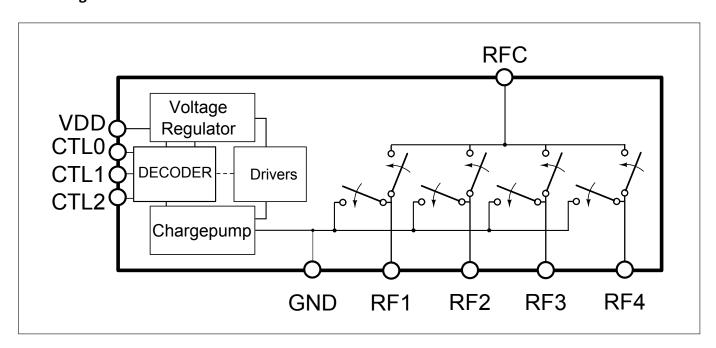


Low Resistance Antenna Tuning Switch

Features

- Designed for high-linearity antenna tuning switching and RF tuning applications
- Ultra low R_{ON} resistance of 1.15 Ω at each port in ON state
- Low *C_{OFF}* capacitance of 140 fF at each port in OFF state
- High RF operating peak voltage handling of 42 V in OFF state
- Resonance-Stopper Antenna Tuning
- Low harmonic generation
- 3 GPIO pins control interface
- No RF parameter change within supply voltage range
- Small form factor 1.1 mm x 1.5 mm (MSL1, 260°C per JEDEC J-STD-020)
- RoHS and WEEE compliant package

1.1 x 1.5 mm²


Application

- Impedance Tuning
- Antenna Tuning
- Inductance Tuning
- Tunable Filters

Product Validation

Qualified for industrial applications according to the relevant tests of JEDEC47/20/22.

Block diagram

Low Resistance Antenna Tuning Switch

Table of Contents

Table of Contents

Та	ble of Contents	1
1	Features	2
2	Maximum Ratings	3
3	DC Characteristics	5
4	RF Small Signal Characteristics	6
5	RF large signal parameter	8
6	Logic Truth Table	10
7	Application Information	10
8	Package Information	11

1

Low Resistance Antenna Tuning Switch

Features

1 Features

- Designed for high-linearity antenna tuning switching and RF tuning applications
- Ultra low R_{ON} resistance of 1.15 Ω at each port in ON state
- Low C_{OFF} capacitance of 140 fF at each port in OFF state
- High RF operating peak voltage handling of 42 V in OFF state
- Low harmonic generation
- Resonance-Stopper Antenna Tuning
- 3 GPIO pins control interface
- No RF parameter change within supply voltage range
- Small form factor 1.1 mm x 1.5 mm (MSL1, 260°C per JEDEC J-STD-020)
- RoHS and WEEE compliant package

RoHS (M) Halogen-Free (PB) Lead-Free Green

Description

The BGSA143GL10 is a small and versatile Single-Pole Quad Throw (SP4T) RF switch optimized for low Coff as well as low Ron enabling applications up to 6.0 GHz. GPIO digital control lines offer the possibility to adopt SP4T, SPDT along with SPST topology for an optimum flexibility in RF Front-end designs.

The BGSA143GL10 is ideal for high Q tuning applications. This single supply chip integrates on-chip CMOS logic control. It can be driven by 2 or 3 CMOS or TTL compatible control input signals. Due to its high RF voltage ruggedness and OFF RF ports reflective short feature, it is suited for switching any reactive devices such as inductors and capacitors in RF matching circuits without significant losses, also mitigating or even eradicating unwanted parasitic RF resonances.

