

USB Type-C port controller for power sinks

General description

EZ-PD[™] BCR-LITE is highly-integrated pre-programmed USB Type-C sink port controller and a part of the barrel connector replacement (BCR) family. It has the ability to support ports with or without USB data capability. It mainly targets electronic devices that have legacy barrel connectors or USB micro-B connectors for power such as drones, smart speakers, power tools, and other rechargeable devices.

EZ-PD[™] BCR-LITE complies with the latest USB Type-C standard and enables users to quickly convert their devices from being powered through a barrel connector to being powered via the USB-C connector with few external components and no additional firmware development. EZ-PD[™] BCR-LITE integrates a complete USB Type-C transceiver, a load switch controller with a soft start, all termination resistors required for a USB Type-C port, and system-level ESD protection. It is available in a 24-pin QFN package.

Features

- USB Type-C support
 - Supports one USB Type-C port with the capability of sinking 5 V @ 3 A
- Legacy charging
 - Support for legacy charging or Type-C 5 V operation when connected to USB Type-A ports
 - Support for legacy charging protocols like BC1.2, Apple, AFC, QC 2.0^[1]
 - Enables negotiation of VBUS > 5 V (total power > 15 W) using D+/D-
- System-level fault protection
 - VBUS to CC short protection
 - On-chip over-voltage protection (OVP)
- Power
 - 3.0 V to 24.5 V operation (30 V tolerant)
 - Integrated VBUS load switch gate drivers with in-rush current control
- Configurability
 - I²C based host processor interface (HPI) for dynamic configuration and reporting
- System-level ESD protection
 - On CC, VBUS_IN_DIS, DC_OUT_DIS, D+, D-, HPI_SDA, and HPI_SCL pins
 - ±8-kV contact discharge and ±15-kV air gap discharge based on IEC61000-4-2 level 4C
- Packages
 - 24-pin QFN package
 - Supports extended industrial temperature range (-40°C to +105°C)

Logic block diagram

Logic block diagram

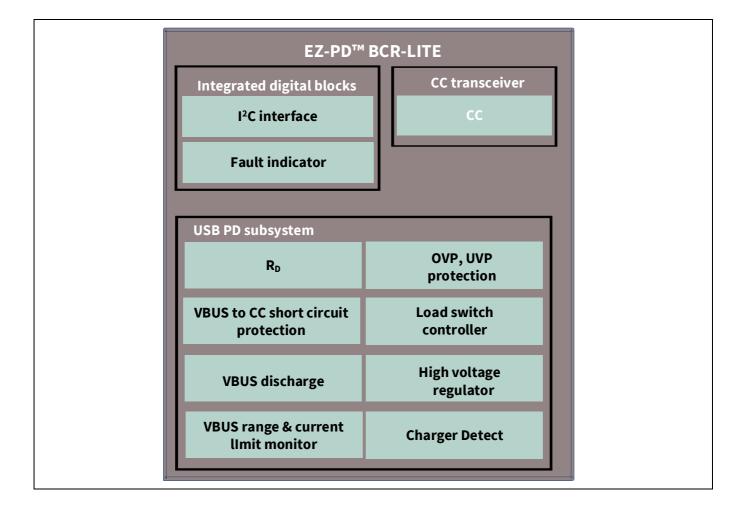


Table of contents

Table of contents

General description	
Features	
Logic block diagram	
Table of contents	
1 Functional overview	
1.1 USB PD subsystem	
1.1.1 USB Type-C physical layer	
1.1.2 VBUS overvoltage, undervoltage protection	
1.1.3 VBUS short protection	
1.1.4 Sink load switch controller on VBUS path	
1.1.5 SAFE_PWR_EN gate driver	
1.1.6 VBUS discharge FETs	
1.2 Integrated digital blocks	
1.2.1 Serial communication block (SCB)	
2 Power systems overview	
3 Pinouts	
4 Application overview	
4.1 FAULT pin behavior	
4.2 SAFE_PWR_EN pin behavior	
4.3 VBUS_FET_EN pin behavior	
4.4 Legacy charging support	
5 Electrical specifications	
5.1 Absolute maximum ratings	
5.2 Device-level specifications	
5.2.1 I/O	
5.3 Digital peripherals	
5.3.1 I ² C	
5.4 System resources	
5.4.1 Power-on reset (POR) with brown-out SWD interface	
5.4.2 Gate driver specifications	20
5.4.3 Analog to digital converter	
(used for determining VBUS_MIN, VBUS_MAX, ISNK_COARSE, ISNK_FINE values)	23
6 Ordering information	
6.1 Ordering code definitions	
7 Packaging	25
8 Acronyms	27
9 Document conventions	29
9.1 Units of measure	29
Revision history	
Important notice	31

Functional overview

1 Functional overview

1.1 USB PD subsystem

The USB PD subsystem provides the interface to the USB Type-C USB port. This subsystem comprises a high-voltage regulator, OVP, and supply switch blocks. This subsystem also includes all ESD protection required and supported on the USB Type-C port.

1.1.1 USB Type-C physical layer

The USB Type-C block includes the termination resistor R_D which is required to implement connection detection, plug orientation detection, and for establishing USB UFP role.

According to the USB Type-C spec, a USB Type-C controller such as the EZ-PD[™] BCR-LITE device must present certain termination resistors depending on its role in its unpowered state. The Sink role requires R_D resistor to be present on the CC pins even in an unpowered state. To implement this function, EZ-PD[™] BCR-LITE has a dead battery R_D resistor bonded to both the CC pins.

1.1.2 VBUS overvoltage, undervoltage protection

The EZ-PD[™] BCR-LITE device has an integrated hardware block for VBUS OVP and UVP with thresholds and response times that are configurable over HPI.

In an event of OVP, the BCR-LITE device informs the external master about the event.

1.1.3 VBUS short protection

The EZ-PD[™] BCR-LITE device provides VBUS short protection on CC1 an CC2 pins. These pins are protected from accidental shorts to high-voltage VBUS. Accidental shorts may occur because the CC1 and CC2 pins are placed next to the VBUS pins in the USB Type-C connector. A USB-PD controller without the high-voltage VBUS short protection will be damaged in the event of accidental shorts. When the protection circuit is triggered, the EZ-PD[™] BCR-LITE device can handle up to 17 V forever and between 17 V to 22 VDC for 1000 hours on the CC1 and CC2 pins. When a VBUS short event occurs on the CC pins, a temporary high-ringing voltage is observed due to the RLC elements in the USB Type-C cable. Without the EZ-PD[™] BCR-LITE device connected, this ringing voltage can be twice (44 V) the maximum VBUS voltage (21.5 V). However, when the EZ-PD[™] BCR-LITE device is connected, it is capable of clamping temporary high-ringing voltage and protecting the CC pin using IEC ESD protection diodes.

