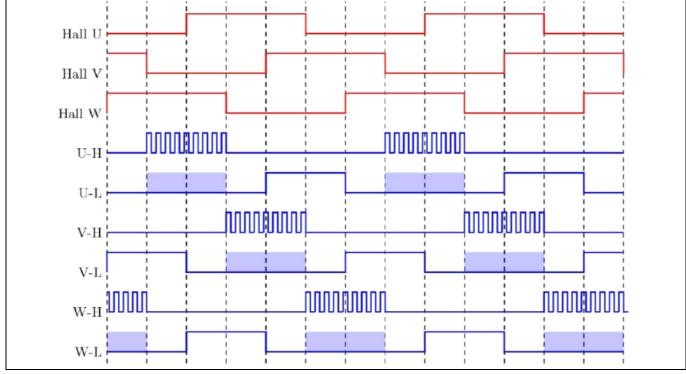


Figure 21 Switching patterns for trapezoidal/block commutation

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Control and firmware

3.2 P-I control

As illustrated in the block diagram above, a closed-loop control system is used to regulate the speed. A command value is applied to the system through the potentiometer on the XMC1300 drive card board. The firmware implements a proportional-integral (P-I) control loop, as shown:

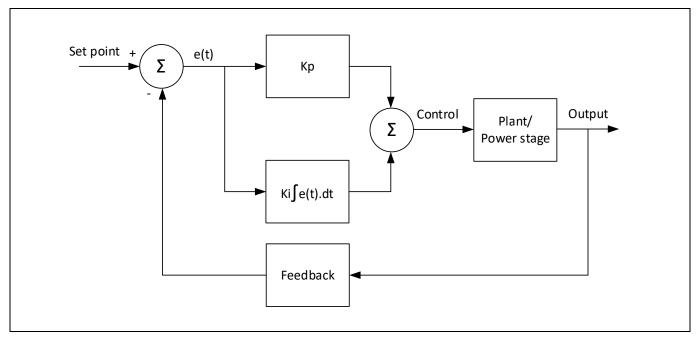


Figure 22 P-I control block diagram

The P-I controller is a widely used feedback control mechanism, which continuously calculates an error value e(t) that is the difference between the setpoint of the measured output quantity (here, speed in RPM) and the actual measured value. In this case the speed is derived by the firmware from the Hall sensor input signals. The error value is fed to the proportional calculator, where it is multiplied by K_P, and to the integral calculator, where it is integrated with respect to time and the result multiplied by K_I. These two results are then summed together to provide a control value, which is applied to the power stage to provide a correction that will adjust the output to match the setpoint. The goal is to optimize the values of K_P and K_I for the specific system (inverter and motor) to achieve minimal delay and overshoot when changes are made to the commanded speed.

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

System operation

4 System operation

4.1 System startup

The motor speed is set by adjusting POT1/R103 in the drive card. **Figure 23** shows the three-phase power board connected to an XMC1300 drive card.

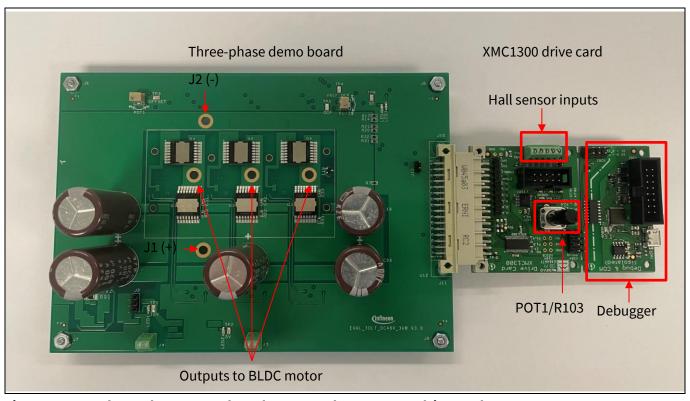


Figure 23 Three-phase power board connected to XMC1300 drive card

The following order is recommended to power up the board:

Output phases are connected to the BLDC motor. The order of the phases is important, as the motor will
not operate correctly if the phases are incorrectly connected. Table 4 shows the connector for each of
the phases.

Table 4 Motor phase connectors

Motor phase	Connector
Phase U	U
Phase V	V
Phase W	W

2) The three Hall sensors are connected directly to the XMC1300 drive card via connector X101. **Table 5** shows the pin-out for the Hall sensor interface.