Product Name	Marking	Package
BGSA143GL10	AB	TSLP-10-2

Low Resistance Antenna Tuning Switch

Maximum Ratings

2 Maximum Ratings

Table 1: Maximum Ratings, Table I at $T_A = 25$ °C, unless otherwise specified

Parameter	Symbol	Values			Unit	Note / Test Condition
		Min. Typ. M		Max.		
Frequency Range	f	0.4	-	T -	GHz	1)
Supply voltage ²⁾	V_{DD}	-0.5	-	6.0	V	Only for infrequent and short duration time periods
Storage temperature range	T _{STG}	-55	-	150	°C	-
RF input power	P _{RF_max}	-	-	40	dBm	Pulsed RF input power, duty cycle of 25 % with T_period= $4620 \mu s$, ON-state, setup as of Fig. 2
RF peak voltage	V _{RF_max}	_	_	50	V	Short term peaks (1 μ s, duty cycle 0.1%), Isolation mode, test setup acc. Fig. 1 and exceeding typical linearity, R_{ON} and C_{OFF} parameters
ESD capability, CDM ²⁾	V _{ESD_{CDM}}	-1	-	+1	kV	
ESD capability, HBM ³⁾	$V_{ESD_{HBM}}$	-0.6	-	+0.6	kV	
ESD capability, system level (RF port) 5)	V _{ESD_{ANT}}	-8	-	+8	kV	RFx vs system GND, with 27 nH shunt inductor on tested port
Junction temperature	T_j	_	-	125	°C	-
Thermal resistance junction - soldering point	R _{thJS}	_	-	43	K/W	-
Control Voltage Levels	V _{Ctrl}	-0.7	-	V _{Ctrl} +0.7 (max. 3.6)	V	-

¹⁾ Switch has a low-pass response. For higher frequencies, losses have to be considered for their impact on thermal heating. The DC voltage at RF ports V_{RFDC} has

Warning: Stresses above the max. values listed here may cause permanent damage to the device. Maximum ratings are absolute ratings; exceeding only one of these values may cause irreversible damage to the integrated circuit. Exposure to conditions at or below absolute maximum rating but above the specified maximum operation conditions may affect device reliability and life time. Functionality of the device might not be given under these conditions.

²⁾ Note: Consider any ripple voltages on top of V_{IO} . A high RF ripple at the V_{IO} can exceed the maximum ratings by $V_{Ctrl} = V_{DC} + V_{Ripple}$.

³⁾ Field-Induced Charged-Device Model ANSI/ESDA/JEDEC JS-002 Simulates charging/discharging events that occur in production equipment and processes. Potential for CDM ESD events occurs whenever there is metal-to-metal contact in manufacturing.

 $^{^{4)}}$ Human Body Model ANSI/ESDA/JEDEC JS-001 (R = 1,5 k Ω , C = 100 pF).

⁵⁾ IEC 61000-4-2 ($R = 330 \,\Omega$, $C = 150 \,\text{pF}$), contact discharge.

Low Resistance Antenna Tuning Switch

Maximum Ratings

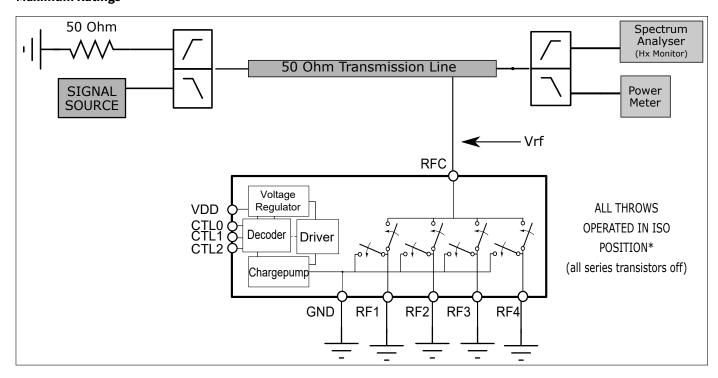


Figure 1: RF operating voltage measurement configuration - OFF mode



Figure 2: RF operating and Harmonics generation measurement configuration - RFx ON mode