1.1.4 Sink load switch controller on VBUS path

The EZ-PD[™] BCR-LITE device has an integrated load switch controller to drive external PFETs on the VBUS sink path. This load switch controller has a soft start feature that limits the in-rush current flowing through the sink power path when the system is connected to an external load and powered on.

1.1.5 SAFE_PWR_EN gate driver

The EZ-PD[™] BCR-LITE device has a SAFE_PWR_EN gate driver that can be used to drive an alternate load switch/FET. It is enabled whenever the EZ-PD[™] BCR-LITE device is unable to negotiate the requested power contract. In such a scenario, the EZ-PD[™] BCR-LITE device negotiates a 5 V contract which can be delivered through the SAFE_PWR_EN FET to an alternate power rail in the system. This allows the system to operate in a limited mode when the requested power is unavailable through the USB Type-C port. Note that the SAFE_PWR output is available only when CHARGING_MODE pin is set to enable all legacy charging protocols.

1.1.6 VBUS discharge FETs

The EZ-PD[™] BCR-LITE device also has an integrated VBUS discharge FET used to discharge VBUS upon disconnection of the source.

Functional overview

1.2 Integrated digital blocks

1.2.1 Serial communication block (SCB)

The integrated SCB is configured to act as an I²C block for the EZ-PD[™] BCR-LITE device. The EZ-PD[™] BCR-LITE device has an I²C slave interface that can be connected to an I²C host. The slave address is 0x08. Contact Technical Support for further details related with EZ-PD[™] BCR-PLUS/BCR-LITE host processor interface specification.

The I²C interface is capable of operating at speeds of up to 1 Mbps (fast-mode plus). The I²C interface is also compatible with the I²C standard-mode, fast-mode, and fast-mode plus devices as defined in the NXP I²C-bus specification and user manual (**UM10204**). The I²C bus I/Os are implemented with GPIO in open-drain modes.

The I²C interface is not completely compliant with the I²C spec in the following aspects:

- Fast-mode plus has an I_{OL} specification of 20 mA at a V_{OL} of 0.4 V. The GPIO cells can sink a maximum of 8-mA I_{OL} with a V_{OL} maximum of 0.6 V.
- Fast-mode and fast-mode plus specify minimum fall times, which are not met with the GPIO cell; slow strong mode can help meet this spec depending on the bus load.

Power systems overview

2 **Power systems overview**

The EZ-PD[™] BCR-LITE device can operate from two possible external supply sources: VBUS_IN_DIS (3.0 V-24.5 V) or VDDD (2.7 V-5.5 V). When powered through VBUS_IN_DIS, the internal regulator generates VDDD of 3.3 V for chip operation. The regulated supply, VDDD, is either used directly inside some analog blocks or further regulated down to VCCD (1.8 V), which powers majority of the core using the regulators. Refer to the application diagram (see **Figure 3**) for capacitor connections.

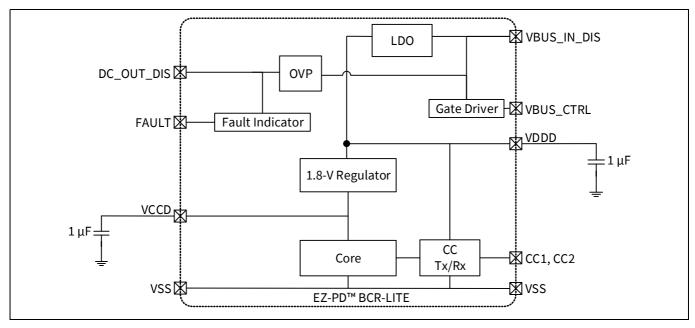


Figure 1 Power system requirement block diagram

Pinouts

3 Pinouts

Table 1 EZ-PD[™] BCR-LITE pin descriptions

24-pin QFN	Pin name	Description
1	VBUS_MIN	Connect a resistor divider to this pin that is connected to 3.3 V (from the VDDD pin) to indicate the minimum voltage needed by the system from the attached power adapter. See Table 2 in Application overview section for details. VBUS_MIN must be set to 5 V if the application needs to inter-operate with USB Type-C or USB Type-A power sources that provide only 5 V supply.
2	VBUS_MAX	Connect a resistor divider to this pin that is connected to 3.3 V (from the VDDD pin) to indicate the maximum voltage needed by the system from the attached power adapter. See Table 2 in Application overview section for details.
3	VBUS_CTRL	Connect this pin to the gate of a FET through a series resistor. This pin is the output of a PMOS FET gate driver that is slew-rate controlled. This signal is enabled when the EZ-PD [™] BCR-LITE device successfully negotiates a power contract within the requested range set by VBUS_MIN and VBUS_MAX voltage settings.
4	SAFE_PWR_EN	Connect this signal to the gate of a FET through a series resistor. This pin is the output of a PMOS FET gate driver. This signal is enabled when the EZ-PD™ BCR-LITE device fails to negotiate for higher power and defaults to 5 V.
5	D+	USB D+. Connect this pin to the D+ line of the Type-C connector for support for legacy and proprietary charging.
6	D-	USB D Connect this pin to the D– line of the Type-C connector for support for legacy and proprietary charging.
7	HPI_INT/SWD_DAT	Active low HPI Interrupt pin.
8	FAULT/SWD_CLK	The EZ-PD [™] BCR-LITE device pulls this pin high if the power adapter cannot supply the required voltage or current or if an OVP/UVP event is detected. The pin is low otherwise.
		This pin can be configured in 2 different ways to support the legacy charging protocols:
9	CHARGING_MODE	- Option 1: BC1.2 support only. Connect pin to a 5 $k\Omega$ resistor pulled up to VDDD
		• Option 2: All legacy charging protocols supported: Leave this pin floating.

