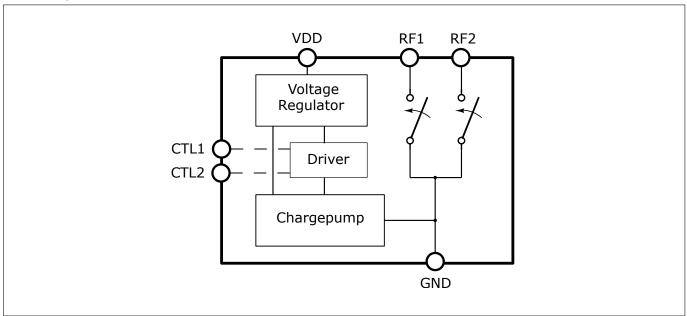
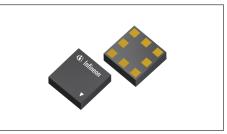


High RF Voltage Dual SPST Antenna Aperture Shunt Switch

Features

- Dual SPST designed for high-linearity antenna aperture switching and RF tuning applications
- Low R_{ON} resistance of 2.3 ohm at each port in ON state
- Low C_{OFF} capacitance of 200 fF at each port in OFF state
- > 80 V RF voltage OFF state handling
- Low harmonic generation
- GPIO control interface including 4 control states
- Supply voltage range: 1.65 to 3.6 V
- No RF parameter change within supply voltage range
- Small form factor 1.1 mm x 1.1 mm (MSL1, 260°C per JEDEC J-STD-020)
- Suitable for EDGE/CDMA/WCDMA/C2K/LTE/5G Applications
- RoHS and WEEE compliant package


Application


- Impedance Tuning
- Antenna Tuning
- Inductance Tuning
- Tunable Filters

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Block diagram

1.1 x 1.1 mm²

High RF Voltage Dual SPST Antenna Aperture Shunt Switch

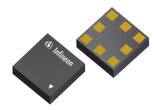
Table of Contents

Table of Contents

Та	ble of Contents	1
1	Features	2
2	Maximum Ratings	3
3	DC Characteristics	5
4	RF Small Signal Characteristics	6
5	RF large signal parameter	7
6	Logic Table	9
7	Application Information	9
8	Package Information	10

High RF Voltage Dual SPST Antenna Aperture Shunt Switch

Features


1 Features

- Dual SPST designed for high-linearity antenna aperture switching and RF tuning applications
- Low R_{ON} resistance of 2.3 ohm at each port in ON state
- Low C_{OFF} capacitance of 200 fF at each port in OFF state
- > 80 V RF voltage OFF state handling
- Low harmonic generation
- GPIO control interface including 4 control states
- Supply voltage range: 1.65 to 3.6 V
- No RF parameter change within supply voltage range
- Small form factor 1.1 mm x 1.1 mm (MSL1, 260°C per JEDEC J-STD-020)
- Suitable for EDGE/CDMA/WCDMA/C2K/LTE/5G Applications
- RoHS and WEEE compliant package

Description

The BGSA20UGL8 is a versatile Dual Single Pole Single Throw (SPST) RF antenna shunt aperture switch optimized for low C_{off} as well as low R_{on} enabling applications up to 6.0 GHz. This single supply chip integrates 2 digital control pins. Unlike GaAs technology, the 0.1 dB compression point exceeds the switch maximum input power level, resulting in linear performance at all signal levels and external DC blocking capacitors at the RF ports are only required if DC voltage is applied externally. Due to its very high RF voltage ruggedness, it is suited for switching any reactive devices such as inductors and capacitors in RF matching circuits without significant losses in quality factors.

Product Name	Marking	Package	Ordering Information	
BGSA20UGL8	U	TSLP-8-1	BGSA 20UGL8 E6327	

Maximum Ratings

2 Maximum Ratings

Parameter	Symbol	Values			Unit	Note / Test Condition	
		Min. Typ.		Max.			
Frequency Range	f	0.4	-	_	GHz	1)	
Supply voltage ²⁾	V _{DD}	-0.5	-	6	V	only for infrequent and short	
						duration time periods	
Storage temperature range	T _{STG}	-55	-	150	°C	-	
RF voltage	V _{RF_max}	-	-	85	V	Short term peaks (1 μ s in 0.1%	
						duty cycle), exceeding typical	
						linearity, Ron and Coff param-	
						eters, in Isolation mode, test	
						condition schematic in Fig. 1	
ESD robustness, CDM ³⁾	V _{ESDcdm}	-1	-	+1	kV		
ESD robustness, HBM ⁴⁾	V _{ESDHBM}	-2	-	+2	kV		
Junction temperature	Tj	-	-	125	°C	-	
Maximum DC-voltage on RF-Ports and RF-	V _{RFDC}	0	-	0	V	No DC voltages allowed on RF-	
Ground						Ports	
Control Voltage Levels	V _{CTL}	-0.7	-	3.3	V	-	

Table 1: Maximum Ratings, Table I at $T_A = 25$ °C, unless otherwise specified

¹⁾ Switch has a low-pass response. For higher frequencies, losses have to be considered for their impact on thermal heating. The DC voltage at RF ports V_{RFDC} has to be 0V.