DC Characteristics

3 DC Characteristics

Table 2: Operation Ranges

Parameter	Symbol		Values			Note / Test Condition
		Min. Typ.		Max.		
Supply voltage	V_{DD}	1.65	2.8	3.6	V	-
Supply current	I _{DD}	45	60	200 ¹	μΑ	$^{1}T_{A} = 85 ^{\circ}\text{C},$
						P _{IN} = 36 dBm, ON mode
Control voltage low	V _{Ctrl,low}	0	_	0.45	V	-
Control voltage high	V _{Ctrl,high}	1.2	1.8	2.85	V	$V_{Ctrl,high} < V_{DD}$
Control current low	I _{Ctrl,low}	-1	0	1	μΑ	-
Control current high	I _{Ctrl,high}	-1	0	4	μΑ	$V_{Ctrl,high} < V_{DD}$
						$1\mathrm{M}\Omega$ Pull-Down resistor at
						Control Pins
Ambient temperature	T _A	-40	25	85	°C	-
Power Up Settling Time	t _{Pup}	_	10	25	μs	Time from V _{DD} Min. power
						level to 90 % RF-signal
Switching Time	t _{ST}	_	5	8	μs	Time between RF states in
						active mode $V_{Ctl,high}$ Min. or
						V _{Ctl,low} Max. level to 90 % RF-
						signal
RF Rise Time	t _{RT}	_	1	5	μs	Time between 10 % to 90 %
						RF-signal

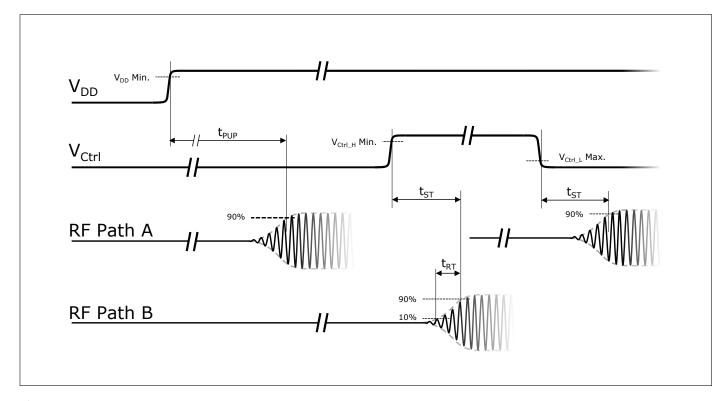


Figure 3: BGSA143GL10 Switching Time Behavior

Low Resistance Antenna Tuning Switch

RF Small Signal Characteristics

4 RF Small Signal Characteristics

Table 3: Parametric specifications

Parameter	Symbol		Values			STATE / Notes
		Min.	Тур.	Max.		
Frequency range	f	0.4		6.0	GHz	
RFx to RFc	R _{ON}		1.15		Ω	
ON DC resistance						$T_A = -40 ^{\circ}\text{C} + 85 ^{\circ}\text{C},$
RFx to RFc	R _{OFF}	_	200	_	kΩ	$Z_0 = 50 \Omega$
OFF DC resistance						
RFx to GND	$R_{ON,Shunt}$		5.9		Ω	
ON DC resistance						
RFx to GND	R _{OFF,Shunt}	_	200	-	kΩ	
OFF DC resistance						
RFx to RFc ⁽¹⁾	C _{OFF}	_	140	-	fF	
OFF capacitance						

 $^{^{1)}}$ C_{OFF} represents the series capacitance RFx to GND. It is fitting to the Isolation Values for OPEN Shunts.

Low Resistance Antenna Tuning Switch

RF Small Signal Characteristics

Table 4: RF electrical parameters

Parameter	Symbol		Values		Unit	STATE / Notes
		Min.	Тур.	Max.		
Insertion Loss: RF1 to RFc, R	F2 to RFc, RF3 t	o RFc or R	F4 to RFc	1,2,3,4)		1
698 - 960 MHz			0.18	0.3	dB	
1710 - 1980 MHz			0.35	0.6	dB	
1981 - 2169 MHz	11		0.40	0.7	dB	$Z_0 = 50 \Omega$ at all RF-ports,
2170 - 2690 MHz	IL _{SP4T}		0.50	0.9	dB	$T_A = -40 ^{\circ}\text{C} + 85 ^{\circ}\text{C}$
3400 - 3800 MHz			0.95	1.4	dB	
5000 - 6000 MHz			2.05	3.2	dB	
Return Loss: RF1, RF2, RF3 o	r RF4 ^(1,2,3,4)		·	·		
698 - 960 MHz		15	24		dB	
1710 - 1980 MHz		11	16		dB	
1981 - 2169 MHz	RL _{SP4T}	10	15		dB	$Z_0 = 50 \Omega$ at all RF-ports,
2170 - 2690 MHz	KL _{SP4T}	9.6	13		dB	$T_A = -40 ^{\circ}\text{C} + 85 ^{\circ}\text{C}$
3400 - 3800 MHz		7.1	10		dB	
5000 - 6000 MHz		5.0	7.3		dB	
Isolation: All RF OFF ^(1,2,3,4)						
698 - 960 MHz		32	38		dB	
1710 - 1980 MHz		22	27		dB	
1981 - 2169 MHz	ISO _{OFF}	21	26		dB	$Z_0 = 50 \Omega$ at all RF-ports,
2170 - 2690 MHz	ISO _{OFF}	17	24		dB	$T_A = -40 ^{\circ}\text{C} + 85 ^{\circ}\text{C}$
3400 - 3800 MHz		14	19		dB]
5000 - 6000 MHz		10	14		dB	