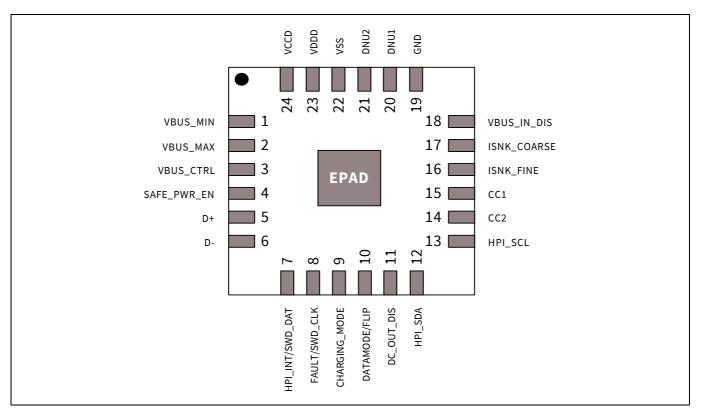

Pinouts

Table 1 EZ-PD[™] BCR-LITE pin descriptions (continued)

24-pin QFN	Pin name	Description					
10	DATAMODE/FLIP	Connect this pin to a 1 kΩ pull-up resistor for applications that do not require data communication. Leave this pin unconnected for applications that need to sink power as wel as support USB communication. Once the BCR-LITE device is powered up, this pin will be sampled to determine the data mode of the device. When this pin is left unconnected, it will also be reconfigured to indicate the orientation of the type-C cable connection after sampling this pin. In the output mode (FLIP functionality), the EZ-PD [™] BCR-LITE device drives this line low if no device is attached or if CC polarity is unflipped (CC1 connected). If a device is attached on CC2 (polarity is flipped), the EZ-PD [™] BCR-LITE device drives this line high. While reporting FLIP status, this is a strong drive output pin.					
11	DC_OUT_DIS	Connect this pin to the output of the PFETs controlled by the VBUS_FET_EN pin. This is used for monitoring the VBUS output. This is the power output of the system.					
12	HPI_SDA	This is the I ² C slave interface provided for a host processor to control and					
13	HPI_SCL	monitor the EZ-PD™ BCR-LITE device. For more details, refer to the EZ BCR-PLUS/BCR-LITE host processor interface specification.					
14	CC2	Communication Channel 2 pin used to negotiate a voltage/current with the attached adapter.					
15	CC1	Communication Channel 1 pin used to negotiate a voltage/current with the attached adapter.					
16	ISNK_FINE	Connect resistor divider networks to these pins that are to 3.3 V (from the					
17	ISNK_COARSE	VDDD pin) to set the operating current requested from the power adapter. See Table 3 and Table 4 in Application overview section for details. The settings on these pins will be considered only for legacy charging protocols that support a sink current request (for e.g.: AFC).					
18	VBUS_IN_DIS	Connect to VBUS of USB Type-C connector. Used to supply power to the EZ-PD™ BCR-LITE device and monitor incoming voltage.					
19	GND	System ground pin					
20	DNU1	Leave this pin unconnected					
21	DNU2	Leave this pin unconnected					
22	VSS	Ground pin, connect to USB Type-C connector GND.					
23	VDDD	Output of internal 3.3 V regulator. Connect 1 μF and 2x 100 nF capacitors to this pin.					
24	VCCD	Output of internal 1.8 V regulator. Connect a 1 μF decoupling capacitor to this pin.					
	EPAD	Ground. Connect to same ground as VSS.					

Pinouts

Figure 2 Pinout of 24-QFN package (top view)

4 Application overview

Figure 3 and **Figure 4** illustrate the EZ-PD[™] BCR-LITE based application diagram using the 24-pin QFN part. It has three main parts: USB Type-C receptacle to provide the input power to the application, the power subsystem used as the output power, and four sets of resistor divider networks to select the desired output voltage and current values.

The 'Fault' pin is used to indicate any voltage faults. When a fault condition is enabled, the output voltage of this application will go down to 0 V and the EZ-PD[™] BCR-LITE device will attempt a protocol reset to recover from fault. For a detailed reference schematic, refer to the **CY4535 EZ-PD[™] BCR-LITE EVK schematic**.

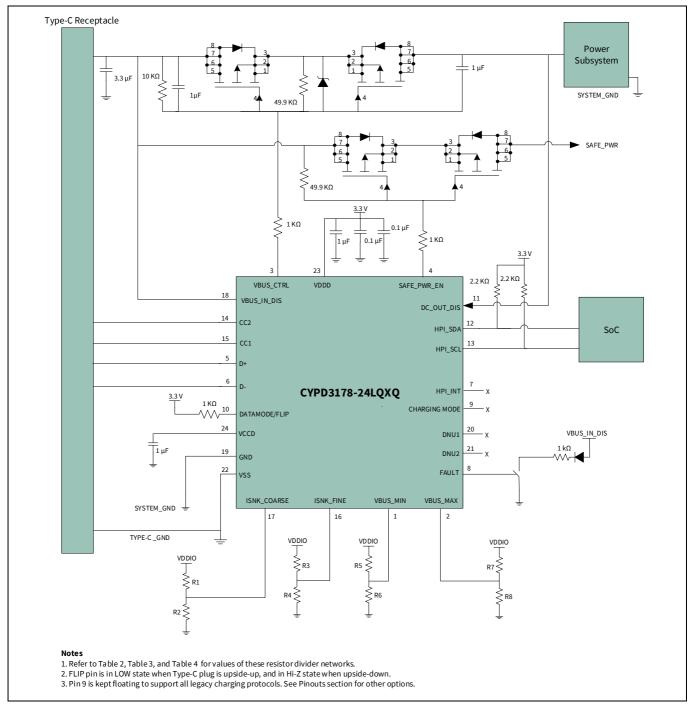
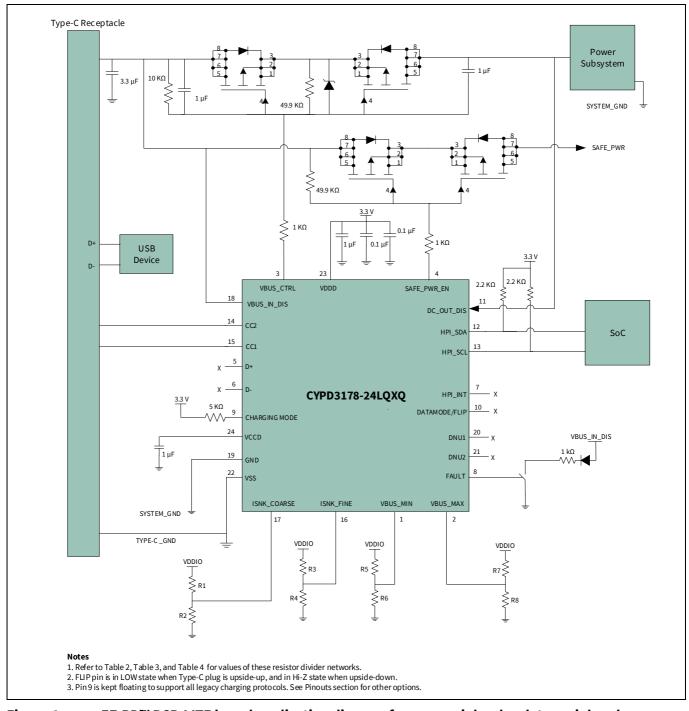



Figure 3 EZ-PD[™] BCR-LITE based application diagram for power sinks only

EZ-PD™ BCR-LITE based application diagram for power sinks plus data peripherals

The four sets of resistor divider networks are used to determine the voltage and current range that the EZ-PD[™] BCR-LITE device will negotiate with the USB Type-C power adapter. **Table 2**, **Table 3**, and **Table 4** show the values of pull-up and pull-down resistors on each pin applicable for a desired VBUS_MIN, VBUS_MAX, ISNK_COARSE or ISNK_FINE value.

