Excelon™-LP 4 Mbit（512K x 8）串行（SPI）F-RAM

性能

■ 4 Mbit 铁电性随机存取存储器 (F-RAM) 的逻辑组织方式为 512K x 8
 - 提供了十亿次（10^{14}）的读 / 写周期，几乎为无限次数的耐久性。
 - 151 年数据保留时间（见第 20 页上的数据保留时间与耐久性）
 - NoDelay™ 写操作
 - 高级高可靠的铁电工艺

■ 快速串行外设接口（SPI）
 - 高达 50 MHz 的频率
 - 支持 SPI 模式 0（0,0）和模式 3（1,1）

■ 精密的写入保护方案
 - 使用写保护（WP）引脚提供硬件保护
 - 使用写禁用（WRDI）指令提供软件保护
 - 可对 1/4，1/2 或整个阵列进行软件模块保护

■ 器件 ID 和序列号
 - 器件 ID 包含制造商 ID 和产品 ID
 - 唯一 ID
 - 序列号

■ 专用 256 字节特殊扇区 F-RAM
 - 专用特殊扇区读写操作
 - 存储的内容可以在最多 3 个标准回流焊周期内保持不变

■ 低功耗
 - 频率为 40 MHz 时，工作电流为 2.4 mA（典型值）
 - 待机电流为 2.3 μA（典型值）
 - 深度掉电模式电流为 0.70 μA（典型值）
 - 休眠模式电流为 0.1 μA（典型值）

■ 低电压操作
 - CY15V104QN: VDD = 1.71 V 到 1.89 V
 - CY15B104QN: VDD = 1.8 V 到 3.6 V

■ 商业级和工业级工作温度
 - 商业级工作温度：0 °C 到 +70 °C
 - 工业级工作温度范围：-40 °C 到 +85 °C

■ 封装类型
 - 8 pin 小型塑封集成电路（SOIC）封装
 - 8 pin 网格阵列四方扁平无引线（GQFN）封装

■ 符合有害物质限制标准（RoHS）

功能描述

Excelon-LP CY15X104QN 是采用了高级铁电工艺的低功耗 4 Mbit 非易失性存储器。铁电性随机存取存储器（即 F-RAM）是一种非易失性存储器，它跟 RAM 一样，能够执行读和写操作。它提供 151 年的可靠数据保留时间，并解决了由串行闪存、EEPROM 和其他非易失性存储器造成的复杂性、开销和系统级可靠性的问题。

与串行闪存和 EEPROM 不同的是，CY15X104QN 以总线速度执行写操作，并不引起写操作的延迟。在每个字节成功传输到器件后，数据立即被写入到存储器阵列中。这时，可以开始执行下一个总线周期而不需要轮询数据。此外，与其他非易失性存储器相比，该产品提供了更多的写入耐久性。CY15X104QN 能够提供 10^{14} 次的读 / 写周期，或者支持比 EEPROM 多 1 亿次的写周期。

由于具有这些特性，因此 CY15X104QN 非常适用于需要频繁或快速写操作的非易失性存储器应用。示例的范围包括从数据收集（其中写周期数量是非常重要的）到工业控制需求（其中串行闪存或 EEPROM 的较长写时间会使数据丢失）。

作为硬件替代时，CY15X104QN 为串行 EEPROM 或 Flash 的用户提供极大好处。CY15X104QN 使用高速的 SPI 总线，从而可以改进 F-RAM 技术的高速写入能力。该器件包含一个只读的器件 ID 和唯一 ID 特性，通过它们，主机可以确定器件的制造商、产品容量、产品版本和唯一 ID。该器件还提供可写的 8 字节序列号的寄存器，这些寄存器可用于识别特定电路板或系统。

要获取相关资源的完整列表，请单击此处。
逻辑框图

WP

CS
SCK
SI

Instruction Decoder
Control Logic
Write Protect

F-RAM Control

256-Byte
Special Sector
F-RAM

512K x 8
F-RAM Array

Data I/O Register

Nonvolatile
Status Register

Device ID and Serial
Number Registers

SO
目录

引脚分配 .. 4
引脚定义 .. 5
功能概述 .. 6
存储器架构 ... 6
串行外设接口（SPI）总线 ... 6
SPI协议中使用的术语 ... 6
SPI模式 .. 7
从上电到第一次访问的时间 .. 7
功能描述 .. 8
指令结构 .. 8
最大额定值 ... 18
工作范围 ... 18
直流电气特性 ... 18
数据保留时间与耐久性 ... 20
电容 ... 20
热电阻 ... 20
交流测试条件 .. 20
交流切换特性 ... 21
电源周期时序 ... 23
订购信息 ... 24
订购代码定义 .. 24
封装图 ... 25
缩略语 ... 27
文档规范 ... 27
测量单位 ... 27
文档修订记录 ... 28
销售、解决方案和法律信息 ... 29
全球销售和设计支持 ... 29
产品 ... 29
PSoc®解决方案 ... 29
赛普拉斯开发者社区 ... 29
技术支持 ... 29
引脚分配

图 1. 8 pin GQFN 的引脚分布

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VDD</td>
</tr>
<tr>
<td>SO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>DNU</td>
</tr>
<tr>
<td>WP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>6</td>
<td></td>
<td>SCK</td>
</tr>
<tr>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>5</td>
<td></td>
<td>SI</td>
</tr>
</tbody>
</table>

TOP View
(Not to Scale)

图 2. 8 pin SOIC 的引脚分布

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
<th>6</th>
<th>7</th>
<th>8</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>VDD</td>
</tr>
<tr>
<td>SO</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>7</td>
<td>DNU</td>
</tr>
<tr>
<td>WP</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td></td>
<td>6</td>
<td>SCK</td>
</tr>
<tr>
<td>VSS</td>
<td></td>
<td></td>
<td></td>
<td>4</td>
<td></td>
<td>5</td>
<td></td>
<td>SI</td>
</tr>
</tbody>
</table>

TOP View
(Not to Scale)
引脚定义

<table>
<thead>
<tr>
<th>引脚名称</th>
<th>I/O 类型</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>CS</td>
<td>输入</td>
<td>芯片选择。通过输入有效低电平可以使能器件。当该输入为高电平时，则器件会进入低功耗待机模式，忽略其他输入，并且输出是三态的。该输入为低电平时，器件将内部激活 SCK 信号。进行每一个操作码前，CS 上必须产生一个下降沿。</td>
</tr>
<tr>
<td>SCK</td>
<td>输入</td>
<td>串行时钟。所有输入/输出操作都与串行时钟同步。各输入都在上升沿上进行，而各输出则发生在串行时钟的下降沿上。由于该器件是同步的，因此时钟频率的值可在 0 到 50 MHz 的范围内，并可随时中断时钟频率。</td>
</tr>
<tr>
<td>SI</td>
<td>输入</td>
<td>串行输入。所有数据均通过该引脚转送到器件内。该引脚在 SCK 的上升沿上进行采样，并且在其他时间内被忽略。应该始终将该引脚驱动到有效的逻辑电平，以满足电源 (IDD) 规范。</td>
</tr>
<tr>
<td>SO</td>
<td>输出</td>
<td>串行输出。这是数据输出引脚。该引脚在进行读操作中被驱动，在其他时间内保持三态。数据传输在串行时钟 SCK 的下降沿上被驱动。</td>
</tr>
<tr>
<td>WP</td>
<td>输入</td>
<td>写保护。当状态寄存器中的 WPEN 位被设置为 ‘1’ 时，该低电平有效引脚防止对状态寄存器进行写操作。因为其他写保护特性都是通过状态寄存器控制的，所以该引脚是很重要的。有关写保护的完整说明，请参考第 10 页上的表 2 和第 10 页上的表 5。该引脚具有一个内部弱上拉电阻，该电阻会使该引脚在悬空（未在电路板上连接）时处于高电平状态。如果不使用该引脚，也可以将它连接到 VDD。</td>
</tr>
<tr>
<td>DNU</td>
<td>请勿使用</td>
<td>请勿使用。将该引脚保持悬空（没有板上连接）或连接至 VDD。</td>
</tr>
<tr>
<td>VSS</td>
<td>电源</td>
<td>器件的接地引脚。必须连接至系统接地端。</td>
</tr>
<tr>
<td>VDD</td>
<td>电源</td>
<td>器件的电源输入。</td>
</tr>
</tbody>
</table>