²⁾ Note: Consider potential ripple voltages on top of V_{DD} . Including RF ripple, V_{DD} must not exceed the maximum ratings: $V_{DD} = V_{DC} + V_{Ripple}$.

³⁾ Field-Induced Charged-Device Model ANSI/ESDA/JEDEC JS-002. Simulates charging/discharging events that occur in production equipment and processes. Potential for CDM ESD events occurs whenever there is metal-to-metal contact in manufacturing.

⁴⁾ Human Body Model ANSI/ESDA/JEDEC JS-001 ($R = 1.5 \text{ k}\Omega$, C = 100 pF).

Warning: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

Maximum Ratings

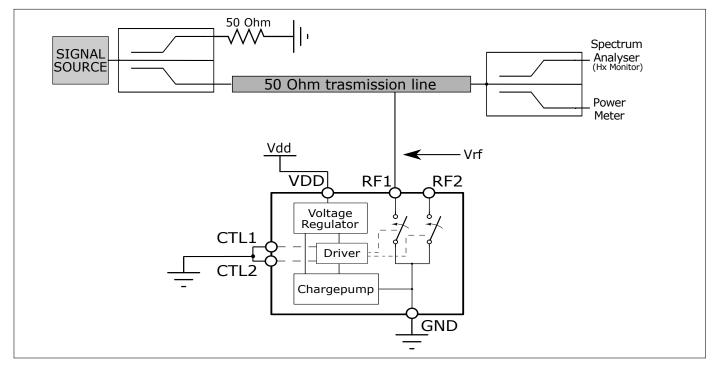


Figure 1: RF operating voltage measurement configuration - All OFF mode. RF1 stressed.

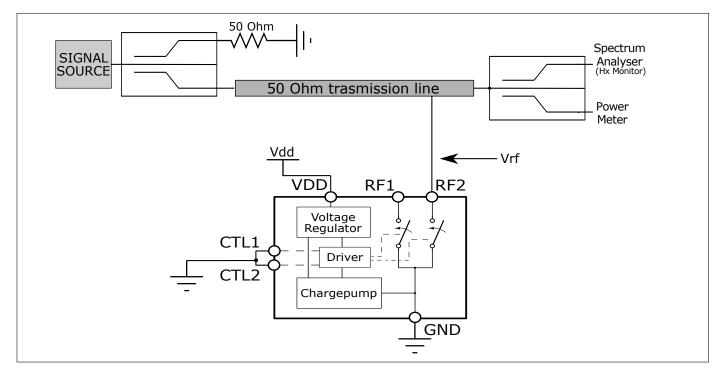


Figure 2: RF operating voltage measurement configuration - All OFF mode. RF2 stressed.

DC Characteristics

3 DC Characteristics

Table 2: Operation Ranges

Parameter	Symbol		Values	;	Unit	Note / Test Condition	
		Min.	Тур.	Typ. Max.			
Supply voltage	V _{DD}	1.65	2.8	3.6	V	-	
Supply current	I _{DD}	40	70	-	μA	-	
Control voltage low	V _{Ctl,low}	0	-	0.45	V	-	
Control voltage high	V _{Ctl,high}	1.2	1.8	2.85	V	$V_{Ctl,high} \ll V_{DD}$	
Control current low	I _{Ctl,low}	-1	0	1	μA	-	
Control current high	I _{Ctl,high}	-1	0	4	μA	$V_{Ctl,high} \ll V_{DD}$	
						$1 M\Omega$ Pull-Down resistor at	
						Control Pins	
Ambient temperature	T _A	-40	25	85	°C	-	
RF switching time	t _{st}		4.5	8	μs	$P_{IN} = 0 \text{ dBm}, Z_0 = 50 \Omega,$	
						$T_A = -40 ^{\circ}\text{C} + 85 ^{\circ}\text{C}$	
						V_{DD} = 1.65 - 3.6 V	
Startup time	t _{Pup}		8	10	μs	Referring Fig. 3	