Notes

- VBUS_MAX should be set to select a voltage that is higher than or equal to that set by VBUS_MIN.
- EZ-PD[™] BCR-LITE device does not monitor the current on VBUS_IN_DIS and enforce it within ISNK limits. It is the responsibility of the system to not consume more current than what the power adapter can provide.
- VBUS_MIN and VBUS_MAX can be set to the same value to select one specific voltage level from the Type-C power adapter.
- Ensure that the board layout design does not inject any noise into the VBUS_MIN, VBUS_MAX, ISNK_COARSE, ISNK_FINE pins.
- To be able to negotiate a power contract with USB Type-C only power adapters, the VBUS_MIN must be set to 5 V.
- ISNK_COARSE and ISNK_FINE values are only considered for a power contract that is made using the AFC protocol. All other protocols supported by the CYPD3178 device do not support sink current requests.

			_	
Voltage requested (V)	Resistor ratio relative to VDDD = 3.3 V	Suggested pull-up resistor value (k Ω)	Suggested pull-down resistor value (k Ω)	Voltage range on pin (mV)
5	0/6	Open	0	0–248
9	1/6	5.1	1	249-786
12	2/6	5.1	2.4	787–1347
15	3/6	5.1	5.1	1348–1920
19	4/6	5.1	10	1921–2778
20	≥ 5/6	0	Open	≥ 2779

 Table 2
 Resistor divider values for minimum or maximum voltage requested on VBUS

$[able 5] \qquad \text{Resistor unruler values for Coarse setting on operating current (for vDDD - 5.5 v)}$	Table 3	Resistor divider values for coarse setting on operating current (for VDDD = 3.3 V)
---	---------	--

Operating current requested for coarse setting (A)	Resistor ratio relative to VDDD = 3.3 V	Suggested pull-up resistor value (k Ω)	Suggested pull-down resistor value (k Ω)	Voltage range on pin (mV)
0	0/6	Open	0	0–248
1	1/6	5.1	1	249-786
2	2/6	5.1	2.4	787–1347
3	3/6	5.1	5.1	1348-1920
4	4/6	5.1	10	1921–2778
5	≥ 5/6	0	Open	≥2779

Table 4 Resistor divider values for fine setting on operating current (for VDDD = 3.3 V)									
Operating current requested for fine setting (A)	Resistor ratio relative to VDDD = 3.3 V	Suggested pull-up resistor value ($k\Omega$)Suggested pull-down resistor value ($k\Omega$)		Voltage range on pin (mV)					
+0	0/6	Open	0	0-248					
+250	1/6	5.1	1	249–786					
+500	2/6	5.1	2.4	787–1347					
+750	3/6	5.1	5.1	1348-1920					
+900	≥ 4/6	0	Open	≥ 1921					

Table 4Resistor divider values for fine setting on operating current (for VDDD = 3.3 V)

4.1 FAULT pin behavior

The FAULT pin is driven low by default, and is driven high under the following conditions:

- A power contract was negotiated but none of the voltages offered are within VBUS_MIN and VBUS_MAX ranges.
- Voltages offered by the power adapter are within VBUS_MIN, VBUS_MAX range but the current is below the ILIM limit (applicable to AFC protocol only).
- VBUS voltage supplied by power adapter is outside expected limits.

4.2 SAFE_PWR_EN pin behavior

This gate driver is enabled when the power contract defaults to 5 V due to mismatching capabilities. This driver is not enabled when the device is configured so that 5 V input is accepted by the system. This driver is also not enabled when there is an overvoltage condition on the 5 V VBUS input at the USB-C connector.

The system can use this power to run any digital logic (on embedded controller) that notifies the user about an incompatible power adapter.

4.3 VBUS_FET_EN pin behavior

This gate driver is enabled when a power adapter with matching power capabilities is detected, as determined by the VBUS_MIN, VBUS_MAX, ISNK_COARSE, and ISNK_FINE pins. When enabling the gate driver, the current sink inside the driver is used to ensure that the gate voltage rises slowly (rate of rise can be externally controlled) which in turn controls the inrush current of the system.

When VBUS is out of range (i.e in an event of OVP or UVP), the gate driver is quickly disabled. This gate driver can be turned on or off independently over HPI interface.

4.4 Legacy charging support

BCR-LITE device supports BC 1.2, QC 2.0 sink (Class B), AFC and Apple charging protocols. When a non-PD charger is connected, the BCR-LITE device is able to negotiate any of the legacy charging protocols supported by the sink device. Customers can select support for all legacy charging protocols or BC1.2 protocol based on the hardware setup for the CHARGING_MODE pin (see **Pinouts** for more details). If the connected Type-C charger supports multiple charging protocols, then the order of priority of negotiation is as follows:

Negotiation sequence: (BC1.2 \rightarrow AFC \rightarrow QC2.0 (Class B) \rightarrow Apple \rightarrow Type-C only)

When negotiating legacy protocols, the BCR-LITE device negotiates voltage and current based on the VBUS_MIN/MAX and ISNK_COARSE/ISNK_FINE settings. Note that when VBUS_MIN and VBUS_MAX are set to 5 V, the BCR-LITE device is capable of accepting VBUS voltages between 4.75 V to 5.5 V when negotiating legacy charging protocols. If the power adapter is not able to support the voltage/current requirements, then the BCR-LITE device negotiates a 5V contract and turns on the SAFE_PWR path.