Table 5 Hall sensor interface (X101)

Pin	Description	
1	GND	
2	Phase U Hall sensor	

System operation

Pin	Description
3	Phase V Hall sensor
4	Phase W Hall sensor
5	V _{DD} (+5 V)

- 3) The XMC1300 drive card is connected to the power board through the power board connector.
- 4) For using on-board power supplies, pin 1 and pin 2 should be shorted via J3.
- 5) If using external power supplies, pin 2 and pin 3 should be shorted using J3 for using external 12 V power supply, and R1 should be removed if using an external 5 V power supply.
- 6) The input power supply to the power board should be connected to J1 (+) and J2 (-).

4.2 System performance

The three-phase inverter switching devices are **IPTC015N10NM5** (OptiMOSTM 6 100 V 1.5 m Ω TOLT) power MOSFETs optimized for battery-powered motor drive. The demo board is able to support high-side modulation with synchronous rectification PWM. In each case, the PWM operates at a fixed frequency and the duty cycle is adjusted to control the average voltage applied to each stator winding. The winding inductances remove most of the PWM frequency component, leaving a small amount of ripple. **Figure 24** shows this modulation scheme.

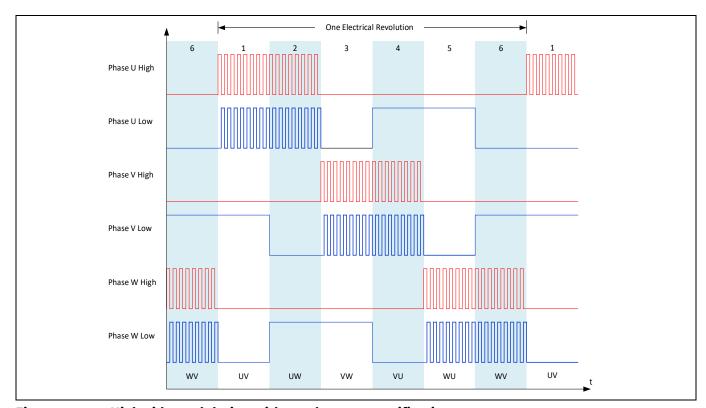


Figure 24 High-side modulation with synchronous rectification

For high-side modulation with synchronous rectification, the switching dead time is inserted between the rising and falling edges of the PWM signals to prevent the high-side and low-side MOSFETs of each inverter phase from being on at the same time during switching transitions (shoot-through condition). Moreover, the main advantage of this scheme is higher efficiency due to lower body diode conduction losses in the low-side MOSFETs.

2022-10-13

¹ It is recommended to use short cables for the input power supply to limit the ripple current passing through the input bulk capacitors.

User Manual

24 of 42

V 3.0

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

System operation

4.2.1 Operating waveforms

Figure 25 and **Figure 26** show gate-source and drain-source voltages of both high-side and low-side MOSFETs for phase V, and also the phase U, V and W currents using high-side modulation with the synchronous rectification trapezoidal control method at 1750 RPM with an input power of 2 kW at 48 V input voltage for 1 ms/div and 500 μ s/div.

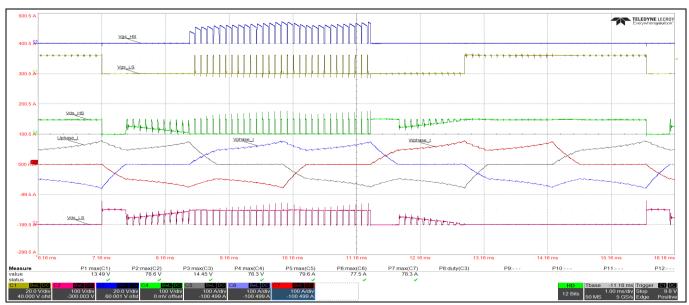


Figure 25 High-side and low-side MOSFET gate-source and drain-source voltages for phase V (1 ms/div); V_{GS_HS} (blue), V_{GS_LS} (yellow), V_{DS_HS} (green), V_{DS_LS} (pink), I_{PHASE_U} (gray), I_{PHASE_U} (blue), I_{PHASE_W} (red)

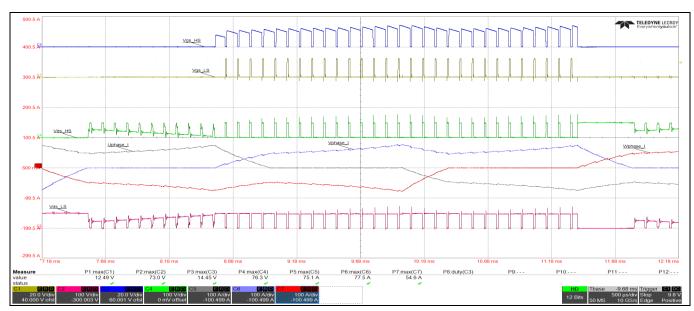


Figure 26 High-side and low-side MOSFET gate-source and drain-source voltages for phase V (1 ms/div); V_{GS_HS} (blue), V_{GS_LS} (yellow), V_{DS_HS} (green), V_{DS_LS} (pink), I_{PHASE_U} (gray), I_{PHASE_U} (blue), I_{PHASE_W} (red)