注释:
1. 对于单引脚数据接口，可将 SI 连接到 SO。
功能概述

CY15X104QN 是一个串行 F-RAM 存储器。该存储器阵列被逻辑组织为 524,288 × 8 位。通过使用工业标准的串行外设接口 (SPI) 总线可以访问该存储器阵列。F-RAM 与串行 Flash 和串行 EEPROM 的功能操作是相同的。CY15X104QN 与相同引脚分布的串行闪存或 EEPROM 的主要区别在于 F-RAM 具有更好的写性能、高耐久性和低功耗。

存储器架构

访问 CY15X104QN 时, 用户可寻址 512K 地址, 每个地址包括 8 位数据。这些 8 位数据被连续移入或移出。通过使用 SPI 协议可以访问这些地址, 该协议包含一个芯片选择 (用于支持总线上的多个器件) 、一个操作码和一个 3 字节地址。该地址范围的高 5 位都是 ‘无需关注’ 的值。19 位的完整地址独立指定每个字节的地址。

CY15X104QN 的大多数功能可以由 SPI 接口控制, 或通过板上电路处理。存储器的访问时间几乎为零, 该时间远小于访问串行协议所需的时间。因此, 该存储器以 SPI 总线的速度进行读 / 写操作。与串行闪存或 EEPROM 不同的是, 不需要轮询器件的就绪条件, 这是因为写操作是以总线速度进行的。这样, 在将新的总线数据传输移入器件时, 已经在存储器中完成了写操作。更多详细信息, 请参阅 ‘接口’ 部分所介绍的内容。

串行外设接口 (SPI) 总线

CY15X104QN 是一个 SPI 从设备, 它的运行速度可达 50 MHz。该高速串行总线为 SPI 主设备提供了高性能的串行通信。许多通用微控制器具有硬件 SPI 端口, 用于执行直接连接。对于没有硬件 SPI 端口的微控制器, 通过使用普通端口引脚可以简单地模拟该端口。

SPI 概述

SPI 是带有芯片选择 (CS)、串行输入 (SI)、串行输出 (SO) 和串行时钟 (SCK) 引脚的四引脚接口。

SPI 是同步的串行接口, 它使用时钟和数据引脚进行存储器访问并支持数据总线上的多个器件。使用 CS 引脚可激活 SPI 总线上的器件。

芯片选择、时钟和数据之间的关系是由 SPI 模式决定的。该器件支持 SPI 模式 0 和模式 3。在两种模式下, 数据都在 SCK 上升沿 (从 CS 变为有效之后的第一个上升沿) 上记录到 F-RAM 内。

SPI 协议由操作码控制。这些操作码规定了从总线主设备到从设备的所有指令。激活 CS 后, 总线主设备传输的第一个字节便是操作码。随后, 可以传输任何地址和数据。在完成某个操作并发出新的操作码前, CS 必须进入无效状态。

SPI 协议中使用的术语

SPI 协议中的常用术语如下:

SPI 主设备

SPI 总线上的操作由 SPI 主设备控制。SPI 总线可能只有一个主设备, 但可以有一个或多个从设备。所有从设备共享同一 SPI 总线。主设备可通过对 CS 引脚选择任意从设备。所有操作必须由主设备启动, 主设备通过将从设备的 CS 引脚置于低电平状态来激活从设备。主设备也生成 SCK (串行时钟), SI 和 SO 线上的所有数据传输均与该时钟同步。

SPI 从设备

SPI 从设备由主设备通过芯片选择线激活。来自 SPI 主设备的串行时钟 SCK 作为从设备的输入, 所有通信均与该时钟同步。SPI 从设备不会在 SPI 总线上发起通信, 而仅执行主设备所发出的指令。

CY15X104QN 可用作 SPI 从设备, 并与其他 SPI 从设备共享 SPI 总线。

芯片选择 (CS)

要选择一个从设备, 主设备必须下拉相应 CS 引脚。当 CS 引脚为低电平时, 才能将指令发送到从设备。未选择器件时, 通过 SI 引脚传输的数据将被忽略, 同时, 串行输出引脚 (SO) 保持高阻抗状态。

注意: 新指令必须从 CS 的下降沿开始。因此, 每个有效芯片选择周期只能生成一个操作码。

串行时钟 (SCK)

串行时钟由 SPI 主设备生成, 在 CS 变为低电平时, 通信将与该时钟同步。

CY15X104QN 在 SPI 模式 0 和模式 3 下运行。在两种模式下, 从设备在 SCK 的上升沿上锁存输入, 且输出在下降沿发出。因此, SCK 的第一个上升沿表示已经在 SI 引脚上接收到 SPI 指令的第一个最高有效位 (MSB)。此外, 所有数据输入和输出均与 SCK 同步。
数据传输（SI/SO）

SPI 数据总线由 SI 和 SO 两条线组成，可用于串行数据通信。SI 也称为主出从入（MOSI），SO 则称为主入从出（MISO）。主设备通过 SI 引脚将指令发送到从设备，从设备通过 SO 引脚进行响应。如上所述，多个从设备可共享 SI 和 SO 线。

CY15X104QN 提供可连接到主设备的两个独立引脚（即 SI 和 SO），如图 3 中所示。对于没有专用 SPI 总线的微控制器，可以使用通用端口。为了减少微控制器的硬件资源，可以将两个数据引脚（SI、SO）连接在一起，并将 WP 引脚置于高电平。如上所述，多个从设备可共享 SI 和 SO 线。

SPI 主机控制器或 SPI 主控器

图 3. 使用 SPI 端口的系统配置

图 4. 不使用 SPI 端口的系统配置

串行操作码

通过将 CS 置于低电平来选择从设备后，可将收到的第一个字节作为操作码进行期望的操作。CY15X104QN 使用标准操作码进行存储器访问。

无效的操作码

如果收到无效的操作码，该操作码将被忽略。器件将忽略在 SI 引脚上的所有额外串行数据，直到 CS 的下一个下降沿为止，与此同时，SO 引脚保持三态。

状态寄存器

CY15X104QN 具有一个 8 位的状态寄存器。状态寄存器中的各位用于配置器件。第 10 页的表 3 对这些位进行了说明。

SPI 模式

CY15X104QN 可由微控制器进行驱动，该控制器的 SPI 外设可运行于下列任意模式：

- SPI 模式 0（CPOL = 0, CPHA = 0）
- SPI 模式 3（CPOL = 1, CPHA = 1）

在两种模式下，CS 有效后，输入数据将在 SCK 的第一次上升沿上被锁存。如果时钟从高电平状态启动 (在模式 3 中)，则采用时钟触发后的第一个上升沿。输出数据在 SCK 的下降沿上可用。图 5 和图 6 分别显示了两种 SPI 模式。当总线主设备不传输数据时，时钟的状态为：
- 在模式 0 下，串行时钟保持为 0。
- 模式 3 下，串行时钟保持为 1。

当将 CS 引脚置为低电平选中器件时，器件将通过 SCK 引脚状态来检测 SPI 模式。器件被选中时，如果 SCK 引脚处于低电平状态，它将工作于 SPI 模式 0；如果 SCK 引脚处于高电平状态，它将工作于 SPI 模式 3。

从上电到第一次访问的时间

上电后，在 tPU 时间内，不能访问 CY15X104QN。用户必须遵守时序参数 tPU。该参数是从 Vdd（最小值）到第一次 CS 为低电平的最短时间。更多信息，请查阅第 23 页上的电源周期时序。
功能描述