5 Electrical specifications

5.1 Absolute maximum ratings

Table 5Absolute maximum ratings

Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
V _{BUS_MAX}	Max supply voltage relative to V _{SS} on VBUS_IN_DIS and DC_OUT_DIS pins	-	-	30	V	
V _{DDD_MAX}	Max supply voltage relative to V _{SS}	-	-	6	V	Absolute max.
V _{CC_PIN_ABS}	Max voltage on CC1, CC2 pins	-	-	22 ^[2]	V	
V _{GPIO_ABS}	GPIO voltage	-0.5	-	V _{DDD} +0.5	V	
I _{GPIO_ABS}	Maximum current per GPIO	-25	-	25	mA]
I _{GPIO_injection}	GPIO injection current, Max for V _{IH} > V _{DDD} , and Min for V _{IL} < V _{SS}	-0.5	-	0.5	mA	Absolute max, current injected per pin
V _{GPIO_OVT_ABS}	OVT GPIO voltage	-0.5	_	6	V	Applicable to pins HPI_INT and GPIO_1
ESD_HBM	Electrostatic discharge human body model	2200	-	-	V	-
ESD_CDM	Electrostatic discharge charged device model	500	_	-	V	-
LU	Pin current for latch-up	-100	-	100	mA	-
ESD_IEC_CON	Electrostatic discharge IEC61000-4-2	8000	_	_	V	Contact discharge on CC1, CC2, VBUS_IN_DIS, HPI_SDA and HPI_SCL pins
ESD_IEC_AIR	Electrostatic discharge IEC61000-4-2	15000	_	-	V	Air discharge for D+, D-, CC1, CC2, VBUS_IN_DIS, HPI_SDA and HPI_SCL pins

5.2 Device-level specifications

All specifications are valid for –40°C \leq T_A \leq 105°C and T_J \leq 120°C, except where noted.

Table 6	DC specification	IS					
Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.PWR#2	V _{DDD}	Power supply input voltage	2.7	-	5.5	V	Sink mode, −40°C ≤ T _A ≤ 105°C
SID.PWR#3	V _{BUS_IN}	Power supply input voltage	3.0	-	24.5	V	$-40^{\circ}C \le T_{A} \le 105^{\circ}C$
SID.PWR#5	V _{CCD}	Output voltage for core Logic	-	1.8	-	V	-
SID.PWR#13	C _{exc}	Power supply decoupling capacitor for V _{DDD}	0.8	1	-	μF	X5R ceramic or better
SID.PWR#14	C _{exv}	Power supply decoupling capacitor for VBUS_IN_DIS	-	0.1	-	μF	X5R ceramic or better
Active mode.	Typical values m	easured at V _{DDD} = 5.0 V	or V _{Bl}	s = 5.	0 V an	d T _A =	25°C.
SID.PWR#8	I _{DD_A}	Supply current from V _{BUS} or V _{DDD}	_	10	_	mA	V _{DDD} = 5 V OR V _{BUS} = 5 V, T _A = 25°C. CC1/CC2 in Tx or Rx, no I/O sourcing current, 2 SCBs at 1 Mbps, EA/ADC/CSA/UVOV ON, CPU at 24 MHz.
Sleep mode.	Typical values m	easured at V _{DD} = 3.3 V aı	nd T _A :	= 25°C			
SID25A	I _{DD_S}	CC, I ² C, WDT wakeup on. IMO at 24 MHz.	_	3	_	mA	V _{DDD} = 3.3 V, T _A = 25°C, All blocks except CPU are on, CC IO on, EA/ADC/CSA/UVOV on.
Deep Sleep m	node. Typical valı	ues measured at T _A = 25	°C.	•	•		•
SID_PB_DS_ A_SNK	I _{DD_PB_DS_A_SNK}	V _{BUS,} 4.0 to 24.5 V. CC, I ² C, WDT Wakeup on	_	500	_	μΑ	For sink applications, V _{BUS} = 24.5 V, T _A = 25°C, Part is in deep sleep. Attached, CC I/O on, ADC/CSA/UVOV on.

Table 7AC specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.PWR#17	T _{SLEEP}	Wakeup from Sleep mode	-	0	_	μs	-
SID.PWR#18	T _{DEEPSLEEP}	Wakeup from Deep Sleep mode	-	-	35	μs	-
SYS.FES#1	T_PWR_RDY	Power-up to "Ready to accept I ² C/CC command"	-	5	25	ms	-
SID.PWR#18A	T _{POR_HIZ_T}	Power-on I/O initialization time	-	3	-	ms	-

5.2.1 I/O

Table 8I/O DC specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/ conditions
SID.GIO#37	V _{IH_CMOS}	Input voltage HIGH threshold	$0.7 \times V_{DDD}$	-	_	V	CMOS input
SID.GIO#38	V _{IL_CMOS}	Input voltage LOW threshold	-	-	$0.3 \times V_{DDD}$	V	CMOS input
SID.GIO#33	V _{OH_3V}	Output voltage HIGH level	V _{DDD} – 0.6	Ι	-	V	I _{OH} = 4 mA at 3-V V _{DDD}
SID.GIO#36	V _{OL_3V}	Output voltage LOW level	_	Ι	0.6	V	I _{OL} = 10 mA at 3-V V _{DDD}
SID.GIO#16	IIL	Input leakage current (absolute value)	Ι	Ι	2	nA	+25°C T _A , 3-V V _{DDD}
SID.GIO#17	C _{PIN_A}	Max pin capacitance	-	-	22	pF	Capacitance on D+, D– pins. Guaranteed by characterization.
SID.GIO#17A	C _{PIN}	Max pin capacitance	-	3	7	pF	–40°C to +85°C T _A , All V _{DDD} , all other I/Os. Guaranteed by characterization.
SID.GIO#44	V _{HYSCMOS}	Input hysteresis CMOS	$0.05 \times V_{DDD}$	Ι	-	mV	V _{DDD} < 4.5 V. Guaranteed by characterization.
SID69	I _{DIODE}	Current through protection diode to V _{DDD} /V _{SS}	-	-	100	μΑ	Guaranteed by design.
SID.GIO#45	I _{TOT_GPIO}	Maximum total sink chip current	_	_	85	mA	Guaranteed by design.
OVT							
SID.GIO#46	I _{IHS}	Input current when Pad > V _{DDD} for OVT inputs	-	_	10.00	μA	Per I ² C specification

Table 9I/O AC specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/ conditions
SID70	T _{RISEF}	Rise time in fast strong mode	2	-	12	ns	3.3-V V _{DDD} , C _{load} = 25 pF
SID71	T _{FALLF}	Fall time in fast strong mode	2	-	12	ns	3.3-V V _{DDD} , C _{load} = 25 pF