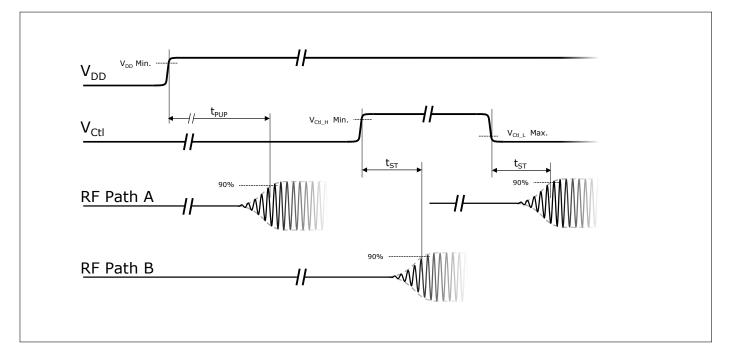


Figure 3: Switching Time Definition

High RF Voltage Dual SPST Antenna Aperture Shunt Switch

RF Small Signal Characteristics

4 RF Small Signal Characteristics

Parameter	Symbol	Values			Unit	STATE / Notes	
		Min.	Тур.	Max.			
RF1 or RF2 to Ground	R _{ON}		2.3	2.5	Ω		
ON DC resistance						$V_{DD} = 1.65 - 3.6 V$,	
RF1 or RF2 to Ground	R _{OFF}	290	310		kΩ	$T_A = 25 ^{\circ}\text{C}$	
OFF DC resistance							
RF1 or RF2 to Ground	C _{OFF}		200	230	fF	$V_{DD} = 1.65 - 3.6 V, T_A = 25 ^{\circ}\text{C},$	
OFF capacitance						extracted from Isolation (S21) mea-	
						surement $Z_0 = 50 \Omega$	

Table 3: Parametric specifications using SPST configuration

Table 4: RF electrical parameters

Isolation: RF1 to RF2 or RF2 to RF1 $^{(1,2,3)}$

Parameter	Symbol		Values		Unit	STATE / Notes
		Min.	Тур.	Max.		
698 - 910 MHz		50	53		dB	
1710 - 1910 MHz		44	46		dB	
1911 - 2169 MHz		43	45		dB	$-V_{DD} = 1.65 - 3.6 V, Z_0 = 50 \Omega,$ $-T_A = -40 ^{\circ}\text{C} + 85 ^{\circ}\text{C}$
2170 - 2690 MHz	ISO _{RF1RF2}	41	44		dB	
3300 - 3800 MHz		38	40		dB	$T_A = -40$ C + 85 C
3801 - 4800 MHz		36	39		dB	
4801 - 6000 MHz		34	38		dB	1

¹⁾ Valid for all RF power levels, no compression behavior

²⁾ SOLT-calibrated, $P_{IN} = 0 \text{ dBm}$

³⁾On application board without any matching components

High RF Voltage Dual SPST Antenna Aperture Shunt Switch

RF large signal parameter

5 RF large signal parameter

Parameter Symbol Values Unit **Note / Test Condition** Min. Typ. Max. Max. RF Operating Voltage 80 V In Isolation mode 900 MHz, test con-V_{RF_opr} _ _ dition schematic in Fig. 1 or Fig. 2 for H2/H3 < -30 dBm @ 50Ω Harmonic Generation up to 12.75 GHz All RF Ports - Second Order Har--77 -74 dBm $25 \text{ dBm}, 50\Omega, f_0 = 663 \text{ MHz}, \text{ test con-}$ P_{H2} dition in Fig. 1 and Fig. 2 monics All RF Ports - Third Order Harmon-25 dBm, 50Ω, f_0 = 663 MHz, test con--85 -83 dBm P_{H3} dition in Fig. 1 and Fig. 2 ics All RF Ports - Second Order HardBm 35 dBm, 50 Ω , f_0 = 920 MHz, test con- P_{H2} -58 -57 monics dition in Fig. 1 and Fig. 2 All RF Ports - Third Order Harmon-35 dBm, 50 Ω , f_0 = 920 MHz, test con--71 -69 dBm P_{H3} dition in Fig. 1 and Fig. 2 ics All RF Ports - Second Order Har-33 dBm, 50 Ω , f_0 = 1910 MHz, test con--58 -57 dBm P_{H2} monics dition in Fig. 1 and Fig. 2 All RF Ports - Third Order Harmon--70 33 dBm, 50 Ω , f_0 = 1910 MHz, test con--67 dBm P_{H3} dition in Fig. 1 and Fig. 2 ics All RF Ports - Second Order Har- P_{H2} -67 -65 dBm 25 dBm, 50Ω, f_0 = 2690 MHz, test condition in Fig. 1 and Fig. 2 monics All RF Ports - Third Order Harmon- P_{H3} -78 -76 dBm 25 dBm, 50 Ω , f_0 = 2690 MHz, test condition in Fig. 1 and Fig. 2 ics All RF Ports - Second Order Har--65 -64 dBm 25 dBm, 50 Ω , f_0 = 3500 MHz, test P_{H2} monics condition in Fig. 1 and Fig. 2 25 dBm, 50 Ω , f_0 = 3500 MHz, test All RF Ports - Third Order Harmon--79 -78 dBm P_{H3} condition in Fig. 1 and Fig. 2 ics All RF Ports - Second Order Har--66 -64 dBm 25 dBm, 50 Ω , f_0 = 5000 MHz, test P_{H2} condition in Fig. 1 and Fig. 2 monics All RF Ports - Third Order Harmon-25 dBm, 50 Ω , f_0 = 5000 MHz, test -81 -78 dBm P_{H3} condition in Fig. 1 and Fig. 2 ics All RF Ports _ -80 dBm $25 \,\mathrm{dBm}, 50 \Omega$ P_{Hx} _ **Intermodulation Distortion IMD2** IIP2. low IIP2.l 126 128 132 dBm IIP2 conditions table 8 IIP2, high IIP2,h 129 dBm 132 134 **Intermodulation Distortion IMD3** IIP3 IIP3 76 77 78 dBm IIP3 conditions table 9