System operation

Figure 27 Phase V start-up current (50.0 ms/div); I_{PHASE V} (blue)

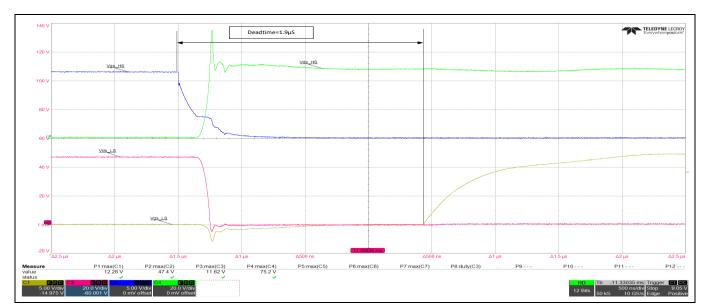


Figure 28 High-side and low-side MOSFET gate-source and drain-source voltages for phase V during high-side MOSFET turn-off and low-side MOSFET turn-on (500 ns/div); V_{GS_HS} (blue), V_{DS_LS} (green), V_{GS_HS} (yellow), V_{DS_LS} (pink)

System operation

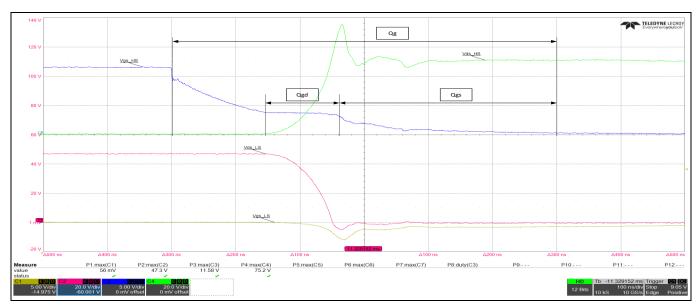


Figure 29 High-side and low-side MOSFET gate-source and drain-source voltages for phase V during high-side MOSFET turn-off and low-side MOSFET turn-on (100 ns/div); V_{GS_HS} (blue), V_{DS_LS} (green), V_{GS_HS} (yellow), V_{DS_LS} (pink)

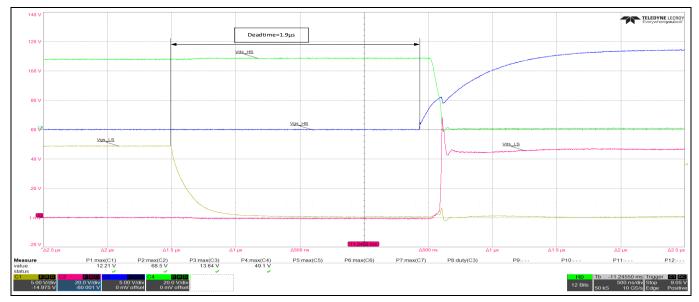


Figure 30 High-side and low-side MOSFET gate-source and drain-source voltages for phase V for high-side MOSFET turn-on and low-side MOSFET turn-off (500 ns/div); V_{GS_HS} (blue), V_{DS_LS} (green), V_{gS_HS} (yellow), V_{DS_LS} (pink)

System operation

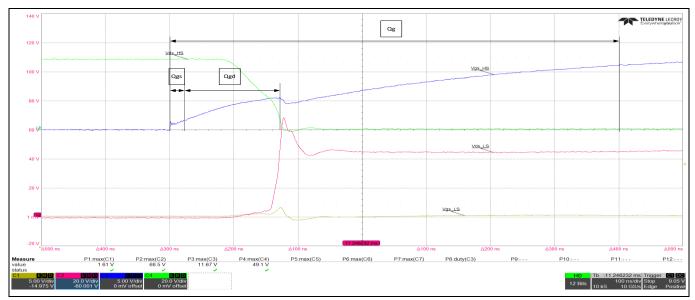


Figure 31 High-side and low-side MOSFET gate-source and drain-source voltages for phase V (1 ms/div) for high-side MOSFET turn-on and low-side MOSFET turn-off (100 ns/div); V_{GS_HS} (blue), V_{GS_LS} (yellow), V_{DS_HS} (green), V_{DS_LS} (pink)

4.2.2 Power measurements

		Element 1	Element 2	Element 3	Element 4
Urms	[V]	47.46	20.45	20.36	20.36
Irms	[A]	42.04	47.60	47.45	47.78
Р	[₩]	1990.90	655.40	650.60	653.10

Figure 32 Input and output measurements with an input power of 2 kW at 48 V input voltage

In **Figure 32**, results element 1 represents the DC input to the inverter. Elements 2, 3 and 4 are connected to the output phases U, V and W, respectively.