Table 10HPI pins DC specifications (applicable to pins HPI_SDA and HPI_SCL only)(Guaranteed by characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.GPIO_20VT#4	GPIO_20VT_I_LU	GPIO_20VT latch up current limits	-140	-	140	mA	Max / min current in to any input or output, pin-to-pin, pin-to-supply
SID.GPIO_20VT#5	GPIO_20VT_RPU	GPIO_20VT pull-up resistor value	1	-	25	kΩ	+25°C T _A , 1.4 V to GPIO_20VT_Voh (min)
SID.GPIO_20VT#6	GPIO_20VT_RPD	GPIO_20VT pull-down resistor value	2.5	-	20	kΩ	+25°C T _A , 1.4-V to V _{DDD}
SID.GPIO_20VT#16	GPIO_20VT_IIL	GPIO_20VT input leakage current (absolute value)	-	-	2	nA	+25°C T _A , 3-V V _{DDD}
SID.GPIO_20VT#17	GPIO_20VT_CPIN	GPIO_20VT pin capacitance	15	-	25	pF	–40°C to +85°C T _A , All V _{DDD} , F = 1 MHz
SID.GPIO_20VT#36	GPIO_20VT_Vol	GPIO_20VT output Voltage low level	-	-	0.4	V	I _{OL} = 2 mA
SID.GPIO_20VT#69	GPIO_20VT_IDIODE	GPIO_20VT current through protection diode to V _{DDD} /V _{SS}	-	-	100	μΑ	-

Table 11 HPI pins AC specifications (applicable to pins HPI_SDA and HPI_SCL only)

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.GPIO_20VT#70	GPIO_20VT_TriseF	GPIO_20VT rise time in fast strong mode	1	-	45	ns	All V _{DDD} , C _{load} = 25 pF
SID.GPIO_20VT#71	GPIO_20VT_TfallF	GPIO_20VT fall time in fast strong mode	2	-	15	ns	All V _{DDD} , C _{load} = 25 pF

5.3 Digital peripherals

The following specifications apply to the timer/counter/PWM peripherals in the timer mode.

5.3.1 I²C

Table 12Fixed I²C DC specifications

(Guaranteed by characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID149	I _{I2C1}	Block current consumption at 100 kHz	-	-	100	μA	-
SID150	I _{I2C2}	Block current consumption at 400 kHz	-	_	135	μA	-
SID152	I _{I2C4}	I ² C enabled in Deep Sleep mode	-	1.4	-	μΑ	-

Table 13Fixed I²C AC specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/Conditions
SID153	F _{I2C1}	Bit rate	Ι	Ι	400	kbps	-

5.4 System resources

5.4.1 Power-on reset (POR) with brown-out SWD interface

Table 14 Imprecise POR (PRES)

(Guaranteed by characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID185	V _{RISEIPOR}	POR rising trip voltage	0.80	-	1.50	V	-
SID186	V _{FALLIPOR}	POR falling trip voltage	0.70	-	1.4	V	-

Table 15 Precise POR

(Guaranteed by characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID190	V _{FALLPPOR}	Brown-out Detect (BOD) trip voltage in active/sleep modes	1.48	-	1.62	V	-
SID192	V _{FALLDPSLP}	BOD trip voltage in Deep Sleep mode	1.1	-	1.5	V	-

Table 16USB PD DC specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.PD.4	Rd	UFP CC termination	4.59	5.1	5.61	kΩ	-
SID.PD.5	Rd_DB	UFP (Power Bank) dead battery CC termination on CC1 and CC2	4.08	5.1	6.12	kΩ	All supplies forced to 0 V and 1.32 V applied at CC1 or CC2
SID.PD.6	Vgndoffset	Ground offset tolerated by BMC receiver	-500	-	500	mV	Relative to the remote BMC transmitter

5.4.2 Gate driver specifications

Table 17Gate driver DC specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.GD.1	R _{PD}	Pull-down resistance	_	_	3	kΩ	Applicable on VBUS_CTRL and SAFE_PWR_EN to turn ON external PFET.
SID.GD.2	R _{PU}	Pull-up resistance	-	-	4	kΩ	Applicable on VBUS_CTRL to turn OFF external PFET.
SID.GD.3	I _{PD0}	Pull-down current sink at drive strength of 1	25	-	75	μΑ	
SID.GD.4	I _{PD1}	Pull-down current sink at drive strength of 2	50	_	150	μΑ	I-mode (current mode)
SID.GD.5	I _{PD2}	Pull-down current sink at drive strength of 4	140	_	300	μΑ	pull down at 5 V. Applicable on
SID.GD.6	I _{PD3}	Pull-down current sink at drive strength of 8	280	_	580	μA	VBUS_CTRL and SAFE_PWR_EN to turn
SID.GD.7	I _{PD4}	Pull-down current sink at drive strength of 16	560	_	1200	μA	ON external PFET.
SID.GD.8	I _{PD5}	Pull-down current sink at drive strength of 32	1120	_	2300	μΑ	
SID.GD.9	I_leak_p1	Pin leakage on VBUS_CTRL	-	0.00 3	_	μΑ	+25°C T _J , 5-V V _{DDD} , 20-V V _{BUS}
SID.GD.10	I_leak_c1	Pin leakage on SAFE_PWR_EN	_	0.00 3	_	μΑ	+25°C T _J , 5-V V _{DDD} , 20-V V _{BU}
SID.GD.11	I_leak_p2	Pin leakage on VBUS_CTRL	_	_	2	μΑ	+85°C T _J , 5-V V _{DDD} , 20-V V _{BU}
SID.GD.12	I_leak_c2	Pin leakage on SAFE_PWR_EN	_	-	2	μΑ	+85°C T _J , 5-V V _{DDD} , 20-V V _{BU}
SID.GD.13	I_leak_p3	Pin leakage on VBUS_CTRL	_	_	7	μΑ	+125°C T _J , 5-V V _{DDD} , 20-V V _{BU}
SID.GD.14	I_leak_c3	Pin leakage on SAFE_PWR_EN	-	-	7	μΑ	+125°C T _J , 5-V V _{DDD} , 20-V V _{BU}

Table 18Gate driver AC specifications

(Guaranteed by characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.GD.15	T _{PD1}	Pull down delay on SAFE_PWR_EN	_	_	2	μs	Cload = 2 nF, Delay to VBUS –1.5 V from initiation of falling edge, VBUS = 5 V to 20 V, 50 kΩ tied between SAFE_PWR_EN and VBUS
SID.GD.16	$T_{r_discharge}$	Discharge rate of output node on SAFE_PWR_EN	_	-	5	V/µs	80% to 20%, 50 kΩ tied between SAFE_PWR_EN and VBUS, Cload = 2 nF, Vinitial = 24 V
SID.GD.17	T _{PD2}	Pull down delay on VBUS_CTRL	_	_	2	μs	Cload = 2 nF, Delay to VBUS –1.5 V from initiation of falling edge, V _{BUS} = 5 V to 20 V, 50 kΩ tied between SAFE_PWR_EN and VBUS
SID.GD.18	Τ _{ΡU}	Pull up delay on VBUS_CTRL	_	_	18	μs	Cload = 2 nF, Delay to VBUS-1.5 V from initiation of falling edge, VBUS = 5 V to 20 V, 50 kΩ tied between SAFE_PWR_EN and VBUS
SID.GD.19	SR _{PU}	Output slew rate on VBUS_CTRL	-	-	5	V/µs	Cload = 2 nF, 20% to 80% of VBUS_CTRL range
SID.GD.20	SR _{PD}	Output slew rate on VBUS_CTRL	_	_	5	V/µs	Cload = 2 nF, 80% to 20% of VBUS_CTRL range