Table 5: RF large signal specifications at $T_A = 25 \ ^{\circ}\text{C}$

RF large signal parameter

Table 6: IIP2 conditions table

Band	In-Band Frequency	Blocker Frequency 1	Blocker Power 1	Blocker Frequency 2	Blocker Power 2
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band 1 Low	2140	1950	20	190	-15
Band 1 High	2140	1950	20	4090	-15
Band 5 Low	881.5	836.5	20	45	-15
Band 5 High	881.5	836.5	20	1718	-15

Table 7: IIP3 conditions table

Band	In-Band Frequency	Blocker Frequency 1	Blocker Power 1	Blocker Frequency 2	Blocker Power 2
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band 1	2140	1950	20	1760	-15
Band 5	881.5	836.5	20	791.5	-15

Application Information

6 Logic Table

Table 8: Logio	Table 8: Logic Table									
CTL 1	CTL 2	Mode								
0	0	RF1 and RF2 isolated from ground								
0	1	RF2 connected to ground								
1	0	RF1 connected to ground								
1	1	RF1 and RF2 connected to ground								

7 Application Information

Pin Configuration and Function

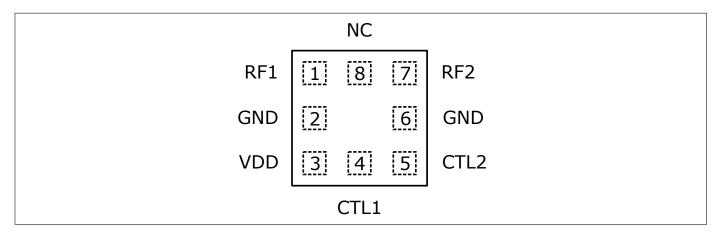


Figure 4: BGSA20UGL8 Pin Configuration (top view)

Table 9: Pin Definition and Function

Pin No.	Name	Function
1	RF1	RF port
2	GND	Ground
3	VDD	DC Supply Voltage
4	CTL1	Control Pin 1
5	CTL2	Control Pin 2
6	GND	Ground
7	RF2	RF port
8	NC	Not Connected

Table 10: ESD robustness, System Level Test (SLT)

Parameter	Symbol	Values		Unit	Note / Test Condition	
		Min.	Тур.	Max.		
ESD SLT ¹⁾	VESDSLT	-8	-	+8	kV	RF1, RF2 vs system GND, with 27 nH shunt inductor

 $^{\prime\prime}$ IEC 61000-4-2 (R = $330\,\Omega,$ C = $150\,\mathrm{pF}$), contact discharge.