指令结构
有15个称为操作码的指令，总线主设备可以将这些指令发送到CY15X104Q（见表1）。它们控制存储器执行的各项功能。

表1. 操作码指令

<table>
<thead>
<tr>
<th>名称</th>
<th>说明</th>
<th>操作码</th>
<th>十六进制</th>
<th>二进制</th>
<th>最大频率（MHz）</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>写使能控制</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WREN</td>
<td>置位写使能锁存</td>
<td>06h</td>
<td>0000 0110b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>WRDI</td>
<td>复位写入使能锁存</td>
<td>04h</td>
<td>0000 0100b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>寄存器访问</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDSR</td>
<td>读状态寄存器</td>
<td>05h</td>
<td>0000 0101b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>WRSR</td>
<td>写状态寄存器</td>
<td>01h</td>
<td>0000 0001b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>存储器写入操作</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>WRITE</td>
<td>写入存储器数据</td>
<td>02h</td>
<td>0000 0010b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>存储器读取操作</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>READ</td>
<td>读取存储器数据</td>
<td>03h</td>
<td>0000 0011b</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>FSTRD</td>
<td>快速读取存储器数据</td>
<td>0Bh</td>
<td>0000 1011b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>特殊扇区存储器访问</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>SSWR</td>
<td>特殊扇区写入操作</td>
<td>42h</td>
<td>0100 0010b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>SSRD</td>
<td>特殊扇区读取操作</td>
<td>4Bh</td>
<td>0100 1011b</td>
<td>40</td>
<td></td>
</tr>
<tr>
<td>标识和序列号</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>RDID</td>
<td>读取器件ID</td>
<td>9Fh</td>
<td>1001 1111b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>RUID</td>
<td>读取唯一ID</td>
<td>4Ch</td>
<td>0100 1100b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>WRSN</td>
<td>写入序列号</td>
<td>C2h</td>
<td>1100 0010b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>RDSN</td>
<td>读取序列号</td>
<td>C3h</td>
<td>11000 011b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>低功耗模式命令</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DPD</td>
<td>进入深度掉电模式</td>
<td>BAh</td>
<td>1011 1010b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>HBN</td>
<td>进入休眠模式</td>
<td>B9h</td>
<td>1011 1001b</td>
<td>50</td>
<td></td>
</tr>
<tr>
<td>保留</td>
<td>预留</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>未使用的操作码被保留以供将来使用。</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

文档编号：002-20521版本*A
写使能控制命令

设置写使能锁存 (WREN, 06h)
每当给 CY15X104QN 上电时，会禁止写操作。在进行任何写操作前，都必须发送 WREN 指令。发送 WREN 操作码后，用户可以发送后续操作码，以用于写操作。这些写操作包括写入状态寄存器 (WRSR)、写入存储器 (WRITE)、写入特殊扇区 (SSWR)、写入序列号 (WRSN) 操作。

发送 WREN 操作码后，将设置内部写使能锁存。状态寄存器中的标志位 (名称为 WEL) 表示锁存的状态。WEL = ‘1’ 表示可以进行写操作。尝试写状态寄存器中的 WEL 位不会影响到该位的状态 — 这是因为只有 WREN 操作码才能设置该位。进行 WRDI、WRSR、WRITE、SSWR 或 WRSN 写操作后，WEL 位将在 CS 的上升沿上自动清除。这样可阻止在未使用另一个 WREN 指令的情况下对状态寄存器或 F-RAM 阵列进行其他写操作。图 7 显示的是 WREN 指令总线配置。

复位写入使能锁存 (WRDI, 04h)
WRDI 指令通过清除写使能锁存来禁用所有写操作。通过读取状态寄存器中的 WEL 位和验证 WEL 为 ‘0’，可以验证各写操作已被禁用。图 8 显示的是 WRDI 指令的总线配置。
状态寄存器和写保护

CY15X104QN 的写保护特性是多层次的，并由状态寄存器使能。状态寄存器的组织方式如下所示。WEL、BP0、BP1、位 4–5、WPEN 的默认出厂设置值为 ‘0’，位 6 的默认出厂设置值为 ‘1’。

表 2. 状态寄存器

<table>
<thead>
<tr>
<th>位 7</th>
<th>位 6</th>
<th>位 5</th>
<th>位 4</th>
<th>位 3</th>
<th>位 2</th>
<th>位 1</th>
<th>位 0</th>
</tr>
</thead>
<tbody>
<tr>
<td>WPEN (0)</td>
<td>X (1)</td>
<td>X (0)</td>
<td>X (0)</td>
<td>BP1 (0)</td>
<td>BP0 (0)</td>
<td>WEL (0)</td>
<td>X (0)</td>
</tr>
</tbody>
</table>

表 3. 状态寄存器位定义

<table>
<thead>
<tr>
<th>位</th>
<th>定义</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>无需关注</td>
<td>该位是不可写的，并且读取时始终返回 0。</td>
</tr>
<tr>
<td>1 (WEL)</td>
<td>写入使能</td>
<td>WEL 表示器件是否使能写入功能。上电时，该位默认为 ‘0’（禁用）。 WEL = 1 = 使能写操作 WEL = 0 = 禁用写操作</td>
</tr>
<tr>
<td>2 (BP0)</td>
<td>模块保护位 ‘0’</td>
<td>用于保护模块。有关详细信息，请参见表 4。</td>
</tr>
<tr>
<td>3 (BP1)</td>
<td>模块保护位 ‘1’</td>
<td>用于保护模块。有关详细信息，请参见表 4。</td>
</tr>
<tr>
<td>4–5</td>
<td>无需关注</td>
<td>这些位都是不可写的，且读取时始终返回 ‘0’。</td>
</tr>
<tr>
<td>6</td>
<td>无需关注</td>
<td>该位是不可写的，且读取时始终返回 ‘1’。</td>
</tr>
<tr>
<td>7 (WPEN)</td>
<td>写保护使能</td>
<td>用于使能写保护引脚 (WP) 的功能。有关详细信息，请参见表 5。</td>
</tr>
</tbody>
</table>

位 0 和位 4-5 的固定值为 ‘0’，位 6 的固定值为 ‘1’，不能修改这些位的值。请注意，位 0（串行闪存和 EEPROM 中的“就绪或正在进行写操作”位）是无需关注的，由于 F-RAM 实时进行写操作并始终不处于繁忙状态，因此该位的值始终返回 ‘0’。器件从深度掉电模式 (DPD, BAh) 或休眠模式 (HBN, B9h) 唤醒的情况属于例外。

BP1 和 BP0 是存储器模块写保护位。它们指定受写保护的存储器部分，如表 4 中所示。

表 4. 模块存储器的写保护

<table>
<thead>
<tr>
<th>BP1</th>
<th>BP0</th>
<th>受保护的地址范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>0</td>
<td>无</td>
</tr>
<tr>
<td>0</td>
<td>1</td>
<td>60000h 到 7FFFFh (高 1/4)</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>40000h 到 7FFFFh (高 1/2)</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>00000h 到 7FFFFh (所有地址)</td>
</tr>
</tbody>
</table>

BP1 和 BP0 位，以及写使能锁存是保护写入存储器的唯一机制。其他写保护特性会防止对模块保护位进行意外更改。

状态寄存器中的写保护使能位 (WPEN) 控制硬件写保护 (WP) 引脚的效果。有关 WP 引脚时序框图的信息，请参考第 22 页上的图 24 部分。WPEN 位为 ‘0’ 时，WP 引脚的状态将被忽略。WPEN 位为 ‘1’ 时，低电平的 WP 引脚将禁止写入到状态寄存器。因此，只有 WPEN = ‘1’ 且 WP = ‘0’ 时，状态寄存器才受写保护。表 5 汇总了写保护条件。

表 5. 写保护

<table>
<thead>
<tr>
<th>WEL</th>
<th>WPEN</th>
<th>WP</th>
<th>受保护的模块</th>
<th>无保护的模块</th>
<th>状态寄存器</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>X</td>
<td>X</td>
<td>受保护</td>
<td>受保护</td>
<td>受保护</td>
</tr>
<tr>
<td>1</td>
<td>0</td>
<td>X</td>
<td>受保护</td>
<td>无保护</td>
<td>受保护</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>0</td>
<td>受保护</td>
<td>无保护</td>
<td>受保护</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>受保护</td>
<td>无保护</td>
<td>无保护</td>
</tr>
</tbody>
</table>
寄存器访问命令

读状态寄存器 (RDSR, 05h)
通过使用 RDSR 指令，总线主设备可以验证状态寄存器中的内容。读取状态寄存器后可以了解写保护特性的当前状态。执行 RDSR 操作码后，CY15X104QN 将返回一个字节，该字节包含状态寄存器的内容。