Table 19VBUS discharge specifications

	-	-				-			
Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions		
SID.VBUS.DISC.6	11	20-V NMOS ON current for DS = 1	0.15	-	1	mA			
SID.VBUS.DISC.7	12	20-V NMOS ON current for DS = 2	0.4	-	2	mA			
SID.VBUS.DISC.8	14	20-V NMOS ON current for DS = 4	0.9	-	4	mA	Measured at 0.5 V		
SID.VBUS.DISC.9	18	20-V NMOS ON current for DS = 8	2	-	8	mA			
SID.VBUS.DISC.10	116	20-V NMOS ON current for DS = 16	4	-	10	mA			
SID.VBUS.DISC.11	VBUS_Stop _Error	Error percentage of final V _{BUS} value from setting	_	_	10	%	When V _{BUS} is discharged to 5 V. Guaranteed by characterization.		

Table 20	Table 20 Voltage (VBUS) regulation DC specifications										
Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions				
SID.DC.VR.1	V_IN_3	V(pad_in) at 3-V target	2.85	3	3.15	v	Active mode shunt regulator at 3 V with bandgap				
SID.DC.VR.2	V_{IN_5}	V(pad_in) at 5-V target	4.75	5	5.25	v	Active mode shunt regulator at 5 V				
SID.DC.VR.3	V_IN_9	V(pad_in) at 9-V target	8.55	9	9.45	V	Active mode shunt regulator at 9 V				
SID.DC.VR.4	V_IN_15	V(pad_in) at 15-V target	14.25	15	15.75	v	Active mode shunt regulator at 15 V				
SID.DC.VR.5	V_IN_20	V(pad_in) at 20-V target	19	20	21	v	Active mode shunt regulator at 20 V				
SID.DC.VR.6	V_IN_3_DS	V(pad_in) at 3-V target	2.7	3	3.3	v	Deep Sleep mode shunt regulator at 3 V with bandgap				
SID.DC.VR.7	V_IN_5_DS	V(pad_in) at 5-V target	4.5	5	5.5	V	Deep Sleep mode shunt regulator at 5 V				
SID.DC.VR.8	V_IN_9_DS	V(pad_in) at 9-V target	8.1	9	9.1	V	Deep Sleep mode shunt regulator at 9 V				
SID.DC.VR.9	V_IN_15_DS	V(pad_in) at 15-V target	13.5	15	16.5	V	Deep Sleep mode shunt regulator at 15 V				
SID.DC.VR.10	V_IN_20_DS	V(pad_in) at 20-V target	18	20	22	V	Deep Sleep mode shunt regulator at 20 V				
SID.DC.VR.11	I _{KA_OFF}	Off-state cathode current	-	-	10	μΑ	-				
SID.DC.VR.12	I _{KA_ON}	Current through cathode pin	-	_	10	mA	-				

Table 20 Voltage (VBUS) regulation DC specifications

Table 21VBUS short protection specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.VSP.1		Short-to-VBUS system-side clamping voltage on the CC/P2.2/P2.3 pins	-	9	-	v	Guaranteed by characterization.

Table 22VBUS DC regulator specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.VREG.2	_	VBUS detect threshold voltage	1.08	Ι	2.62	V	_

Table 23VBUS AC regulator specifications

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.VREG.3	T _{start}	Total startup time for the regulator supply outputs	-	-	200	μs	Guaranteed by characterization

5.4.3 Analog to digital converter (used for determining VBUS_MIN, VBUS_MAX, ISNK_COARSE, ISNK_FINE values)

Table 24 ADC DC specifications

(Guaranteed by characterization)

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.ADC.1	Resolution	ADC resolution	-	8	-	Bits	-
SID.ADC.2	INL	Integral non-linearity	-2.5	Ι	2.5	LSB	Reference voltage generated from VDDD
SID.ADC.2A	INL	Integral non-linearity	-1.5	Ι	1.5	LSB	Reference voltage generated from bandgap
SID.ADC.3	DNL	Differential non-linearity	-2.5	-	2.5	LSB	Reference voltage generated from VDDD
SID.ADC.3A	DNL	Differential non-linearity	-1.5	-	1.5	LSB	Reference voltage generated from bandgap
SID.ADC.4	Gain Error	Gain error	-1.5	-	1.5	LSB	-
SID.ADC.6	V _{REF_ADC2}	ADC reference voltage when generated from band gap.	1.96	2.0	2.04	V	Reference voltage generated from bandgap

Table 25ADC AC specifications

(Guaranteed by design)

Spec ID	Parameter	Description	Min	Тур	Мах	Unit	Details/conditions
SID.ADC.7	SLEW_Max	Rate of change of sampled voltage signal	Ι	Ι	3	V/ms	-

Ordering information

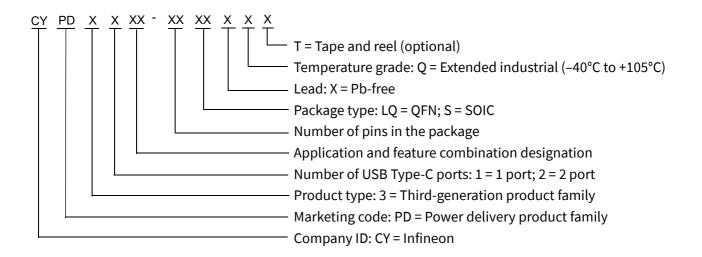

6 Ordering information

Table 26 lists the EZ-PD[™] BCR-LITE part numbers and features.