The total output power is equal to 655.40 W + 650.60 W + 653.10 W = 1959.10 W for an input power of 1990.90 W.

This gives an efficiency of $1959.10/1990.90 \times 100 = 98.40$ percent with losses of 31.8 W.

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

System operation

4.2.3 Thermal measurements

Thermal images were taken after 12 minutes of operation to allow the components to rise and reach steady-state at an input power of 2000 W at 48 V input voltage as shown in **Figure 33**. No forced air cooling was used.

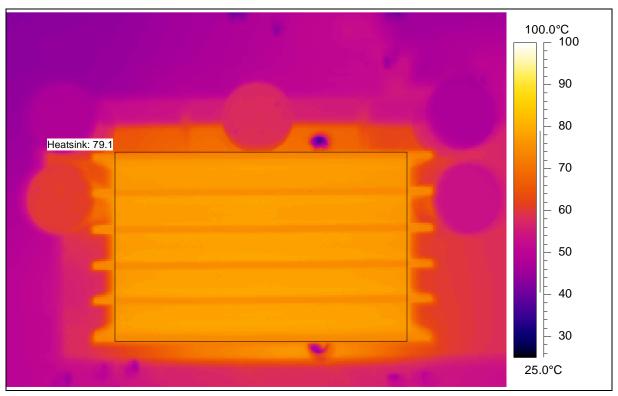
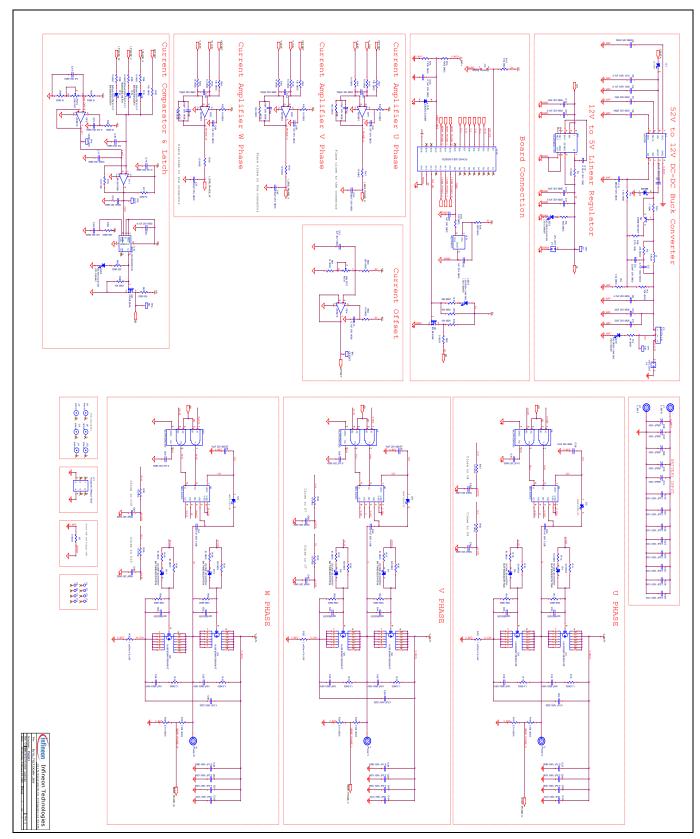


Figure 33 Thermal measurements at 48 V input and 2 kW load


The temperature rises at 48 V input voltage for 2 kW input power is only 54.1°C.

Schematic and PCB layout

5 Schematic and PCB layout

5.1 Schematic

30 of 42

Figure 34 EVAL_TOLT_DC48V_3kW schematic

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Schematic and PCB layout

5.2 Layout

The EVAL_TOLT_DC48V_3kW board consists of six copper PCB layers. All the layers have 2 oz. copper and the board size is 170 mm x 120 mm. The board material is FR4 grade with 1.6 mm thickness. The Gerber files are available from the downloads section of the **Infineon website**. A login is required to download this material.