图 9. RDSR 总线配置

写状态寄存器 (WRSR, 01h)
WRSR 指令允许 SPI 总线主设备写入状态寄存器并通过根据要求设置 WPEN、BP0 和 BP1 位修改写保护配置。在发送 WRSR 指令前，WP 引脚必须为高电平或处于无效状态。请注意，在 CY15X104QN 上，WP 仅防止写入状态寄存器而不能防止写入存储器阵列。发送 WRSR 指令前，用户必须发送 WREN 指令来使能写操作。执行 WRSR 指令就是执行一个写操作，因此可以清除写使能锁存。

图 10. WRSR 总线配置 (不显示 WREN)
存储器操作
可接受高时钟频率的 SPI 接口突出显示了 F-RAM 技术的快速写入功能。与串行 Flash 和 EEPROM 不同的是，CY15B104QN 能以总线速度执行连续写操作。无需任何页寄存器，仍能够执行所有连续写操作数。

存储器写操作指令
写操作（WRITE，02h）
对存储器进行的所有写操作都以 WREN 操作码开始，这时将依次确认和取消确认 CS。下一个操作码是 WRITE。跟着 WRITE 操作码是一个三字节的地址，该地址包含了将写入到存储器的第一个数据字节的 19 位地址（A18-A0）。三字节地址的高 5 位被忽略。后续字节是连续写入的数据字节。如果总线主设备继续发送时钟并保持 CS 为低电平，则各地址将内部递增。如果达到最后地址 7FFFFh，内部地址计数器将翻转到 00000h。要写入的每个数据字节在 SI 上以 8 个时钟周期发送，其中优先为 MSb，最后为 LSb。CS 的上升沿终止写操作。CY15X104QN 写操作如图 11 中显示。

图 11. 存储器写 (不显示 WREN) 操作

存储器读操作指令
读操作（READ，03h）
CS 的下降沿后，总线主设备将发送一个 READ 操作码。READ 指令后面是一个三字节地址，该地址包含了读操作第一个字节的 19 位地址（A18-A0）。该地址的高 5 位被忽略。发送操作码和地址后，在随后的八个时钟内设备将输出读数据。在驱动读取数据字节期间，SI 输入被忽略。后续字节是连续读取的数据字节。只要总线主设备继续发送时钟并保持 CS 为低电平，地址将内部递增。如果达到最后地址 7FFFFh，内部地址计数器将翻转到 00000h。该器件还提供可写的 8 字节序列号的寄存器，这些寄存器可用于识别特定电路板或系统。CS 的上升沿终止读操作并使 SO 引脚处于三态。CY15X104QN 读操作如图 12 中显示。

图 12. 存储器读操作
快速读操作（FAST_READ，0Bh）

CY15X104QN 支持 FAST READ 操作码（0Bh），用于与串行闪存器件相兼容的操作码。按照 FAST READ 指令是一个三字节地址（该地址包含读操作第一个字节的 19 位地址（A18 到 A0）和一个虚拟字节。虚拟字节插入一个 8 时钟周期的读延迟。快速读操作与普通的读操作相同，但它需要另一个虚拟字节。收到操作码、地址和虚拟字节后，CY15X104QN 开始在 SO 线上驱动数据字节，优先驱动最高有效位。如果器件被选择并且时钟有效，则将继续进行发送。进行批量读取时，内部地址计数器将自动递增。另外，在达到最后地址 7FFFh 后，计数器将翻转为 00000h。当器件通过 SO 线驱动数据时，通过 SI 线的转换将被忽略。CS 的上升沿终止快速读操作并使 SO 引脚处于三态。CY15X104QN 快速读操作如图 13 中显示。

特殊扇区存储器访问命令

特殊扇区写操作（SSWR，42h）

对 256 字节特殊扇区进行的所有写操作都开始于 WREN 操作码，这将使 WREN 确认和取消确认 CS。下一个操作码是 SSWR。跟着 SSWR 操作码是一个三字节的地址，该地址包含了将写入到特殊扇区存储器的第一个数据字节的 7 位扇区地址（A6-A0）。三字节地址的高 17 位被忽略。后续字节是连续写入的数据字节。如果总线主设备继续发送时钟并保持 CS 为低电平，则地址将自动递增。SSWR 不支持地址回卷。要写入的每个数据字节在 SI 上以 8 个时钟周期发送，其中 MSb 优先为 LSb ,最后为 MSb。CS 的上升沿终止写操作。CY15X104QN 特殊扇区写操作如图 14 中显示。

注意：
- 如果写操作过程中断电，那么只有最后完成的字节被写入。
- 特殊扇区 F-RAM 存储器保证其数据可以在多达三个标准回流焊的周期内保持不变。
特殊扇区读（SSRD，4Bh）
CS 的下降沿后，总线主设备将发送一个 SSRD 操作码。SSRD 指令后面是一个三字节地址，该地址包含特殊扇区读操作第一个字节的 7 位地址（A6-A0）。地址的高 17 位被忽略。发送操作码和地址后，在随后的八个时钟周期内器件将输出读数据。在驱动读取数据字节期间，SI 输入被忽略，后续字节是后续读取的数据字节。只要总线主设备继续发送时钟并保持 CS 为低电平，地址将内部递增。SSRD 中不支持地址回卷。一旦内部地址计数器自动递增到 XXX7Fh，那么 CS 将变为高电平，以便终止进行中的 SSRD 操作。每个读取数据字节在 SO 上以 8 个时钟周期被驱动，其中优先为 MSb，最后为 LSb。CS 的上升沿终止特殊扇区读操作并使 SO 引脚处于三态。CY15X104QN 特殊扇区读操作如图 15 中显示。

注意：特殊扇区 F-RAM 存储器保证其数据可以在多达三个标准回流焊的周期内保持不变。

图 15. 特殊扇区读操作

标识和序列号指令
读取器件 ID（RDID，9Fh）
可以询问 CY15X104QN 器件的制造商、产品标识和晶圆版本。通过使用 RDID 操作码 9Fh，用户可以读取 9 字节制造商 ID 和产品 ID，这 9 个 ID 都是只读字节。JEDEC 分配制造商 ID 将赛普拉斯（Ramtron）标识符放置于数据库内，包括连续六个字节的 7Fh 和单字节 C2h。产品 ID 的长度为两个字节，包括系列代码、密度代码、子代码和产品版本代码。表 6 显示了 9 字节器件 ID 字段说明。有关单独器件的 9 字节器件 ID，请参考第 6 页上的订购信息。CY15X104QN 读取器件 ID 操作如图 16 中显示。

注意：最低有效数据字节（Byte 0）首先移出，最高有效数据字节（Byte 8）最后移出。

图 16. 读取器件 ID

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>56 位</td>
<td>3 位</td>
<td>4 位</td>
<td>1 位</td>
<td>3 位</td>
<td>2 位</td>
<td>1 位</td>
<td>2 位</td>
</tr>
</tbody>
</table>

表 6. 9 字节器件 ID
读取唯一 ID（RUID，4Ch）

可以询问 CY15X102QN 器件的唯一 ID，该 ID 是每个器件唯一的出厂设置的 64 位编号。通过使用 RUID 操作码 4Ch，用户可以读取 8 字节唯一 ID，该 ID 是只读字节。CY15X102QN 唯一 ID 操作如图 17 中显示。

注意：
- 最低有效数据字节（Byte 0）最先移出，最高有效数据字节（Byte 7）最后移出。
- 唯一 ID 值寄存器完整数据可以在最多三个标准回流焊的周期内保持不变。

图 17. 读取唯一 ID

写入序列号（WRSN，C2h）

序列号是一个 8 字节一次性可编程的存储空间，允许用户唯一标识 PC 电路板或系统。序列号通常由一个 2 字节的客户 ID，五个字节的唯一序列号以及一个自定义的 CRC 校验组成。由于序列号寄存器进行的所有写操作都始于 WREN 操作码，这时将依次确认和取消确认 CS。下一个操作码是 WRSN，可在突发模式下采用 WRSN 操作写入 8 字节序列号。移入序列号的最后字节后，必须将 CS 置为高电平以完成 WRSN 操作。

注意：器件将不计算 CRC 校验和。系统固件必须计算 7 字节内容中的 CRC 校验并将其附加到 7 字节用户定义序列号，然后将 8 字节序列号编程到序列号寄存器内。8 字节序列号的出厂默认值为“0000000000000000h”。