Table 26 EZ-PD[™] BCR-LITE ordering information

MPN	Application	Termination resistor	Role	Package type	Si ID
	Barrel connector replacement or generic UFP sink	R _D , R _{D-DB}	UFP	24-Pin QFN	20A2

6.1 Ordering code definitions

Packaging

7 Packaging

Table 27Package characteristics

Parameter	Description	Conditions	Min	Тур	Мах	Unit
T _A	Operating ambient temperature	Extended industrial	-40	25	105	°C
Tj	Operating junction temperature	Extended industrial	-40	25	120	°C
T _{JA}	Package θ_{JA} (24-pin QFN)	-	-	-	19.98	°C/W
T _{JC}	Package θ_{JC} (24-pin QFN)	-	-	-	4.78	°C/W

Table 28Solder reflow peak temperature

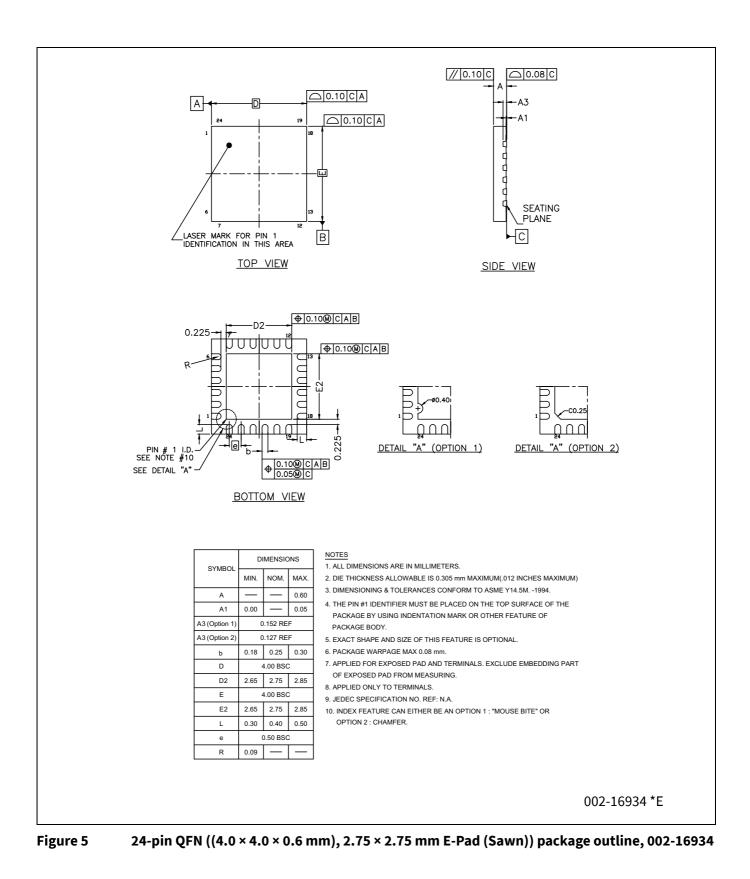

Package	Maximum peak temperature	Maximum time within 5°C of peak temperature
24-pin QFN	260°C	30 seconds

Table 29Package moisture sensitivity level (MSL), IPC/JEDEC J-STD-2

Package	MSL
24-pin QFN	MSL3

Packaging

Acronyms

8 Acronyms

Table 30Acronyms used in this document

Acronym	Description
ADC	analog-to-digital converter
AFC	adaptive fast charging
Arm [®]	advanced RISC machine, a CPU architecture
BCR	barrel connector replacement
BOD	brown-out detect
BMC	Biphase Mark Code
CC	configuration channel
CPU	central processing unit
CS	current sense
DIO	digital input/output, GPIO with only digital capabilities, no analog. See GPIO.
ESD	electrostatic discharge
GPIO	general-purpose input/output
HPI	host processor interface
IC	integrated circuit
l ² C, or IIC	Inter-Integrated Circuit, a communications protocol
I/O	input/output, see also GPIO
LDO	low-dropout regulator
MCU	microcontroller unit
NC	no connect
OCP	overcurrent protection
OTP	over-temperature protection
OVP	overvoltage protection
OVT	overvoltage tolerant
PD	power delivery
PHY	physical layer
POR	power-on reset
PMOS	P-channel MOSFET (metal oxide semiconductor field effect transistor)
PPS	programmable power supply
PRES	precise power-on reset
PSoC [®]	Programmable System-on-Chip™
PWM	pulse-width modulator
RISC	reduced-instruction-set computing
RX	receive
SCB	serial communication block
SCL	I ² C serial clock
SDA	I ² C serial data
SDK	software development kit

USB Type-C port controller for power sinks

Acronyms

Table 30	Acronyms used in this document (continued)
----------	--

Acronym	Description
SWD	serial wire debug, a test protocol
ТХ	transmit
Туре-С	a new standard with a slimmer USB connector and a reversible cable, capable of sourcing up to 100 W of power
UFP	upstream facing port
USB	Universal Serial Bus

Table of contents

9 **Document conventions**

9.1 Units of measure

Table 31Units of measure

Symbol	Unit of measure
°C	degrees Celsius
Hz	hertz
KB	1024 bytes
kbps	kilobits per second
kHz	kilohertz
kΩ	kilo ohm
Mbps	megabits per second
MHz	megahertz
MΩ	mega-ohm
Msps	mega samples per second
μΑ	microampere
μF	microfarad
μs	microsecond
μV	microvolt
μW	microwatt
mA	milliampere
ms	millisecond
mV	millivolt
nA	nanoampere
ns	nanosecond
W	ohm
pF	picofarad
ppm	parts per million
ps	picosecond
S	second
sps	samples per second
V	volt

Revision history

Revision history

Document version	Date of release	Description of changes
**	2021-09-24	Initial release.
*A	2022-05-20	Changed status from Preliminary to Final. Updated Packaging: spec 002-16934 – Changed revision from *C to *E.
*В	2022-06-24	Removed "Restricted" status.

Important notice

Important notice

Notice regarding compliance with Universal Serial Bus specification. Infineon offers firmware and hardware solutions that are certified to comply with the Universal Serial Bus specification, USB Type-C[™] Cable and Connector Specification, and other specifications of USB Implementers Forum, Inc (USB-IF). You may use Infineon or third party software tools, including sample code, to modify the firmware for Infineon USB products. Modification of such firmware could cause the firmware/hardware combination to no longer comply with the relevant USB-IF specification. You are solely responsible ensuring the compliance of any modifications you make, and you must follow the compliance requirements of USB-IF before using any USB-IF trademarks or logos in connection with any modifications you make. In addition, if Infineon modifies firmware based on your specification. INFINEON IS NOT RESPONSIBLE IN THE EVENT THAT YOU MODIFY OR HAVE MODIFIED A CERTIFIED INFINEON PRODUCT AND SUCH MODIFIED PRODUCT NO LONGER COMPLIES WITH THE RELEVANT USB-IF SPECIFICATIONS.

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2022-06-24 Published by Infineon Technologies AG 81726 Munich, Germany

© 2022 Infineon Technologies AG. All Rights Reserved.

Do you have a question about this document? Go to www.infineon.com/support

Document reference 002-33743 Rev. *B

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie").

With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party.

In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications.

The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on the product, technology, delivery terms and conditions and prices please contact your nearest Infineon Technologies office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies' products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: <u>CYPD3178-24LQXQT</u> CYPD3178-24LQXQ