¹⁾ Valid for all RF power levels, no compression behavior

Network analyser input power: $P_{IN} = -20 \, dBm$ ³⁾ On application board without any matching components

⁴⁾OFF port shunts switches closed

Low Resistance Antenna Tuning Switch

RF large signal parameter

5 RF large signal parameter

Table 5: RF large signal specifications at T_A = 25 $^{\circ}$ C

Parameter	Symbol Values Un		Unit	Note / Test Condition		
		Min.	Тур.	Max.		
RF Operating Voltage	V_{RF_opr}			42	V	In Isolation mode, test condition
						schematic in Fig. 1
						for H2/H3 <-42 dBm @50 Ω
Harmonic Generation up to 12.7	5 GHz		<u> </u>	<u>.</u>	<u> </u>	
All RF Ports - Second Order Har-	P _{H2}	-	-86	-	dBm	25 dBm, 50 Ω, f_0 = 698 MHz
monics						
All RF Ports - Third Order Harmon-	P _{H3}	-	-91	-	dBm	25 dBm, 50 Ω, f_0 = 698 MHz
ics						
All RF Ports - Second Order Har-	P _{H2}	_	-67	-	dBm	35 dBm, 50 Ω, f_0 = 824 MHz
monics						
All RF Ports - Third Order Harmon-	P _{H3}	-	-63	_	dBm	35 dBm, 50 Ω, f_0 = 824 MHz
ics						
All RF Ports - Second Order Har-	P _{H2}	-	-65	_	dBm	33 dBm, 50 Ω , f_0 = 1960 MHz
monics						
All RF Ports - Third Order Harmon-	P _{H3}	-	-66	_	dBm	33 dBm, 50 Ω , f_0 = 1960 MHz
ics						
All RF Ports - Second Order Har-	P _{H2}	-	-75	-	dBm	25 dBm, 50 Ω, f_0 = 2500 MHz
monics						
All RF Ports - Third Order Harmon-	P _{H3}	-	-85	-	dBm	25 dBm, 50 Ω , f_0 = 2500 MHz
ics						
All RF Ports	P _{Hx}	-80	_	_	dBm	25 dBm, 50 Ω
Intermodulation Distortion IMD	2	•	•		•	
IIP2, low	IIP2, l	_	120	-	dBm	HP2 I'l' T. b. C
IIP2, high	IIP2, h	-	130	-	dBm	IIP2 conditions Tab. 6
Intermodulation Distortion IMD	3			<u> </u>		•
IIP3	IIP3	-	78	_	dBm	IIP3 conditions Tab. 7

Low Resistance Antenna Tuning Switch

RF large signal parameter

Table 6: IIP2 conditions table

Band	In-Band Frequency	Blocker Frequency 1	Blocker Power 1	Blocker Frequency 2	Blocker Power 2
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band 1 Low	2140	1950	20	190	-15
Band 1 High	2140	1950	20	4090	-15
Band 5 Low	881.5	836.5	20	45	-15
Band 5 High	881.5	836.5	20	1718	-15

Table 7: IIP3 conditions table

Band	In-Band Frequency	Blocker Frequency 1	Blocker Power 1	Blocker Frequency 2	Blocker Power 2
	[MHz]	[MHz]	[dBm]	[MHz]	[dBm]
Band 1	2140	1950	20	1760	-15
Band 5	881.5	836.5	20	791.5	-15