The top layer, mid 1 layer, mid 2 layer, mid 3 layer, mid 4 layer and bottom layer PCB layouts are shown in **Figures 35** to **40**.

Figure 35 Top layer

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Figure 36 Mid 1 layer

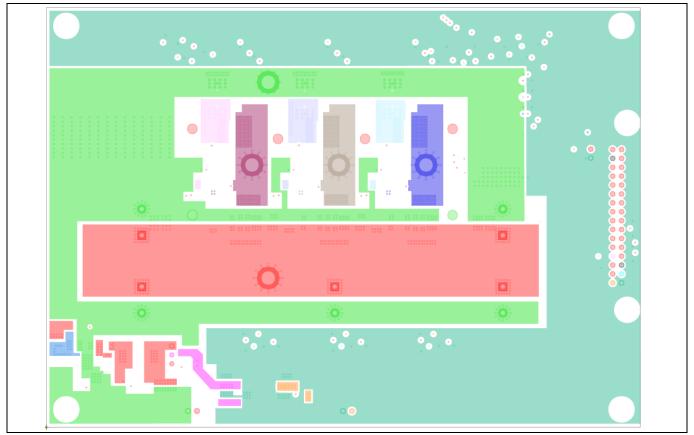


Figure 37 Mid 2 layer

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

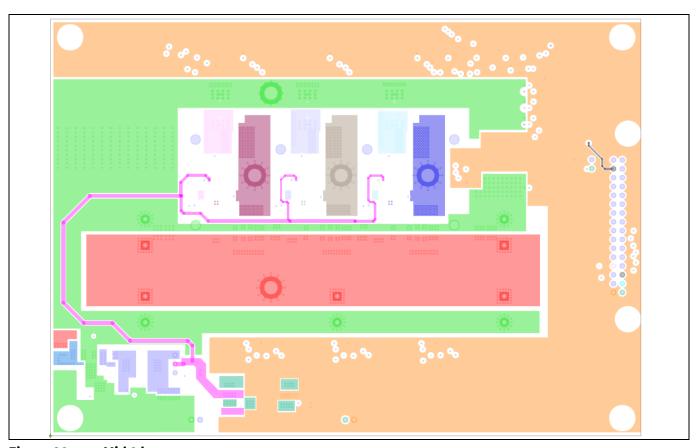


Figure 38 Mid 3 layer

Figure 39 Mid 4 layer

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

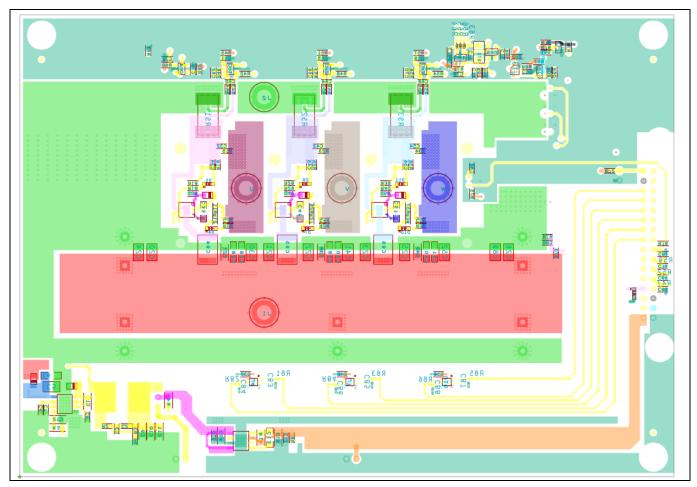


Figure 40 Bottom layer

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Schematic and PCB layout

Bill of materials 5.3

The complete bill of materials is available from the downloads section of the Infineon website. A login is required to download this material.