表 7. 8 字节序列号

<table>
<thead>
<tr>
<th>16 位客户标识符</th>
<th>40 位唯一编号</th>
<th>8 位 CRC</th>
</tr>
</thead>
</table>

图 18. 写入序列号（WREN 不显示）操作
读取序列号（RDSN，C3h）

CY15X104QN 包含一个用于唯一识别器件的 8 字节串行空间。通过使用 RDSN 指令可以读取序列号。可以在突发模式下读取序列号，实现一次性读取所有八个字节。读取序列号的最后字节后，器件将返回到序列号的第一个字节。CS 变为低电平后，通过移入 RDSN 的操作码可以发送 RDSN 指令。CY15X104QN 序列号操作如图 19 中显示。

注意：最低有效数据字节（Byte 0）首先移出，最高有效数据字节（Byte 7）最后移出。

低功耗模式命令

深度掉电模式（DPD，BAh）

CY15X104QN 器件会实现节能的深度掉电模式。在 DPD 操作码 BAh 被输入并处于 CS 上升沿后，经过 tENTDPD 的时间，器件将进入深度掉电模式。一旦处于深度掉电模式，将忽略 SCK 和 SI 引脚，并且将 SO 引脚置于高阻态（hi-Z），但是器件仍继续监控 CS 引脚。

经过 tEXTDPD 的时间后，tCSDPD 时间的 CS 脉冲可以退出深度掉电模式。可以通过发送虚拟指令周期或单独切换 CS （而 SCK 和 I/O 是无需关注的）来生成 CS 脉冲宽度。在从深度掉电模式唤醒期间，I/O 保持高阻态（hi-Z）。请分别参考图 20 和图 21，了解有关深度掉电进入和深度掉电退出的时序信息。
休眠模式（HBN，B9h）

CY15X104QN器件会实现功耗最低的休眠模式。HBN操作码B9h被输入并处于CS上升沿后，经过t_{ENTDPD}的时间，器件将进入休眠模式。一旦处于休眠模式，将忽略SCK和SI引脚，并且将SO引脚置于高阻态（HI-Z），但是器件仍继续监控CS引脚。在CS的下一个下降沿，在tEXTHIB时间内，器件将返回正常的操作模式。在从休眠模式唤醒的期间内，SO引脚保持高阻态（HI-Z）。这时，器件不需要响应操作码。要退出休眠模式，控制器将发送一个“虚拟”读取操作（作为一个示例），并等待余下的tEXTHIB时间。

图 22. 休眠模式操作

耐久性

可以对CY15X104QN器件进行至少10^{14}次读或写访问。

F-RAM存储器以读取和恢复机制运行。因此，对存储器阵列进行访问（读或写）时，擦写周期将以字的最小单位被采用。F-RAM是一个基于包括行和列阵列的，每列有32K行，每行有64位的架构。对单字节或所有八个字节进行读或写访问时，会一次性地内部访问整个行。在计算耐久性时，行中的每个字节只得算一次。表8显示的是64字节重复循环的耐久性计算，包括操作码、起始地址和连续64字节数据流。这样，通过该循环每个字节需要经过一个擦写周期。

F-RAM将提供至少34.9年的读写次数寿命，同时可以以50MHz时钟速率连续访问该器件。

表 8. 重复64字节循环达到耐久极限所需要的时间

<table>
<thead>
<tr>
<th>SCK频率（MHz）</th>
<th>耐久性（周期/秒）</th>
<th>耐久性（周期/年）</th>
<th>达到10^{14}周期需要的年数</th>
</tr>
</thead>
<tbody>
<tr>
<td>50</td>
<td>91,900</td>
<td>2.90 \times 10^{12}</td>
<td>34.5</td>
</tr>
<tr>
<td>40</td>
<td>73,040</td>
<td>2.30 \times 10^{12}</td>
<td>43.2</td>
</tr>
<tr>
<td>20</td>
<td>36,520</td>
<td>1.16 \times 10^{12}</td>
<td>86.4</td>
</tr>
<tr>
<td>10</td>
<td>18,380</td>
<td>5.79 \times 10^{11}</td>
<td>172.7</td>
</tr>
<tr>
<td>5</td>
<td>9,190</td>
<td>2.90 \times 10^{11}</td>
<td>345.4</td>
</tr>
</tbody>
</table>
最大额定值

超过最大额定值可能会影响器件的使用寿命。用户指南未经过测试。

存放温度 ... –55 °C 到 +125 °C

最长的累积存储时间：
环境温度为 125 °C1000 个小时
环境温度为 85 °C ..10 年

最高结温 .. 125 °C

相对于 VSS 的 VDD 供电电压：
CY15V104QN: ... –1.0 V 到 +2.4 V
CY15B104QN: ... –1.0 V 到 +4.1 V

输入电压 ... VIN ≤ VDD + 1.0 V

应用于高阻（High Z）状态下的输出直流电压 ...–1.0 V 到 VDD + 1.0 V

处于接地电位的任何引脚的跳变电压 （< 20 ns） ...–2.0 V 到 VDD + 2.0 V

封装功耗能力 （TA = 25 °C） .. 1.0 W
表面组装焊锡温度 （5 秒） +260 °C
直流输出电流 （每次只输出 1 路电流，输出时间为 1 秒） ...15 mA

静电放电电压
人体模型 （JEDEC Std JESD22-A114-B） 2 kV
充电器件模型 （JEDEC Std JESD22-C101-A） 500 V
栓锁电流 ... > 140 mA

工作范围

<table>
<thead>
<tr>
<th>器件</th>
<th>范围</th>
<th>环境温度</th>
<th>VDD</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY15V104QN</td>
<td>商业级</td>
<td>0 °C 到 +70 °C</td>
<td>1.71 V 到 1.89 V</td>
</tr>
<tr>
<td>CY15B104QN</td>
<td>1.8 V 到 3.6 V</td>
<td></td>
<td></td>
</tr>
<tr>
<td>CY15V104QN</td>
<td>工业级</td>
<td>–40 °C 到 +85 °C</td>
<td>1.71 V 到 1.89 V</td>
</tr>
<tr>
<td>CY15B104QN</td>
<td>1.8 V 到 3.6 V</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

直流电气特性

在工作范围内

<table>
<thead>
<tr>
<th>参数</th>
<th>说明</th>
<th>测试条件</th>
<th>温度</th>
<th>最小值</th>
<th>典型值[2, 3]</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>VDD</td>
<td>电源</td>
<td>CY15V104QN</td>
<td>–</td>
<td>1.71</td>
<td>1.80</td>
<td>1.89</td>
<td>V</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15B104QN</td>
<td>–</td>
<td>1.80</td>
<td>3.30</td>
<td>3.60</td>
<td>V</td>
</tr>
<tr>
<td>IDD</td>
<td>VDD 供电电流</td>
<td>CY15V104QN</td>
<td>fSCK = 1 MHz</td>
<td>商业级</td>
<td>–</td>
<td>0.2</td>
<td>0.35</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15B104QN</td>
<td>fSCK = 20 MHz</td>
<td>商业级</td>
<td>–</td>
<td>1.2</td>
<td>1.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15V104QN</td>
<td>fSCK = 1 MHz</td>
<td>工业级</td>
<td>–</td>
<td>0.2</td>
<td>0.4</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15B104QN</td>
<td>fSCK = 20 MHz</td>
<td>工业级</td>
<td>–</td>
<td>1.2</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15V104QN</td>
<td>fSCK = 1 MHz</td>
<td>商业级</td>
<td>–</td>
<td>0.25</td>
<td>0.45</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15B104QN</td>
<td>fSCK = 20 MHz</td>
<td>商业级</td>
<td>–</td>
<td>1.3</td>
<td>1.5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15V104QN</td>
<td>fSCK = 1 MHz</td>
<td>工业级</td>
<td>–</td>
<td>0.25</td>
<td>0.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15B104QN</td>
<td>fSCK = 20 MHz</td>
<td>工业级</td>
<td>–</td>
<td>1.3</td>
<td>1.6</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15V104QN</td>
<td>fSCK = 40 MHz</td>
<td>工业级</td>
<td>–</td>
<td>2.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15B104QN</td>
<td>fSCK = 50 MHz</td>
<td>工业级</td>
<td>–</td>
<td>3</td>
<td>3.7</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15V104QN</td>
<td>fSCK = 40 MHz</td>
<td>工业级</td>
<td>–</td>
<td>2.4</td>
<td>3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>CY15B104QN</td>
<td>fSCK = 50 MHz</td>
<td>工业级</td>
<td>–</td>
<td>3</td>
<td>3.7</td>
</tr>
</tbody>
</table>