High RF Voltage Dual SPST Antenna Aperture Shunt Switch

Package Information

8 Package Information

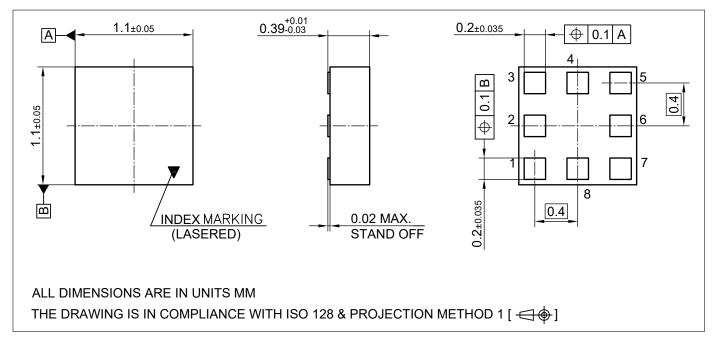


Figure 5: TSLP-8-1 Package Outline (top, side and bottom views)

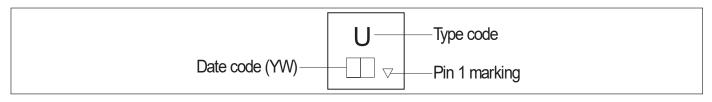


Figure 6: Marking Specification (top view): Date code digits Y and W defined in Table 11/12

Package Information

			0	0	
Year	"Y"	Year	"Y"	Year	"Y"
2010	0	2020	0	2030	0
2011	1	2021	1	2031	1
2012	2	2022	2	2032	2
2013	3	2023	3	2033	3
2014	4	2024	4	2034	4
2015	5	2025	5	2035	5
2016	6	2026	6	2036	6
2017	7	2027	7	2037	7
2018	8	2028	8	2038	8
2019	9	2029	9	2039	9

Table 11: Year date code marking - digit "Y"

Table 12: Week date code	e marking - digit "W"
--------------------------	-----------------------

				0					
Week	"W"								
1	A	12	Ν	23	4	34	h	45	v
2	В	13	Р	24	5	35	j	46	x
3	С	14	Q	25	6	36	k	47	У
4	D	15	R	26	7	37	l	48	z
5	E	16	S	27	а	38	n	49	8
6	F	17	Т	28	b	39	р	50	9
7	G	18	U	29	с	40	q	51	2
8	н	19	V	30	d	41	r	52	3
9	J	20	W	31	e	42	s	53	м
10	к	21	Y	32	f	43	t		
11	L	22	Z	33	g	44	u		

High RF Voltage Dual SPST Antenna Aperture Shunt Switch

infineon

Package Information

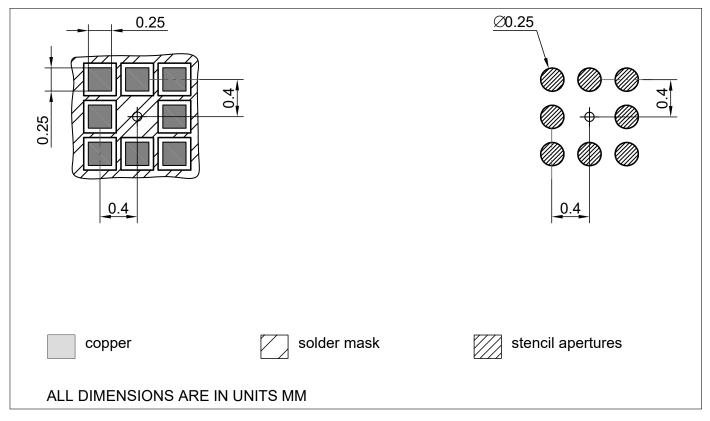


Figure 7: Footprint Recommendation

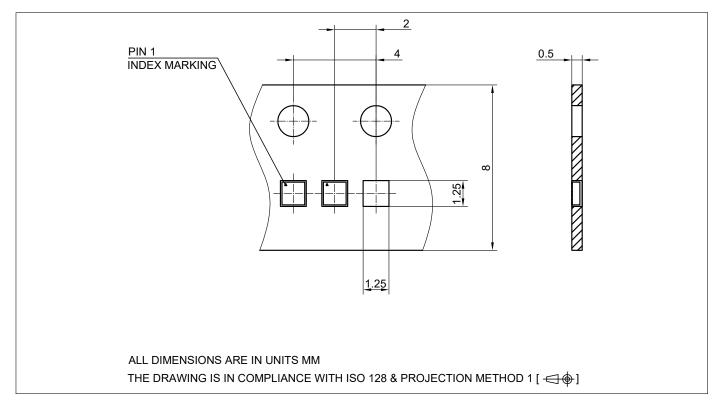


Figure 8: TSLP-8-1 Carrier Tape

Revision History			
Creation of document Revision 2.1, 2021-06-23			
Page or Item	Subjects (major changes since previous revision)		
-	Release of the final datasheet		

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-06-23 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document? Email: erratum@infineon.com

Document reference Doc_Number

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon: BGSA20UGL8E6327XTSA1