BOM of the evaluation board EVAL_TOLT_DC48V_3kW Table 6

Item	Part references	Quantity	Туре	Value/rating/tolerance/ package/other	Manufacturer	Part number
1	C1, C27, C38, C49	4	Capacitor	0.1 uF, 100 V, 10%, 0805, X7R	Kemet	C0805X104 K1RAC3316
2	C2	1	Capacitor	4700 pF, 100 V, 10%, 0603, X7R	Kemet	C0603Y472 K1RACAUT O
3	C3	1	Capacitor	0.22 uF, 25 V, 5%, 0603, X7R	Kemet	C0603X224 J3RACAUT O
4	C4	1	Capacitor	100 nF, 50 V, 10%, 0603, X7R	Kemet	C0603C104 K5RAC3121
5	C5	1	Capacitor	4.7 μF, 100 V, 10%, 1210, X7R	TDK	CNA6P1X7 R2A475K25 0AE
6	C6	1	Capacitor	0.1 μF, 100 V, 10%, 1206, X7R	Kemet	C1206F104 K1RAC3083
7	C7	1	Capacitor	10 pF, 50 V, 10%, 0603, X7R	Kemet	C0603C100 K5RAC7867
8	C8, C60, C62, C63, C64, C66, C67, C68, C70, C71, C77, C79	12	Capacitor	100 pF, 25 V, 10%, 0603, X7R	Kemet	C0603C101 K3RACAUT O
9	C9	1	Capacitor	4.7 uF, 25 V, 10%, 0805, X7R	Kemet	C0805X475 K3RAC7800
10	C10, C11	2	Capacitor	22 uF, 10 V, 20%, 0805, X7S	Kemet	C2012X7S1 A226M125 AC
11	C12	1	Capacitor	680 pF, 50 V, 5%, 0805, X7R	Kemet	C0805C681 J5RAC7800
12	C13	1	Capacitor	0.01 uF, 25 V, 5%, 1206, X7R	Kemet	C1206C103 J3RACAUT O
13	C14, C16	2	Capacitor	10 uF, 25 V, 20%, 0805, X5R	Kemet	C0805C106 M3PAC780 0
14	C15, C17, C37, C48, C59, C61, C65, C69, C73, C75,	13	Capacitor	0.1 uF, 25 V, 20%, 0603, X7R	Kemet	C0603X104 M3RAC786 7

Item	Part references	Quantity	Туре	Value/rating/tolerance/ package/other	Manufacturer	Part number
	C78, C80, C92					
15	C18, C19, C97, C98, C99	5	Capacitor	820 uF, 100 V, 20%, RADIAL	United Chemi-Con	EKZE101EL L821MM40 S
16	C20, C21, C22, C23, C24, C25, C26, C89	8	Capacitor	2.2 uF, 100 V, 10%, 1210, X7R	Kemet	C1210C225 K1RACAUT O
17	C28, C29, C39, C40, C50, C51	6	Capacitor	2.2 uF, 100 V, 10%, 1206, X7S	Murata	GCM31CC7 2A225KE02 L
18	C30, C41, C52	3	Capacitor	10 uF, 100 V, 10%, 1210, X7S	Samsing Electro- Mechanics	CL32Y106K CVZNWE
19	C31, C32, C42, C43, C53, C54	6	Capacitor	10 nF, 100 V, 10%, 0603, X7R	Samsung Electro- Mechanics	CL10B103K C8WPJL
20	C35, C46, C57	3	Capacitor	0.1 uF, 50 V, 10%, 1206, X7R	Kemet	C1206F104 K5RACAUT O
21	C36, C47, C58	3	Capacitor	10 uF, 25 V, 20%, 0603, X5R	Murata	GRM188R6 1E106MA7 3J
22	C72, C74, C81, C82, C93	5	Capacitor	1 uF, 25 V, 10%, 0603, X7R	Kemet	C0603C105 K3RAC7411
23	C76	1	Capacitor	1 nF, 25 V, 10%, 0603, X7R	Kemet	C0603X102 K3RACAUT O
24	C83, C84, C85, C86, C87, C88	6	Capacitor	100 pF, 25 V, 10%, 0402, X7R	Kemet	C0402C101 K3RAC7867
25	C94, C95, C96	3	Capacitor	4.7 uF, 100 V, 10%, 2220, X7R	AVX	22201C475 KAT2A
26	D1, D2	2	Schottky diode	100 V, 2 A, SOD-123FA	onsemi	S210FA
27	D3, D6, D9	3	Schottky diode	150 V, 2 A, SOD-123FL	Micro Commercial Components	SMD2150P L-TP
28	D4, D5, D7, D8, D10, D11	6	Schottky diode	40 V, 750 mA, SOD-323	Infineon Technologies	BAT165E63 27HTSA1
29	D12, D13, D14	3	Schottky diode	30 V, 500 mA, SOD-882D	Nexperia USA Inc.	PMEG3005 ELD,315
30	D15	1	Zener diode	5.1 V, 300 mW, SOD-323	Nexperia USA Inc.	BZX384- B5V1,115