注释:
2. 典型值的适用条件为 25 °C、VDD = 3.3 V。
3. 该参数由出厂校准保证，并非经过生产测试。
直流电气特性（续）

在工作范围内

<table>
<thead>
<tr>
<th>参数</th>
<th>说明</th>
<th>测试条件</th>
<th>温度</th>
<th>最小值</th>
<th>典型值</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>ISB</td>
<td>VDD</td>
<td>1.71 V 到 1.89 V ；</td>
<td>T_A = 25 °C</td>
<td>-</td>
<td>2.3</td>
<td>-</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 70 °C</td>
<td>TA = 70 °C</td>
<td>30</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 85 °C</td>
<td>TA = 85 °C</td>
<td>65</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_DD</td>
<td>1.8 V 到 3.6 V ；</td>
<td>T_A = 25 °C</td>
<td>-</td>
<td>2.6</td>
<td>-</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 70 °C</td>
<td>TA = 70 °C</td>
<td>31</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 85 °C</td>
<td>TA = 85 °C</td>
<td>70</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IDPD</td>
<td>深度掉电模式下的电流</td>
<td>VDD</td>
<td>1.71 V 到 1.89 V ；</td>
<td>T_A = 25 °C</td>
<td>-</td>
<td>0.7</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 70 °C</td>
<td>TA = 70 °C</td>
<td>7</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 85 °C</td>
<td>TA = 85 °C</td>
<td>15</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_DD</td>
<td>1.8 V 到 3.6 V ；</td>
<td>T_A = 25 °C</td>
<td>-</td>
<td>0.8</td>
<td>-</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 70 °C</td>
<td>TA = 70 °C</td>
<td>8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 85 °C</td>
<td>TA = 85 °C</td>
<td>16</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>IHBN</td>
<td>休眠模式电流</td>
<td>VDD</td>
<td>1.71 V ~ 1.89 V</td>
<td>T_A = 25 °C</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 70 °C</td>
<td>TA = 70 °C</td>
<td>0.4</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 85 °C</td>
<td>TA = 85 °C</td>
<td>0.9</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>V_DD</td>
<td>1.8 V ~ 3.6 V ；</td>
<td>T_A = 25 °C</td>
<td>-</td>
<td>0.1</td>
<td>-</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 70 °C</td>
<td>TA = 70 °C</td>
<td>0.75</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>VDD</td>
<td>T_A = 85 °C</td>
<td>TA = 85 °C</td>
<td>1.6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_LI</td>
<td>I/O 引脚的输入高电流</td>
<td>VSS < VIN < VDD</td>
<td>-</td>
<td>-1.00</td>
<td>-</td>
<td>1.00</td>
<td>μA</td>
</tr>
<tr>
<td></td>
<td>WP 引脚的输入高电流</td>
<td>-100.00</td>
<td>-</td>
<td>1.00</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>I_LO</td>
<td>输出漏电流</td>
<td>VSS < V_OUT < VDD</td>
<td>-</td>
<td>-1.00</td>
<td>-</td>
<td>1.00</td>
<td>μA</td>
</tr>
<tr>
<td>V_H</td>
<td>输入高电平</td>
<td>-</td>
<td>-</td>
<td>0.7 × VDD</td>
<td></td>
<td>VDD + 0.3</td>
<td>V</td>
</tr>
<tr>
<td>V_L</td>
<td>输入低电平</td>
<td>-</td>
<td>-</td>
<td>-0.30</td>
<td>-</td>
<td>0.3 × VDD</td>
<td></td>
</tr>
<tr>
<td>V_OH1</td>
<td>输出高电平</td>
<td>I_OH = -1 mA, V_DD = 2.7 V</td>
<td>-</td>
<td>2.40</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>V_OH2</td>
<td>输出高电平</td>
<td>I_OH = -100 μA</td>
<td>-</td>
<td>VDD − 0.2</td>
<td>-</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>V_O1L</td>
<td>输出低电平</td>
<td>I_OH = 2 mA, V_DD = 2.7 V</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.40</td>
<td></td>
</tr>
<tr>
<td>V_O2L</td>
<td>输出低电平</td>
<td>I_OH = 150 μA</td>
<td>-</td>
<td>-</td>
<td>-</td>
<td>0.20</td>
<td></td>
</tr>
</tbody>
</table>

注释：
2. 典型值的适用条件为 25 °C，V_DD = 3.3 V。
3. 该参数由出厂校准保证，并非经过生产测试。

文档编号：002-20521 版本*A
交流测试条件

输入脉冲电平 ...V_{DD}的 10% 和 90%
输入上升和下降时间 ... 3 ns
输入和输出时序参考电平 $0.5 \times V_{DD}$
输出负载电容 .. 30 pF

波动测试条件

数据保留时间与耐久性

<table>
<thead>
<tr>
<th>参数</th>
<th>说明</th>
<th>测试条件</th>
<th>最小值</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>T_{DR}</td>
<td>数据保留时间</td>
<td>$T_A = 85 ^\circ C$</td>
<td>10</td>
<td>-</td>
<td>年</td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = 70 ^\circ C$</td>
<td>141</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = 60 ^\circ C$</td>
<td>151</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>$T_A = 50 ^\circ C$</td>
<td>160</td>
<td>-</td>
<td></td>
</tr>
<tr>
<td>NV_C</td>
<td>耐久性</td>
<td>在工作温度范围内</td>
<td>1014</td>
<td>-</td>
<td>周期</td>
</tr>
</tbody>
</table>

电容

适用于所有封装。

<table>
<thead>
<tr>
<th>参数</th>
<th>说明</th>
<th>测试条件</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>C_O</td>
<td>输出引脚电容（SO）</td>
<td>$T_A = 25 ^\circ C$， $f = 1 \text{MHz}$， $V_{DD} = 3.3 \text{V}$</td>
<td>8</td>
<td>pF</td>
</tr>
<tr>
<td>C_I</td>
<td>输入引脚电容</td>
<td></td>
<td>6</td>
<td>pF</td>
</tr>
</tbody>
</table>

热电阻

根据 EIA/JESD51 的要求，测试条件遵循测试热阻的标准测试方法和过程。

<table>
<thead>
<tr>
<th>参数</th>
<th>说明</th>
<th>测试条件</th>
<th>8 pin SOIC 封装</th>
<th>8 pin GQFN 封装</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>Θ_{JA}</td>
<td>热阻（结至环境）</td>
<td>根据 EIA/JESD51 的要求</td>
<td>88.6</td>
<td>118</td>
<td>°C/W</td>
</tr>
<tr>
<td>Θ_{JC}</td>
<td>热阻（结至外壳）</td>
<td></td>
<td>56</td>
<td>60</td>
<td>°C/W</td>
</tr>
</tbody>
</table>

交流测试条件

输入脉冲电平 ...V_{DD}的 10% 和 90%
输入上升和下降时间 ... 3 ns
输入和输出时序参考电平 $0.5 \times V_{DD}$
输出负载电容 .. 30 pF

注释:

4. 该参数由出厂校准保证，并非经过生产测试。
交流切换特性

在工作范围内

<table>
<thead>
<tr>
<th>参数</th>
<th>说明</th>
<th>20 MHz</th>
<th>40 MHz</th>
<th>50 MHz</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>fSCK</td>
<td>SCK 时钟频率</td>
<td>0–20</td>
<td>0–40</td>
<td>0–50</td>
<td>MHz</td>
</tr>
<tr>
<td>tCH</td>
<td>时钟为高电平的时间</td>
<td>22–11</td>
<td>11–9</td>
<td>9–6</td>
<td>ns</td>
</tr>
<tr>
<td>tCL</td>
<td>时钟为低电平的时间</td>
<td>22–11</td>
<td>11–9</td>
<td>9–6</td>
<td>ns</td>
</tr>
<tr>
<td>tCSS</td>
<td>芯片选择建立时间</td>
<td>10–5</td>
<td>5–3</td>
<td>3–2</td>
<td>ns</td>
</tr>
<tr>
<td>tCSH</td>
<td>芯片选择保持时间</td>
<td>10–5</td>
<td>5–3</td>
<td>3–2</td>
<td>ns</td>
</tr>
<tr>
<td>tHZCS</td>
<td>tOD[6, 7] 输出禁用时间</td>
<td>–20</td>
<td>–12</td>
<td>–10</td>
<td>ns</td>
</tr>
<tr>
<td>tCO</td>
<td>输出数据有效时间</td>
<td>–16</td>
<td>–9</td>
<td>–8</td>
<td>ns</td>
</tr>
<tr>
<td>tOH</td>
<td>输出保持时间</td>
<td>1–1</td>
<td>1–1</td>
<td>1–1</td>
<td>ns</td>
</tr>
<tr>
<td>tCS</td>
<td>取消选择时间</td>
<td>60–40</td>
<td>40–40</td>
<td>40–40</td>
<td>ns</td>
</tr>
<tr>
<td>tSD</td>
<td>数据设置时间</td>
<td>5–5</td>
<td>5–5</td>
<td>5–5</td>
<td>ns</td>
</tr>
<tr>
<td>tSH</td>
<td>数据保留时间</td>
<td>5–5</td>
<td>5–5</td>
<td>5–5</td>
<td>ns</td>
</tr>
<tr>
<td>twps</td>
<td>WP 数据设置时间（w.r.t CS）</td>
<td>20–20</td>
<td>20–20</td>
<td>20–20</td>
<td>ns</td>
</tr>
<tr>
<td>tWPH</td>
<td>WP 保持设置时间（w.r.t CS）</td>
<td>20–20</td>
<td>20–20</td>
<td>20–20</td>
<td>ns</td>
</tr>
</tbody>
</table>

注释:
5. 测试条件假设：信号切换时间不超过 3 ns，时序参考电平为 0.5 × VDD，输入脉冲电平为 VDD 的 10% 至 90% 以及输出负载为指定 IOL/IOH 和负载电容为 30 pF，如第 20 页上的交流测试条件中所示。
6. tHZCS 的负载电容为 5 pF，转换的测量条件是输出要处于高阻态。
7. 该参数由出厂校准保证，并非经过生产测试。
图 23. 同步数据时序（模式0）

图 24. 写入状态寄存器（WRSR）操作中的写入保护时序
电源周期时序

适用条件为工作范围

<table>
<thead>
<tr>
<th>参数</th>
<th>说明</th>
<th>最小值</th>
<th>最大值</th>
<th>单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>t_{PU}[8]</td>
<td>从上电 V_{DD(min)} 到第一次访问 (CS 为低电平) 的时间</td>
<td>450 ms</td>
<td>–</td>
<td>ms</td>
</tr>
<tr>
<td>t_{VR}[9]</td>
<td>V_{DD} 上电斜率</td>
<td>50 μs/V</td>
<td>–</td>
<td>μs/V</td>
</tr>
<tr>
<td>t_{VF}[9]</td>
<td>V_{DD} 断电斜率</td>
<td>100 μs/V</td>
<td>–</td>
<td>μs/V</td>
</tr>
<tr>
<td>t_{ENTDPD}[10]</td>
<td>从 CS 为高电平进入深度掉电模式的时间</td>
<td>–</td>
<td>3 μs</td>
<td></td>
</tr>
<tr>
<td>t_{CSDPD}[10]</td>
<td>脉冲宽度到从深度掉电模式唤醒的时间</td>
<td>0.015 μs</td>
<td>4 × 1/f_{SCK}</td>
<td>μs</td>
</tr>
<tr>
<td>t_{EXTDPD}[10]</td>
<td>从 CS 为低电平到从深度掉电模式退出的时间 (CS 为低电平到就绪访问的时间)</td>
<td>–</td>
<td>10 μs</td>
<td></td>
</tr>
<tr>
<td>t_{ENTHIB}[11]</td>
<td>从 CS 为高电平进入休眠模式的时间</td>
<td>–</td>
<td>3 μs</td>
<td></td>
</tr>
<tr>
<td>t_{EXTHIB}[11]</td>
<td>从 CS 为低电平到从休眠模式退出的时间 (CS 为低电平到就绪访问的时间)</td>
<td>–</td>
<td>450 ms</td>
<td></td>
</tr>
</tbody>
</table>

图 25. 电源循环时序

![电源循环时序图](image)

注释:
8. 测试条件假设：信号切换时间不超过 3 ns。时序参考电平为 0.5 × V_{DD}，输入脉冲电平为 V_{DD} 的 10% 至 90% 以及输出负载为指定 I_{OL/20} 和负载电容为 30 pF，如第 20 页上的交流测试条件中所示。
9. 在 V_{DD} 波形的任何位置测量的斜率。
10. 由设计保证有关深度睡眠模式恢复时序的详细信息，请参见第 16 页上的图 20。
11. 由设计保证有关休眠模式恢复时序的详细信息，请参见第 17 页上的图 22。
这些芯片都不含铅。想要了解这些芯片的供应情况，请联系赛普拉斯本地销售代表。

订购信息

<table>
<thead>
<tr>
<th>订购代码</th>
<th>器件 ID</th>
<th>封装图</th>
<th>封装类型</th>
<th>工作范围</th>
</tr>
</thead>
<tbody>
<tr>
<td>CY15B104QN-20LPXCES</td>
<td>7F7F7F7F7FC22CA1</td>
<td>002-18131</td>
<td>8 pin GQFN</td>
<td>商业级</td>
</tr>
<tr>
<td>CY15B104QN-50SXIES</td>
<td>7F7F7F7F7FC22C00</td>
<td>001-85261</td>
<td>8 pin SOIC (EIAJ)</td>
<td>工业级</td>
</tr>
</tbody>
</table>

订购代码定义

- **Options:**
 - ES = Engineering Sample
 - Blank = Standard
 - T = Tape and Reel

- **Temperature Range:**
 - C = Commercial (0 °C to +70 °C)
 - I = Industrial (-40 °C to +85 °C)
 - X = Pb-free

- **Package Type:**
 - LP = 8-pin GQFN
 - S = 8-pin SOIC (EIAJ)

- **Frequency:**
 - 20 = 20 MHz
 - 50 = 50 MHz

- **Interface:**
 - Q = SPI F-RAM

- **Density:**
 - 104 = 4-Mbit

- **Voltage:**
 - B = 1.8 V to 3.6 V
 - V = 1.71 V to 1.89 V
 - 15 = F-RAM

- **CY = Cypress**
图 26. 8 pin QFN (3.23 × 3.28 × 0.55 mm) 封装外形

封装图

封装外形

<table>
<thead>
<tr>
<th>SYMBOL</th>
<th>DIMENSIONS</th>
<th>NOTES</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>MIN. NOM. MAX.</td>
<td></td>
</tr>
<tr>
<td>e</td>
<td>0.25 0.30 0.35</td>
<td>ALL DIMENSIONS ARE IN MILLIMETERS.</td>
</tr>
<tr>
<td>N</td>
<td>0.35 0.40 0.50</td>
<td></td>
</tr>
<tr>
<td>L</td>
<td>0.35 0.45 0.55</td>
<td></td>
</tr>
<tr>
<td>L1</td>
<td>0.30 0.40 0.50</td>
<td></td>
</tr>
<tr>
<td>b</td>
<td>0.25 0.30 0.35</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>3.18 3.23 3.28</td>
<td></td>
</tr>
<tr>
<td>E</td>
<td>3.23 3.28 3.33</td>
<td></td>
</tr>
<tr>
<td>A</td>
<td>0.45 0.50 0.55</td>
<td></td>
</tr>
<tr>
<td>A1</td>
<td>0.00 - 0.05</td>
<td></td>
</tr>
</tbody>
</table>
图 27. 8 pin SOIC (208 Mils) 封装外形

NOTE:

1. DOES NOT INCLUDE MOLD FLASH, PROTRUSIONS OR GATE BURRS. MOLD FLASH, PROTRUSIONS AND GATE BURRS SHALL NOT EXCEED 0.006 INCH PER SIDE.

2. DOES NOT INCLUDE INTER-LEAD FLASH OR PROTRUSIONS. INTER-LEAD FLASH AND PROTRUSION SHALL NOT EXCEED 0.010 INCH PER SIDE.