Application Information

6 Logic Truth Table

Table 8: Modes of Operation

State	Mode	CTL2	CTL1	CTL0
1	RF1 to RFc on ¹⁾	0	0	0
2	RF2 to RFc on 1)	0	0	1
3	RF3 to RFc on 1)	0	1	0
4	4 RF4 to RFc on ¹⁾		1	1
5	RFc isolated from all RFx	1	0	0
	all RFx ports shunt to GND			
6	6 RF1 to RFc on, RF4 to RFc on ¹⁾		0	1
7	7 RF2 to RFc on, RF3 to RFc on ¹⁾		1	0
8	all RFx to RFc on	1	1	1

¹⁾ all other RFx ports Shunt to GND

7 Application Information

Pin Configuration and Function

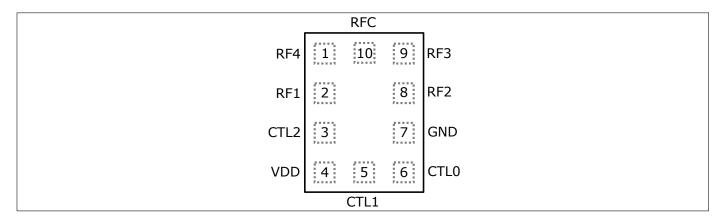


Figure 4: BGSA143GL10 Pin Configuration (top view)

Table 9: Pin definition and function

Pin No.	Name	Function
1	RF4	RF4 Port
2	RF1	RF1 Port
3	CTL2	GPIO Control
4	VDD	Power Supply
5	CTL1	GPIO Control
6	CTL0	GPIO Control
7	GND	Ground
8	RF2	RF2 Port
9	RF3	RF3 Port
10	RFC	Common RF Port

Package Information

8 Package Information

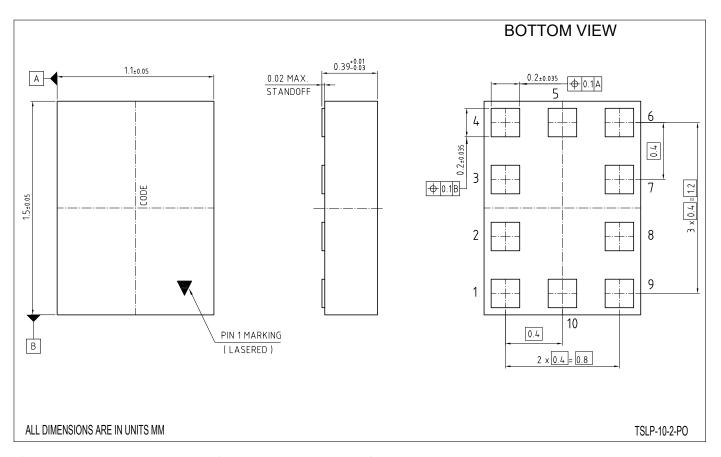


Figure 5: TSLP-10-2 Package Outline (top, side and bottom views)

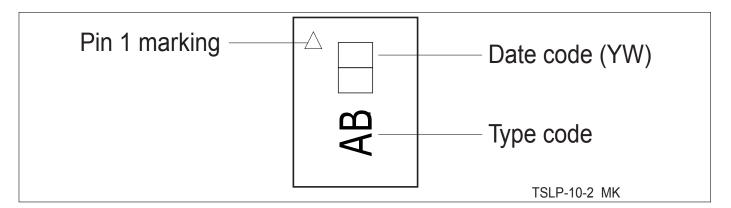


Figure 6: Marking Specification (top view): Date code digits Y and W defined in Table 10/11

Low Resistance Antenna Tuning Switch

Package Information

Table 10: Year date code marking - digit "Y"

Year	"Y"	Year	"Y"
2010	0	2020	0
2011	1	2021	1
2012	2	2022	2
2013	3	2023	3
2014	4	2024	4
2015	5	2025	5
2016	6	2026	6
2017	7	2027	7
2018	8	2028	8
2019	9	2029	9

Table 11: Week date code marking - digit "W"