Item	Part references	Quantity	Туре	Value/rating/tolerance/ package/other	Manufacturer	Part number
31	G1	1	IC	IC REG LIN ,5 V, 500 mA, 8DSO E-PAD	Infineon Technologies	TLS205B0E JV50XUMA 1
32	H1	1	Heatsink	Heatsink 81.5 x 46.8 mm	Advanced Thermal Solutions Inc.	ATS- EXL110- 300-R0
33	J3	1	Connector	CONN HEADER VERT 3POS 2.54MM	Samtec	TSW-103- 08-L-S-LA
34	J4, J5	2	Connector	TERM BLK 2P SIDE ENT 2.54MM PCB	Phoenix Contact	1725656
35	J12	1	Connector	CONN HEADER VERT 2POS 2.54MM	Samtec	TSW-102- 08-LS
36	L1	1	Inductor	FIXED IND 470UH 1.4A 560MOHM SMD	Würth Elektronik	744770947 1
37	LED1, LED2, LED3	3	LED	LED RED CLEAR 0603	Lite-On Inc.	LTST- C190KGKT
38	LED4	1	LED	LED RED CLEAR 0603	Lite-On Inc.	LTST- C190KRKT
39	OP1, OP2, OP3, OP4, OP5	5	IC	IC OPAMP GP 10MHZ RRO SOT23-5	Analog Devices	AD8615AU JZ-REEL7
40	POT1, POT2	1	Potentiomet er	TRIMMER, 50k OHM, 0.25W, J LEAD TOP	Nidec Copal Electronics	SM42TW50 3
41	Q1, Q2, Q3, Q4, Q5, Q6	6	MOSFET	N-Channel, 100 V, 35 A, TOLT	Infineon Technologies	IPTC015N1 0NM5
42	Q7, Q8	2	MOSFET	N-Channel, 30 V, 3.4 A, SOT-23	Infineon Technologies	IRLML6346 TRPBF
43	Q9	1	Transistor	PNP, 100 V, 1 A, SOT23-3	Diodes Incorporated	FMMT723Q TA
44	R1	1	Resistor	0, 0.4 W, 0805	Vishay Dale	RCS080500 00Z0EA
45	R2	1	Resistor	47k, 0.25 W, 1%, 0603	Vishay Dale	RCS060347 K0FKEA
46	R3	1	Resistor	33k, 0.25 W, 1%, 0603	Vishay Dale	RCS060333 K0FKEA
47	R4	1	Resistor	1k, 0.5 W, 1%, 0805	Vishay Dale	RCA08051K 00FKEAHP
48	R5	1	Resistor	1.5k, 0.4 W, 5%, 0805	Vishay Dale	RCS08051K 50JNEA
49	R6	1	Resistor	1.1k, 0.1 W, 1%, 0603	Vishay Dale	CRCW0603 1K10FKTA
50	R7, R80	2	Resistor	0, 0.25 W, 0603	Vishay Dale	RCS060300 00Z0EA
51	R8	1	Resistor	680, 0.25 W, 1%, 0603	Vishay Dale	RCS060368 0RFKEA

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Item	Part references	Quantity	Туре	Value/rating/tolerance/ package/other	Manufacturer	Part number
52	R10, R15, R22, R23, R33, R34	6	Resistor	1.2, 0.1 W, 5%, 0603	Vishay Dale	CRCW0603 1R20JNEAI F
53	R11, R16, R26, R28, R37, R39	6	Resistor	30, 0.1 W, 5%, 0603	Vishay Dale	CRCW0603 30R0JNEA
54	R12, R18, R27, R29, R38, R40, R45, R51, R57, R62, R69	11	Resistor	10, 0.25 W, 5%, 0603	Panasonic Electronic Components	ERJ- PA3J100V
55	R13, R19, R24, R25, R35, R36, R73	7	Resistor	100k, 0.25 W, 1%, 0603	Vishay Dale	RCA060310 0KFKEAHP
56	R14, R20, R31	3	Resistor	130k, 0.25 W, 1%, 0603	Vishay Dale	RCS060313 0KFKEA
57	R17, R21, R32	3	Resistor	5.1k, 0.25 W, 1%, 0603	Vishay Dale	RCS06035K 10FKEA
58	R42, R46, R48, R53, R54, R58	6	Resistor	12k, 0.125 W, 0.1%, 0603	Panasonic Electronic Components	ERA- 3VEB1202V
59	R43, R44, R49, R50, R55, R56	6	Resistor	1k, 0.125 W, 0.1%, 0603	Vishay	MCT0603M D1001BP10 0
60	R47, R52, R59, R81, R82, R83, R84, R85, R86	9	Resistor	10, 0.125 W, 1%, 0402	TE Connectivity Passive Product	CRGP0402 F10R
61	R60	1	Resistor	22k, 0.25 W, 1%, 0603	Panasonic Electronic Components	ERJ- PA3F2202V
62	R61, R67, R68, R71	4	Resistor	1k, 0.25 W, 1%, 0603	Vishay Dale	RCA06031K 00FKEAHP
63	R63	1	Resistor	10k, 0.063 W, 1%, 0402	Delta Electronics/ Cyntec	PFR05S- 103-FNH
64	R64, R65, R66	3	Resistor	0, 1/10 W, 0402	Panasonic Electronic Components	ERJ- 2GE0R00X
65	R70	1	Resistor	1M, 0.75 W, 1%, 1206	Vishay Dale	CRCW1206 1M00FKEA HP
66	R72, R78, R79, R87, R88	5	Resistor	10k, 0.25 W, 1%, 0603	Panasonic Electronic Components	ERJ- UP3F1002V