3. THIS PART IS COMPLIANT WITH JIAJ SPECIFICATION EDJ-7320

4. LEAD SPACING AND HEIGHT/CPLANARITY ARE CONSIDERED AS SPECIAL CHARACTER.

5. CONTROLLING DIMENSIONS IN MM. [INCH]

001-85261 **
缩略语

表 9. 本文档中使用的缩略语

<table>
<thead>
<tr>
<th>缩略语</th>
<th>说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>CPHA</td>
<td>时钟相位</td>
</tr>
<tr>
<td>CPOL</td>
<td>时钟极性</td>
</tr>
<tr>
<td>EEPROM</td>
<td>带电可擦除可编程只读存储器</td>
</tr>
<tr>
<td>EIA</td>
<td>电子工业联盟</td>
</tr>
<tr>
<td>F-RAM</td>
<td>铁电随机存取存储器</td>
</tr>
<tr>
<td>I/O</td>
<td>输入/输出</td>
</tr>
<tr>
<td>JEDEC</td>
<td>联合电子设备工程委员会</td>
</tr>
<tr>
<td>JESD</td>
<td>JEDEC 标准</td>
</tr>
<tr>
<td>LSb</td>
<td>最低有效位</td>
</tr>
<tr>
<td>MSb</td>
<td>最高有效位</td>
</tr>
<tr>
<td>RoHS</td>
<td>有害物质限制</td>
</tr>
<tr>
<td>SPI</td>
<td>串行外设接口</td>
</tr>
<tr>
<td>SOIC</td>
<td>小外形集成电路</td>
</tr>
<tr>
<td>GQFN</td>
<td>网格阵列无引线</td>
</tr>
</tbody>
</table>

文档规范

测量单位

表 10. 测量单位

<table>
<thead>
<tr>
<th>符号</th>
<th>测量单位</th>
</tr>
</thead>
<tbody>
<tr>
<td>°C</td>
<td>摄氏度</td>
</tr>
<tr>
<td>Hz</td>
<td>赫兹</td>
</tr>
<tr>
<td>kHz</td>
<td>千赫兹</td>
</tr>
<tr>
<td>kΩ</td>
<td>千欧</td>
</tr>
<tr>
<td>Mbit</td>
<td>兆位</td>
</tr>
<tr>
<td>MHz</td>
<td>兆赫兹</td>
</tr>
<tr>
<td>µA</td>
<td>微安</td>
</tr>
<tr>
<td>µF</td>
<td>微法</td>
</tr>
<tr>
<td>µs</td>
<td>微秒</td>
</tr>
<tr>
<td>mA</td>
<td>毫安</td>
</tr>
<tr>
<td>ms</td>
<td>毫秒</td>
</tr>
<tr>
<td>ns</td>
<td>纳秒</td>
</tr>
<tr>
<td>W</td>
<td>欧姆</td>
</tr>
<tr>
<td>%</td>
<td>百分比</td>
</tr>
<tr>
<td>pF</td>
<td>皮法</td>
</tr>
<tr>
<td>V</td>
<td>伏特</td>
</tr>
<tr>
<td>W</td>
<td>瓦特</td>
</tr>
</tbody>
</table>
文档修订记录

<table>
<thead>
<tr>
<th>版本</th>
<th>ECN 编号</th>
<th>变更者</th>
<th>提交日期</th>
<th>变更说明</th>
</tr>
</thead>
<tbody>
<tr>
<td>**</td>
<td>5972084</td>
<td>RZZH</td>
<td>11/30/2017</td>
<td>本文档版本号为 Rev**，译自英文版 002-19436 Rev*B。</td>
</tr>
<tr>
<td>*A</td>
<td>6353419</td>
<td>RZZH</td>
<td>10/22/2018</td>
<td>本文档版本号为 RevA，译自英文版 002-19436 RevF。</td>
</tr>
</tbody>
</table>
销售、解决方案和法律信息

全球销售和设计支持
赛普拉斯公司拥有一个由办事处、解决方案中心、厂商代表和分销商组成的全球性网络。要找到最近的办事处，请访问赛普拉斯所在地。

产品
- Arm® Cortex® 微控制器
cypress.com/arm
- 汽车级
cypress.com/automotive
- 时钟与缓冲器
cypress.com/clocks
- 时钟与缓冲器
cypress.com/interface
- 物联网
cypress.com/iot
- 存储器
cypress.com/memory
- PSoC
cypress.com/mcu
- PSoC 集成
cypress.com/psoc
- 电源管理 IC
cypress.com/psoc
- USB 控制器
cypress.com/usb
- 无线连接
cypress.com/wireless

PSoC® 解决方案
- PSoC 1 | PSoC 3 | PSoC 4 | PSoC 5LP | PSoC 6 MCU
cypress.com/psoc

赛普拉斯开发者社区
社区 | 项目 | 视频 | 博客 | 培训 | 组件
cypress.com/support

技术支持

© 赛普拉斯半导体公司，2017-2018年。本文件是赛普拉斯半导体公司及其子公司，包括 Spansion LLC（“赛普拉斯”）的财产。本文件，包括其包含或引用的任何软件或固件（“软件”），根据全球范围内的知识产权法律以及美国与其他国家签署的由赛普拉斯持有，除非在本许可中另有明确规定，赛普拉斯保留对该等法律和条约下的所有权利，未被此专有、版权、商标或其他知识产权授予任何许可。如果软件并不附随有一份许可协议且贵方未以其他方式与赛普拉斯签署关于使用软件的书面协议，赛普拉斯将根据软件属性非排他性、非独家且不可转让的如下许可（无再许可权）（1）在赛普拉斯软件著作权下的下列许可权：（一）对以源代码形式提供的软件，仅用于在赛普拉斯硬件产品上使用之目的且仅在贵方集团内部修改和复制软件，和（二）仅限于在有关赛普拉斯硬件产品上使用之目的将软件以二进制代码形式向外部最终用户提供（无论直接提供或通过经销商和分销商间接提供）；和（2）在使用赛普拉斯软件的软件（由赛普拉斯公司提供，且未经修改）的赛普拉斯专利的环境下，仅用于在赛普拉斯硬件产品上使用之目的的制造、使用、提供和许可的许可，禁止对软件的任何其他使用、复制、修改、翻译或汇编。

在适用法律允许的范围内，赛普拉斯不对本文件或任何软件作出任何明示或暗示的担保，包括但不限于关于适销性和特定用途的默示保证。没有任何电子设备是绝对安全的。因此，尽管赛普拉斯在其硬件和软件中采取了必要的安全措施，但是赛普拉斯并不承担任何由于使用赛普拉斯产品而引起的安全问题及安全漏洞的责任，例如未经授权的访问或使用赛普拉斯产品。此外，本材料中所介绍的赛普拉斯产品有可能存在设计缺陷或设计错误，从而导致产品的性能与公测环境不一致。如果发现此类问题，赛普拉斯会提供修改表。赛普拉斯保留更改本文件的权利。在适用法律允许的范围内，赛普拉斯不对因使用本文件或本文件所述任何产品或软件引起的任何损害负责。本文件包括任何样本文件或程序代码信息，仅为参考之目的提供。文件使用者应对自行设计、编程、测试和测试其使用并检查其使用。赛普拉斯未对本文件或任何软件作出任何明示或暗示的保证。

赛普拉斯：赛普拉斯商标、Spansion、Spansion标识、及上述项目的组合；WICED、及PSoC、CapSense、EZ-USB、F-RAM和Traveo应视为赛普拉斯在美国及其他国家的商标或注册商标。请访问cypress.com获取赛普拉斯商标的完整列表。其他名称和品牌可能由其各自所有者主张为其所有。
Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:
CY15B104QN-50LPXI CY15B104QN-20LPXI CY15V104QN-20LPXC CY15V104QN-20LPXI CY15V104QN-50LPXI
CY15V104QN-50SXI CY15B104QN-20LPXC CY15B104QN-50SXI CY15V104QN-50SXIT CY15V104QN-20LPXCT
CY15V104QN-20LPXIT CY15V104QN-50LPXIT CY15B104QN-20LPXCT CY15B104QN-20LPXIT CY15B104QN-
50LPXIT CY15B104QN-50SXIT