Week	"W"	Week	"W"	Week	"W"	Week	"W"	Week	"W"
1	Α	12	N	23	4	34	h	45	V
2	В	13	Р	24	5	35	j	46	x
3	С	14	Q	25	6	36	k	47	у
4	D	15	R	26	7	37	l	48	z
5	E	16	S	27	a	38	n	49	8
6	F	17	T	28	b	39	р	50	9
7	G	18	U	29	С	40	q	51	2
8	н	19	V	30	d	41	r	52	3
9	J	20	W	31	e	42	S		
10	K	21	Y	32	f	43	t		
11	L	22	Z	33	g	44	u		

Package Information

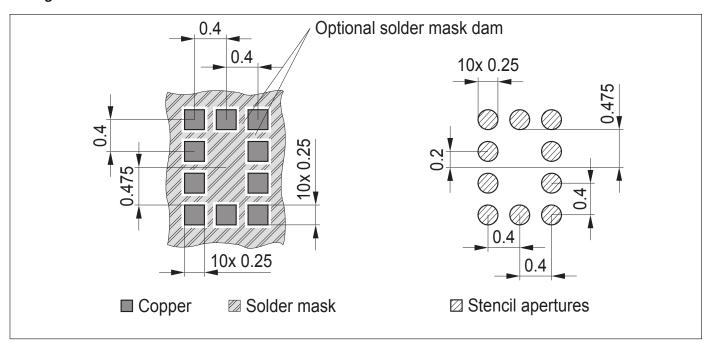


Figure 7: Footprint Recommendation

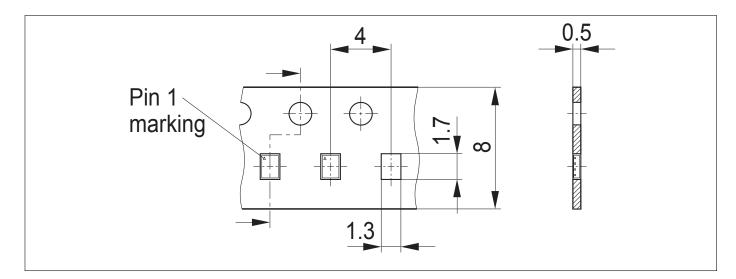


Figure 8: TSLP-10-2 Carrier Tape

Low Resistance Antenna Tuning Switch

Revision History						
Page or Item	Subjects (major changes since previous revision)					
Revision 2.1, 2021-06-23						
Revision 2.1	creation of document 2021-06-23					

Trademarks

All referenced product or service names and trademarks are the property of their respective owners.

Edition 2021-06-23 Published by Infineon Technologies AG 81726 Munich, Germany

© 2021 Infineon Technologies AG. All Rights Reserved.

Do you have a question about any aspect of this document?

Email: erratum@infineon.com

Document reference Doc_Number

IMPORTANT NOTICE

The information given in this document shall in no event be regarded as a guarantee of conditions or characteristics ("Beschaffenheitsgarantie"). With respect to any examples, hints or any typical values stated herein and/or any information regarding the application of the product, Infineon Technologies hereby disclaims any and all warranties and liabilities of any kind, including without limitation warranties of non-infringement of intellectual property rights of any third party. In addition, any information given in this document is subject to customer's compliance with its obligations stated in this document and any applicable legal requirements, norms and standards concerning customer's products and any use of the product of Infineon Technologies in customer's applications. The data contained in this document is exclusively intended for technically trained staff. It is the responsibility of customer's technical departments to evaluate the suitability of the product for the intended application and the completeness of the product information given in this document with respect to such application.

For further information on technology, delivery terms and conditions and prices, please contact the nearest Infineon Technologies Office (www.infineon.com).

WARNINGS

Due to technical requirements products may contain dangerous substances. For information on the types in question please contact your nearest Infineon Technologies office.

Except as otherwise explicitly approved by Infineon Technologies in a written document signed by authorized representatives of Infineon Technologies, Infineon Technologies products may not be used in any applications where a failure of the product or any consequences of the use thereof can reasonably be expected to result in personal injury.

Mouser Electronics

Authorized Distributor

Click to View Pricing, Inventory, Delivery & Lifecycle Information:

Infineon:

BGSA143GL10E6327XTSA1