Item	Part references	Quantity	Туре	Value/rating/tolerance/ package/other	Manufacturer	Part number
67	R74	1	Resistor	7.87k, 0.1 W, 1%, 0603	Panasonic Electronic Components	ERJ- 3EKF7871V
68	R75	1	Resistor	200, 0.25 W, 1%, 0603	Vishay Dale	RCS060320 0RFKEA
69	R76	1	Resistor	100, 0.25 W, 1%, 0603	TE Connectivity Passive Product	CRGP0603 F100R
70	R77, R90	2	Resistor	330, 0.25 W, 1%, 0603	Vishay Dale	RCS060333 0RFKEA
71	R89	1	Resistor	20k, 0.25 W, 5%, 0603	Vishay Dale	RCS060320 K0JNEA
72	R91	1	Resistor	1, 0.25 W, 1%, 1206	Vishay Dale	CRCW1206 1R00FNEB
73	R92	1	Resistor	2.7k, 5%, 0.75 W, 1206	Vishay Dale	CRCW1206 2K70JNEA HP
74	RS1, RS2, RS3	3	Current Sense	0.001, 5 W, 1%, 3920	Stackpole Electronics Inc.	HCS3920F T1L00
75	RT1	1	Temperature sensor	Sensor analog -40°C to 125°C SOT23-3	Microchip	MCP9700A T-E/TT
76	U1	1	IC	LED driver IC 1 output DC DC regular step-down (buck) PWM dimming 1.5 A PG-DSO-8-27	Infineon Technologies	ILD8150EX UMA1
77	U3, U6, U9	3	IC	High-side and Low-side gate driver IC non-inverting PG-VDSON-8-4	Infineon Technologies	2EDL8124G XUMA1
78	U4, U7, U10	3	IC	IC gate and 2CH 2-INP US8	Onsemi	NL27WZ08 USG
79	U11	1	IC	IC comparator tiny LV SOT23-5	Texas Instruments	LMV331M5
80	U12	1	IC	CONN DIN RCPT 32POS PCB RA GOLD	Hirose Electric Co. LTD	PCN10C- 32S-2.54DS (72)
81	U13	1	IC	IC FF D-TYPE SNGL 1BIT 8VSSOP	Texas Instruments	SN74LVC2 G74MDCUT EP
82	-	1	Thermal pad	Thermal pad 457.20 mm x 457.20 mm Pink	Laird Technologies – Thermal Materials	A17536-02

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

References

References

 Infineon Technologies, IPTC015N10NM5 datas 	chnologies, IPTC015N10NM5 datasheet
--	-------------------------------------

- [2] Infineon Technologies, IRLML6346TRPBF datasheet
- [3] Infineon Technologies, 2EDL8124GXUMA1 datasheet
- [4] Infineon Technologies, ILD8150EXUMA1 datasheet
- [5] Infineon Technologies, board user's manual drive card XMC1300_R1.0 (KIT_XMC1300_DC_V1)

Three-phase power inverter board using OptiMOS™ 100 V TOLT MOSFET

Revision history

Revision history

Document version	Date of release	Description of changes
V 1.0	2022-05-24	First release
V 2.0	2022-08-24	Updated schematic and PCB due to design issue. Final release.
V 3.0	2022-10-13	Updated user manual based on board version – V 3.0

Trademark

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-10-13 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document?

Email: erratum@infineon.com

Document reference
UM_2110_PL18_2110_022611

IMPORTANT NOTICE

The information contained in this application note is given as a hint for the implementation of the product only and shall in no event be regarded as a description or warranty of a certain functionality, condition or quality of the product. Before implementation of the product, the recipient of this application note must verify any function and other technical information given herein in the real application. Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind (including without limitation warranties of non-infringement of intellectual property rights of any third party) with respect to any and all information given in this application note.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

EVALTOLTDC48V3KWTOBO2